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Preface

Introductory epidemiology courses are often referred to as "methods" courses, and many students
come to them hoping to learn the methods that have made epidemiology so important.  Certainly
methods are an essential aspect of the field, and this text covers the usual complement.  But
especially for the newcomer, the critical need is to learn how epidemiologists think about health and
the factors that affect it, and how epidemiologists approach studying them.  Very few methods are
unique to epidemiology.  "Epidemiologic thinking" is its essence.  Therefore, for me the central
objective of an introductory course has been to explain the concepts and perspectives of the field.

For nearly 20 years I have had the privilege of teaching the introductory epidemiology course for
epidemiology majors at the University of North Carolina School of Public Health and the special
pleasure that derives from teaching students who have sought epidemiology out rather than come to
learn it only as a school requirement.  I have also had the honor of being entrusted by my colleagues
with the responsibility for introducing our students to epidemiologic concepts and methods.

Over the years I have written out extensive lecture notes, initially in response to requests from
course participants and subsequently to develop my own understanding.  Not all course participants
have appreciated them, but I have received sufficient positive feedback and expressions of interest
from graduates who have gone on to teach their own epidemiology courses that I have decided to
recast them as an "evolving text".  I use the term "evolving" because I continue to clarify, develop,
refine, correct, and, I hope, improve.

Regarding it as an evolving text is also my excuse for the fact that the material is not ready for
formal publication.  Moreover, unlike a published text, this volume does not claim to be
authoritative – nor even thoroughly proofread.  As an evolving work, its further development has
always taken priority over appearance – and, it must be admitted, occasionally also over accuracy.*

Although the word processing is nearly all my own, the content is certainly not.  Besides the
extensive development and exposition of epidemiologic concepts and methods from courses and
publications by others, I have had the good fortune to study with and learn from outstanding
epidemiologists and biostatisticians, among them the late John Cassel, Gerardo Heiss, Barbara
Hulka, Michel Ibrahim, Sherman James, Bert Kaplan, David Kleinbaum, Gary Koch, Lawrence
Kupper, Hal Morgenstern, Abdel Omran, the late Ralph Patrick, Dana Quade, David Savitz, Carl
Shy, the late Cecil Slome, H.A. Tyroler, and Edward Wagner.

                                                
*
 Important errata, as I learn about them, are posted on a site on the World Wide Web (http://www.epidemiolog.net/).
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My thinking and this text have also greatly benefited from interactions with other colleagues and
teachers, co-instructors, teaching assistants, collaborators, associates, research staff, fellows, and
students.  I must particularly acknowledge the assistance of Charles Poole, who has generously
shared his expertise with me through his advanced methods course and frequent consultations.  He
has even made the ultimate sacrifice – reading this text and sitting through my lectures!  The content
(errors excepted!) and to some extent the exposition, therefore, represent the knowledge, ideas,
examples, and teaching skills of many people, to a much greater extent than the specific attributions,
citations and acknowledgements would indicate.

Acknowledgements are of greater interest to authors than to readers, and I ask your forgiveness for
including several more.  I received my own introduction to epidemiology from the late John Cassel -
- intellectual pioneer, inspiring lecturer, and humanist -- and Bert Kaplan -- quintessential scholar,
supporter, and friend, whose colleagueship, breadth of knowledge, depth of wisdom, dedication to
the ideals of the academy, and personal warmth have enriched the lives of so many.  I would also
like to express my gratitude to colleagues, staff, secretaries (especially Pat Taylor, Edna Mackinnon
Lennon, and Virginia Reid), students, administrators, and family for inspiration, stimulation,
feedback, opportunity, advice, guidance, commitment, counseling, assistance, support, affection, and
a good deal more.

Enjoy Epidemiology!

Victor J. Schoenbach

Chapel Hill, North Carolina

U.S.A.

August 17, 1999

Postscript:  After the 20th anniversary edition of EPID 168 ("Fundamentals of epidemiology"), my
teaching responsibilities have changed to its sister course, EPID 160 ("Principles of epidemiology").
EPID 160 serves as the basic introductory course for all students, graduate and undergraduate, who
are not majoring in epidemiology.  Thus its audience is much more diverse in both interests and
preparation.  Time will tell if I am able to continue to refine the Evolving Text, but if so it will begin
to move in the direction of making it more suitable for a general – and international – readership.  I
have been gratified by the expressions of interest in it in its present form and hope that it will
continue to be of use to others.

March 9, 2001.
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1.  Epidemiology — Definition, functions, and characteristics  

Definition, characteristics, uses, varieties, and key aspects of epidemiology* 

What to tell your family and friends 
When your family or friends ask what you are studying, and you say “epidemiology”, the response is 
often something like: 

 “You’re studying what?” 

 “Does that have something to do with skin?” 

 “Uh-huh.  And what else are you studying?” 

How should you reply?  One possibility is to give a formal definition (e.g., “The study of the 
distribution and determinants of health related states and events in populations, and the application 
of this study to control health problems” [John M. Last, Dictionary of Epidemiology]).  Another possible 
reply is, “Well, some epidemiologists study the skin.  But epidemiologists study all kinds of diseases 
and other aspects of health, also.  The root word is ‘epidemic’, rather than ‘epidermis’.”  Another 
reply could be.  “Epidemiology is the study of health and disease in populations.  It’s a basic science 
of public health.”, though then be prepared to define “public health”.  And, if you’re feeling erudite, 
you can follow-up with, “’Epidemiology’ comes from the Greek epi (among, upon), demos (people), 
and logy (study).”  

Epidemiology in transition? 

The above should satisfy your friends, but what about yourself?  Particularly if you are entering on 
the pathway to becoming an epidemiologist, do you know where it will lead you?  According to 
Thomas Kuhn (1970:136-7), textbooks “address themselves to an already articulated body of 
problems, data, and theory, most often to the particular set of paradigms to which the scientific 
community is committed at the time they are written.…[They] record the stable outcome of past 
revolutions and thus display the bases of the current normal-scientific tradition”.  Raj Bhopal’s 
review (1997), however, reports that recent epidemiology texts present a diversity of concepts and 
information, even in regard to the building blocks of epidemiology.  Bhopal sees the fundamental 
question as “whether epidemiology is primarily an applied public health discipline…or primarily a 
science in which methods and theory dominate over practice and application”.  He predicts a lively 
discussion that will sharpen in the 21st century. 

Indeed, in the leading commentary in the August 1999 issue of the American Journal of Public Health, 
three of my colleagues including our department chair seek to differentiate between epidemiology (a 
“science”) and public health (a “mission”).  They argue that the second half of Last’s definition 

                                                 
*   Dr. Raymond Greenberg wrote the original versions of the chapter subtitles. 
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(application and control) describes “the broader enterprise of public health” rather than  
epidemiology.  Epidemiology “contributes to the rationale for public health policies and services and 
is important for use in their evaluation”, but “the delivery of those services or the implementation of 
those policies” is not “part of epidemiology” (Savitz et al., 1999: 1158-1159).  Further, “the product 
of research is information, not, as has been argued, ‘public health action and implementation’ 
(Atwood et al., 1997: 693).” (Savitz et al.: 1160). 

The article by David Savitz, Charles Poole, and William Miller might be regarded in part as a 
response to the charge made in an article by our previous chair, Carl Shy, that academic 
epidemiology has “failed to develop the scientific methods and the knowledge base to support the 
fundamental public health mission of preventing disease and promoting health through organized 
community efforts” (Shy, 1997).  In making this charge, Shy builds on the contention in the Institute 
of Medicine report on The Future of Public Health (Committee for the Study of the Future of Public 
Health, 1988, which asserted that the U.S. public health system was in “disarray”) that schools of 
public health are too divorced from public health practice.  In that vein, in the editorial that precedes 
the Savitz et al. commentary, the previous Director of the Centers for Disease Control and 
Prevention (CDC) and two of his colleagues assert that, “[Epidemiologists] can make their goal 
journal publication, public interpretation of findings, or public health interventions”, adding that 
“epidemiology’s full value is achieved only when its contributions are placed in the context of public 
health action, resulting in a healthier populace.” (Koplan et al., 1999). 

These contrasting positions are not necessarily in conflict.  To say that public health action is 
required to achieve epidemiology’s full value does not imply that epidemiology or epidemiologists 
must launch that public health action, nor does appreciation of epidemiologists’ contributions imply 
that those contributions are epidemiology (as opposed to good works that happen to be done by 
epidemiologists).  But others have explicitly endorsed a diversity of roles for epidemiology.  In a 
2002 article, Douglas Weed and Pamela Mink provide a succinct and thoughtful discussion of this 
twenty-year long “remarkable disciplinary rift”, concluding that “Science and policy walk hand-in-
hand under the umbrella of epidemiology.” (Weed and Mink, 2002: 70).  They add that an 
epidemiologist can be a “full-fledged epidemiologist” whether s/he does etiologic research alone, 
combines public health practice and policymaking with research, or spends most of her/his time 
“making the public health system work”.  Perhaps influenced by the terrorism attacks of the 
previous autumn, the ensuing upsurge of concern about preparedness, and Internet dissemination of 
health information of highly variable reliability, Richard Kaslow in his 2002 Presidential Address to 
the American College of Epidemiology placed advocacy squarely within the epidemiology 
profession: “Individual epidemiologists may decline to ‘get involved,’ but I do not believe 
epidemiology without advocacy is any longer a viable option for the profession collectively. Through 
the College, our profession can speak with a compelling voice.  It is no longer enough to serve the 
public simply by producing credible data, we must effectively translate those data into clear and 
balanced messages.” (Kaslow, 2003: 547). 

But whether we see ourselves first as scientists or first as public health professionals, our work takes 
place in a societal context, with resources and therefore priorities assigned by political and economic 
institutions that appear to serve the interests of some people and groups more than of others 
(Winkelstein, 2000).  The research we do and our behavior in our other professional activities 
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inevitably reflect our backgrounds and life experiences, our values and preconceptions, our personal 
ambitions and responsibilities.  In that sense, what is epidemiology and what is not, and who is an 
epidemiologist and who is not, are determined in part by the custodians of curricula, hiring, research 
funding, and publication.  Thus, you have an opportunity to make epidemiology what you think it 
should be.  You may also acquire a responsibility: 

“Do epidemiologists and other public health professionals have a responsibility to 
ask whether the ways we think and work reflect or contribute to social inequality?   
 “Proponents of socially responsible science would answer yes.  What say you?” 

(Krieger, 1999: 1152) 

Asking the right questions is fundamental, but you may also need to help develop the methods to 
enable epidemiologists to do what you think we should.  In recent decades there have been great 
strides in the development and teaching of epidemiologic concepts and methods to study health 
problems of the individuals in a population, but these concepts and methods are less adequate for 
understanding population health (Koopman and Lynch, 1999), even in regard to epidemics – the 
origin of our discipline and its name.  Indeed, Ollie Miettinen, a key thinker in defining the 
conceptual basis of modern epidemiology, does not even regard the occurrence of epidemics, “a 
focal concern of classical epidemiology”, as “a problem of the form characteristic of modern 
epidemiologic research”, because an epidemic is an affliction of a population in the aggregate, rather 
than of its individuals” (Miettinen, 1985:4). For Miettinen, the discipline of epidemiology is “the 
aggregate of principles of studying the occurrence of illness and related states and events.” (Miettinen, 
1985:4). 

Advances in the methods for the study of health and disease in populations – epidemiology’s calling 
card, as it were – may ease some of the apparent conflict between those who see epidemiology first 
as a scientific enterprise and those who see it foremost as a vehicle for solving major public health 
problems (Schwartz and Carpenter, 1999).  Independent of whether epidemiologists are willing to 
study problems that cannot be solved within the prevailing paradigm and the conceptual and 
instrumental tools that it supplies (Kuhn, 1970), understanding those problems will require effective 
concepts and methods.  Warren Winkelstein (2000) sees the need for a “more expansionist 
approach” in order to address disease problems arising from pollution, global warming, population 
growth, poverty, social inequality, civil unrest, and violence.  Even without taking the further step of 
proposing that epidemiology should attempt to reduce these conditions themselves, the challenges 
for epidemiology are daunting. 

Epidemiology functions and areas of application 

The perspective in this text is that epidemiology is both a field of research to advance scientific 
understanding and also of application of knowledge to control disease and advance public health, a 
(primarily observational) science and a public health profession.  Thus, epidemiologists conduct 
research and also work to control and prevent disease; they are scientists and engineers. 
Epidemiologic investigation is problem-oriented and tends toward applied research.  Although it has 
a growing body of theory, the field is primarily empirically driven.  Partly for these reasons, 
epidemiologists draw freely from other fields and gravitate towards multidisciplinary approaches.   
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Milton Terris, a leading exponent of close interrelationships among epidemiology, public health, and 
policy, has summarized the functions of epidemiology as: 

1. Discover the agent, host, and environmental factors that affect health, in order to provide the 
scientific basis for the prevention of disease and injury and the promotion of health. 

2. Determine the relative importance of causes of illness, disability, and death, in order to 
establish priorities for research and action. 

3. Identify those sections of the population which have the greatest risk from specific causes of 
ill health [and benefit from specific interventions], in order that the indicated action may be 
directed appropriately.  (targeting) 

4. Evaluate the effectiveness of preventive and therapeutic health programs and services in 
improving the health of the population. 

(Milton Terris, The Society for Epidemiologic Research (SER) and the future of 
epidemiology.  Am J Epidemiol 1992; 136(8):909-915, p 912)   

To these might be added: 

5. Study the natural history of disease from its precursor states through its manifestations and 
clinical course 

6. Conduct surveillance of disease and injury occurrence in populations and of the levels of risk 
factors – passive (receive reports), active (poll practitioners, conduct surveys)  

7. Investigate outbreaks (e.g., hospital-acquired infections, disease clusters, food-borne and 
water-borne infections) to identify their source and controlling epidemics (e.g., measles, 
rubella, coronary heart disease, overweight) 

Classic and recent examples of epidemiologic investigation 

Epidemiology has made significant contributions to the understanding and control of many health-
related conditions, and epidemiologists are actively involved in studying many others.  Some of the 
classic investigations and some areas of recent and current attention are listed below: 

Scurvy (James Lind) - intervention trial, nutritional deficiency 

Scrotal cancer (Percival Pott) - occupational health, carcinogens 

Measles (Peter Panum) - incubation period, infectious period 

Cholera (John Snow) - waterborne transmission, natural experiment 

Puerperal fever (Ignatius Semmelweis) - hygienic prevention 

Pellagra (Joseph Goldberger) - “epidemic” disease was not communicable 

Rubella and congenital birth defects (Gregg) - prenatal exposure 

Retrolental fibroplasia - iatrogenic disease 

Lung cancer and smoking - coming of age of chronic disease epidemiology 
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Fluoride and dental caries - community epidemiology; environmental prevention 

Poliomyelitis immunization trial - a massive experiment that demonstrated the effectiveness of 
the vaccine against this greatly feared virus 

Cardiovascular disease - longitudinal community studies; community intervention trials 

Breast cancer screening – a large-scale randomized trial of effectiveness of cancer early detection 
through screening 

Reye’s syndrome and aspirin - an epidemiologic success involving a rare but devastating disease 
brought on by a familiar and ubiquitous medicine 

Toxic shock syndrome - an epidemiologic success in a “point-source” epidemic resulting from a 
new product introduction 

Estrogens and endometrial cancer - controversies of case-control methodology and bias; 
pharmacoepidemiology 

Psychiatric disorder - challenges in disease classification and assessment 

Lead and cognitive development - a crucial role for a biologic marker 

Electromagnetic fields - can an exposure be “exonerated”? 

Legionnaire’s disease - a newly recognized pathogenic bacterium foreshadows the resurgence of 
infectious diseases as a public health challenge in the U.S. 

HIV - a new or newly-recognized virus that has transformed the public health and epidemiology 
landscape with respect to infectious diseases in general and sexually-transmitted infections 
specifically 

Tuberculosis - reminding epidemiology of its roots; control of a pathogen is very different from 
its eradication 

Injury - epidemiology without disease 

Homicide - a behavioral epidemic or an environmental plague? 

Varieties of epidemiology 

As epidemiology continues to develop and to expand into new areas, the field has diversified into 
many forms: 

Surveillance, “shoe-leather” epidemiology (outbreak investigations), and epidemic control 

Microbial epidemiology – biology and ecology of pathogenic microorganisms, their lifecycles, 
and their interactions with their human and non-human hosts 

Descriptive epidemiology – examination of patterns of occurrence of disease and injury and 
their determinants 

“Risk factor” epidemiology – searching for exposure-disease associations that may provide 
insights into etiology and avenues for prevention 
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Clinical epidemiology* and the evaluation of healthcare – assess accuracy, efficacy, effectiveness, 
and unintended consequences of methods of prevention, early detection, diagnosis, 
treatment, and management of health conditions 

Molecular epidemiology – investigate disease at the molecular level to precisely characterize 
pathological processes and exposures, to elucidate mechanisms of pathogenesis, and to 
identify precursor conditions 

Genetic epidemiology – the confluence of molecular biology, population studies, and statistical 
models with an emphasis on heritable influences on disease susceptibility and expression 

Big Epidemiology** – multisite collaborative trials, such as the Hypertension Detection and 
Follow-up Program (HDFP), Coronary Primary Prevention Trial (CPPT), Multiple Risk 
Factor Intervention Trial (MRFIT), Women’s Health Initiative (WHI) 

Entrepreneurial epidemiology – building institutions and careers by winning research funding 
and facilities 

Testimonial epidemiology – giving depositions and testifying in court or in legislative hearings 
on the state of epidemiologic evidence on a matter of dispute 

Social epidemiology – interpersonal and community-level factors influencing health at the 
population level 

Global epidemiology – assessing the effects of human activity on the ecosystem that supports 
life on Earth. 

Characteristics of epidemiology 

With so many varieties of epidemiology, it is no wonder that confusion abounds about what is and 
what is not epidemiology.  “Epidemiologic” research tends to: 

be observational, rather than experimental; 

                                                 

 * In David Sackett et al.'s Clinical Epidemiology, 2nd ed,  it is recounted that when one of the authors 
(P.T.), then a medical student in England “sought career guidance from a world-renowned London 
epidemiologist, he was informed that it was ‘amoral’ to combine epidemiology with clinical 
practice!” 

** "Big" in epidemiology might be defined as upwards of $100 million for a study.  To put these 
studies in perspective, the Human Genome Project cost $250 million in public funds, CERN (high 
energy particle physics research in Switzerland) $638 million/year, the Hubble Space Telescope $3 
billion, and the Apollo Program $115 billion.  (1999 dollars; data from the National Institutes of 
Health, the European Space Agency, and NASA, by way of Hannah Fairfield in the New York Times 
(Science Times, 6/27/2000). 
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focus on free-living human populations defined by geography, worksite, institutional affiliation, 
occupation, migration status, health conditions, exposure history, or other characteristics 
rather than a group of highly-selected individuals studied in a clinic or laboratory; 

deal with etiology and control of disease, rather than with phenomena that are not closely tied to 
health status; 

take a multidisciplinary, empirical approach directed at understanding or solving a problem 
rather than on advancing theory within a discipline. 

However, not all epidemiologic studies have these characteristics. 

So how then can you tell if someone is doing epidemiology or not?  One wag suggested the 
following scoring system:  

 ln(ny)ksd2 
score = ––––––––––– 

 pc 
where: 

n = number of subjects 

y = number of years of follow-up 

k = total direct costs (in $1,000,000) 

s = sponsor (NIH=3, other public or foundation=2, corporate=1) 

d = principal investigator’s degree (EPID PhD=4, MD plus EPID MPH.= 3, MD w/o EPID 
MPH = 2, other health doctorate = 1) 

p = number of first-authored publications that the PI will author 

c = percent of the principal investigator’s salary that will be covered 

The higher the score, the more likely that the study is epidemiology. 

Key aspects of epidemiology 

A number of other fields – medicine, nursing, dentistry, pharmacy, demography, sociology, health 
psychology, health education, health policy, nutrition – share many common features and areas of 
interest with epidemiology (and with each other).  Some of the key aspects of epidemiology are: 

Epidemiology deals with populations, thus involving: 

y Rates and proportions 

y Averages 

y Heterogeneity within 

y Dynamics - demography, environment, lifestyle 

As other sciences, epidemiology involves measurement, entailing the need for: 
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y Definition of the phenomena 

y Spectrum of disease 

y Sources of data 

y Compromise 

Most epidemiologic studies involve comparison, introducing considerations of: 

y Standards of reference for baseline risk 

y Equivalent measurement accuracy 

y Adjustment for differences 

Epidemiology is fundamentally multidisciplinary, since it must consider: 

y Statistics, biology, chemistry, physics, psychology, sociology, demography, geography, 
environmental science, policy analysis, … 

y Interpretation - consistency, plausibility, coherence 

y Mechanisms - pathophysiology, psychosocial, economic, environmental 

y Policy - impact, implications, ramifications, recommendations, controversy 

Modes of investigation — descriptive vs. analytic epidemiology 

Although the distinction is often difficult to draw, in part because of the greater valuation placed by 
many on the latter, epidemiologic investigations are sometimes usefully characterized as either 
descriptive or analytic. 

Descriptive epidemiology 

Descriptive epidemiology describes the health conditions and health-related characteristics of 
populations, typically in terms of person, place, and time.  This information serves as the 
foundation for studying populations.  It provides essential contextual information with which to 
develop hypotheses, design studies, and interpret results.  Surveillance is a particular type of 
descriptive epidemiology, to monitor change over time. 

Types of descriptive studies: 
y Routine analyses of vital statistics (births, deaths), communicable disease reports, other 

notifiable events (outbreaks, induced abortions) 

y Periodic surveys of health status, knowledge, beliefs, attitudes, practices, behaviors, 
environmental exposures, and health care encounters (e.g., National Center for Health 
Statistics surveys, Centers for Disease Control and Prevention Behavioral Risk Factor 
Surveillance System) 

y Specialized surveys to establish prevalence of a condition, a characteristic, or use of a 
medical procedure  
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y Studies comparing information across geographical or political units, or between migrants 
and persons in their country of origin to look for differences and patterns 

Analytic epidemiology 

Analytic epidemiology involves the systematic evaluation of suspected relationships, for example, 
between an exposure and a health outcome.  Because of their narrower focus, analytic studies 
typically provide stronger evidence concerning particular relationships.  

Types of analytic studies: 
y Case-control studies, comparing people who develop a condition with people who have 

not 

y Follow-up (retrospective, prospective) studies, comparing people with and without a 
characteristic in relation to a subsequent health-related event 

y Intervention trials (clinical, community), in which a treatment or preventive intervention is 
provided to a group of people and their subsequent experience is compared to that of 
people not provided the intervention 

Analytic studies typically involve the testing of hypotheses, which in turn may arise from  

y Case reports 

y Case series 

y Laboratory studies 

y Descriptive epidemiologic studies 

y Other analytic studies 

The descriptive and analytic classification is more of a continuum than a dichotomy.  Many studies 
have both descriptive and analytic aspects, and data that are collected in one mode may end up being 
used in the other as well.  Whether a particular study is primarily “descriptive” or “analytic” may be a 
matter of the investigator’s “stance” in relationship to the study question and the collection of the 
data.  Since analytic epidemiology is often accorded a higher status than is descriptive epidemiology, 
with some regarding a study without a hypothesis as “not science”, investigators sometimes feel 
constrained to come up with a hypothesis and present their work as “analytic”, even if the 
hypothesis is contrived or is not the study’s real focus.  

Sources of data 

Since epidemiology studies populations in their ordinary environments, there are many kinds of data 
that are relevant, and obtaining them can be logistically challenging and expensive.  There is 
accordingly an interest in using data that are already available.  Data for political and geographical 
aggregates are often more readily available than are data on individuals, a distinction referred to as 
the level of measurement.  Sources of data for epidemiologic studies include: 
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Aggregate data 
Vital statistics (birth rates, death rates, pregnancy rates, abortion rates, low birth weight) 

Demographic, economic, housing, geographical, and other data from the Census and other 
government data-gathering activities 

Summaries of disease and injury reporting systems and registries 

Workplace monitoring systems 

Environmental monitoring systems (e.g., air pollution measurements) 

Production and sales data 

Individual-level data 
Vital events registration (births, deaths, marriages) 

Disease and injury reporting systems and registries 

National surveys 

Computer data files (e.g., health insurors) 

Medical records 

Questionnaires - in person, by telephone, mailed 

Biological specimens (routinely or specially collected) 

Sometimes a distinction is drawn between primary data (collected specifically for the study, which 
is generally advantageous) and secondary data (collected for some other purpose, and therefore 
possibly not as well suited for the question of current interest), though the former is not inevitably 
superior to the latter.  Although data quality is always a paramount, compromises must often be 
made.  Two examples are the use of a proxy informant when the person to be interviewed is ill, 
demented, or deceased and the use of a proxy variable when data cannot be obtained for the 
variable of greatest relevance. 

Sources of error 

The challenge of data quality in epidemiology is to control the many sources of error in 
observational studies of human populations.  The best understood and most quantifiable is 
sampling error, the distortion that can occur from the “luck of the draw” in small samples from a 
population.  More problematic is error from selection bias, where the study participants are not 
representative of the population of interest.   

Selection bias can result from: 

Self selection (volunteering) 

Nonresponse (refusal) 

Loss to follow-up (attrition, migration) 
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Selective survival 

Health care utilization patterns 

Systematic errors in detection and diagnosis of health conditions 

Choice of an inappropriate comparison group (investigator selection) 

Also highly problematic is information bias, systematic error due to incorrect definition, 
measurement, or classification of variables of interest.   

Some sources of information bias are: 

Recall or reporting bias 

False positives or negatives on diagnostic tests 

Errors in assignment of cause of death 

Errors and omissions in medical records 

Observational sciences especially are also greatly concerned with what epidemiologists call 
confounding, error in the interpretation of comparisons between groups that are not truly 
comparable.  Differences in age, gender composition, health status, and risk factors generally must 
generally be allowed for in making and interpreting comparisons.  A major theme in epidemiologic 
methods is the identification, avoidance, and control of potential sources of error. 

Unique contribution of epidemiology 

In an earlier era, epidemiology was characterized as “the basic science of public health work and of 
preventive medicine” (Sheps, 1976:61).  Whether or not this claim was ever valid (i.e., whether “the” 
should be “a” and whether “basic” should be “applied”), epidemiology does have the advantage of a 
name that ends in “logy” (a factor not to be discounted in this “Era of Marketing” [George 
McGovern’s apt phrase from the 1980’s]) and remains a foundation for the practice of “evidence-
based medicine” (definitely a term for the Era of Marketing).  Moreover, epidemiology deals with 
the “bottom line”, with the reality of human health.  True, epidemiologic research suffers from 
many limitations.  Indeed, in comparison to laboratory science, epidemiology may seem somewhat 
crude – akin to sculpting with a hammer but no chisel.  But the limitations of epidemiologic research 
are largely a function of the obstacles epidemiologists must contend with, and both the obstacles 
and the limitations are inherent in the subject of study – free-living human populations.  Laboratory 
studies provide better control of the confounding influences of genetic, environmental, and 
measurement variability.  But the public health relevance of laboratory findings is often uncertain 
due to: 

Differences between in vitro (test tube) and in vivo (whole animal) systems 

Differences in susceptibility across species 

Difficulty of extrapolating across dosages, routes of administration, cofactors, lifespans 

Problems in generalizing results from highly controlled settings to free-living populations. 
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Exquisitely precise knowledge about what happens in cell cultures or experimental animals, while of 
great value in many respects, cannot tell us enough about human health.  Ultimately, public health 
decisions require data from human populations.  If we need to know what happens to people, we 
must employ epidemiology. 



_____________________________________________________________________________________________ 
www.epidemiolog.net, © Victor J. Schoenbach 1999, 2000 
rev. 3/9/2001, 5/3/2003, 9/25/2003  1. Epidemiology  Definition, functions, and characteristics - 15 
 
 

Bibliography 

NOTE:  In-depth reviews of epidemiologic knowledge in both topical and methodological areas can 
be found in the periodical Epidemiologic Reviews, published by the American Journal of Epidemiology.  The 
first issue of the year 2000 (Armenian and Samet, 2000) features essays addressing the current state 
of epidemiology in a wide range of areas and provides an excellent overview of the field. 

Textbook chapters:  Charles Hennekens and Julie Buring.  Epidemiology in medicine, ch. 1-2;  Kenneth 
Rothman.  Modern Epidemiology, 1st ed., ch. 1;  Kenneth Rothman and Sander Greenland, Modern 
Epidemiology, 2nd ed., ch 1.  Brian MacMahon and Thomas Pugh.  Epidemiology: principles and methods. 1 
ed., ch. 1-4;  Judith Mausner and Shira Kramer.  Epidemiology: an introductory text., ch. 1-2;  Abraham 
Lilienfeld and David Lilienfeld.  Foundations of epidemiology. 2 ed, ch. 1, 12;  Mervyn Susser.  Causal 
Thinking in the Health Sciences;   David Kleinbaum, Lawrence Kupper, Hal Morgenstern.  Epidemiologic 
research, ch. 2, 3.  [Complete citations for these and many other textbooks are available at 
www.epidemiolog.net/] 

Armenian, Haroutune K., Jonathan M. Samet (eds).  Epidemiology in the year 2000 and beyond.  
Epidemiologic Reviews 2000; 22(1):1-185 

Bhopal RS.  Which book?  A comparative review of 25 introductory epidemiology textbooks.  J 
Epidemiol Community Health 1997;51:612-622. 

Bhopal, Raj.  Paradigms in epidemiology textbooks: in the footsteps of Thomas Kuhn.  Am J Public 
Health 1999; 89:1162-1165. 

Duffy J.  A history of public health in NYC.  NY, Russell Sage, 1974.  Especially chapter 3, Launching 
the NYC Health Department, 48-69. 

Kaslow, Richard A.  President’s Address.  Ann Epidemiol 2003;13(8):545-548. 

Koopman JS, Lynch JW.  Individual causal models and population systems models in epidemiology. 
Am J Public Health 1999; 89:117-1174. 

Koplan, Jeffrey P.; Stephen B. Thacker, Nicole A. Lezin.  Epidemiology in the 21st century: 
calculation, communication, and intervention.  Am J Public Health 1999; 89:1153-1155. 

Krieger N.  Questioning epidemiology: objectivity, advocacy, and socially responsible science. Am J 
Public Health 1999; 89:1151-1153. 

Kuhn, Thomas S.  The structure of scientific revolutions, 2nd ed, Chicago, University of Chicago, 1970. 



_____________________________________________________________________________________________ 
www.epidemiolog.net, © Victor J. Schoenbach 1999, 2000 
rev. 3/9/2001, 5/3/2003, 9/25/2003  1. Epidemiology  Definition, functions, and characteristics - 16 
 
 

Marmot, Michael.  Facts, opinions and affaires du coeur.  Am J Epidemiol 1976; 103:519-526. 

McGavran EG.  What is public health?  Canadian Journal of Public Health 1953 (December), 47-61.  

Miettinen, Olli S.  Theoretical epidemiology: principles of occurrence research in medicine.  NY, Wiley, 1985. 

Pattner, W.I.  The public health movement.  In: From poor law to welfare state.  NY, The Free Press, 
Macmillan, 1974, 116-133. 

Rosner D.  Health care for the “truly needy”, Nineteenth Century origins of the concept.  Milbank 
Memorial Quarterly 1982; 60(3):355-385. 

Savitz DA, Poole C, Miller WC.  Reassessing the role of epidemiology in public health. Am J Public 
Health 1999; 89:1158-1161. 

Schwartz S, Carpenter KM.  The right answer for the wrong question: consequences of type III 
error for public health research. Am J Public Health 1999; 89:1175-1180. 

Sheps, Ceil G.  Higher education for public health.  New York, Prodist for the Milbank Memorial Fund, 
1976. 

Shy, Carl M.  The failure of academic epidemiology: witness for the prosecution.  Am J Epidemiol 
1997; 145:479-484. 

Stallones, Reuel A.  To advance epidemology.  Ann Rev Public Health 1980; 1:69-82. 

Terris, Milton.  The epidemiologic tradition.  Public Health Reports 1979;94(3):203-209. 

Weed, Douglas L., Pamela J. Mink.  Roles and responsibilities of epidemiologists. Annals of 
Epidemiology, 2002;12(2):67-72. 

Winkelstein, Jr., Warren.  Interface of epidemiology and history: a commentary on past, present, and 
future. Epidemiologic Reviews 2000; 22:2-6. 



_____________________________________________________________________________________________ 
www.epidemiolog.net, © Victor J. Schoenbach 1999, 2000 
rev. 3/9/2001, 5/3/2003, 9/25/2003  1. Epidemiology  Definition, functions, and characteristics - 17 
 
 

Dimensions in the training of an epidemiologist 

I. Epidemiologic perspective 

1. Public health aspects: -- History of epidemiology, epidemiology as a public 
health science, clinical and public policy implications. 

2. Scientific aspects: -- Problem conceptualization, philosophy of inference, 
study designs, interpretation of data, concepts of bias and multicausality. 

II. Measurement and analysis:  Measures of disease frequency and 
extent, study designs and strategies, control of sources of error, 
statistical inference, data analysis and interpretation. 

III. Weighing epidemiologic evidence:  Critical reading and 
synthesizing of information. 

IV. Proposal development:  Specification of research hypotheses, 
study populations, measurement tools, analysis strategies; human 
subjects protection; “grantsmanship”. 

V. Study design and execution:  Protocol development, subject 
recruitment, instrumentation, data collection, quality control, 
reporting and communications collaboration and working with 
oversight bodies, presentation of findings. 

VI. Data management:  Manipulation and analysis of data using 
computers and statistical software packages. 

VII. Substantive knowledge:  General background in health-related 
sciences and multidisciplinary understanding of specific areas of 
research. 

VIII. Epidemiologist roles:  Development of skills for teaching, 
consultation, review of proposals and manuscripts, participation 
in professional meetings, leadership of multidisciplinary research 
teams, and continuing professional development. 

 

(Used for a number of years by the UNC Department of Epidemiology as an outline of 
areas of required competencies) 

 

 



_____________________________________________________________________________________________ 
www.epidemiolog.net, © Victor J. Schoenbach 1999, 2000 2. Historical perspective - 17 
rev. 8/21/2000, 3/9/2001, 5/20/2003 
 

2. An evolving historical perspective* 

The evolution of epidemiology into a science of the distribution of disease in populations and 
evaluation of interventions for disease prevention and therapy.  

Why study history [and herstory]? 
To understand a condition or event, we need to understand where it came from. 

To learn the lessons of the past 

To broaden our awareness from contemporary views by gaining perspective 

 

What is history? 

History, according to Edward Hallett Carr, is a “continuous process of interaction between the 
historian and his facts, an unending dialogue between the present and the past”*  

Propositions from studying history of epidemiology 
1. Life has not always been the way it is in the developed countries today. 

2. Scientific understanding of disease and the factors that affect it is largely a product of the last 
150 years, with very rapid advances in the last half-century.. 

3. Epidemiologic studies have not always been like ______ (insert the name of your favorite 
epidemiologic study). 

4. There are many histories of epidemiology 
− History of health and disease 
− History of ideas and concepts 
− History of methods 
− History of knowledge gained through these concepts and methods 
− History of teachers and students 
− History of organizations and actions 

A brief history of public health 

Community attempts to prevent and limit the spread of disease go back to antiquity.  For example, 
religious traditions against eating pork and shellfish reflect the special hazards of eating those foods 
                                                 
*  The following material draws heavily on lectures at the UNC Department of Epidemiology by Drs. Abraham 
Lilienfeld (1984) and Joellen Schildkraut (1989, 1990, 1991). 
* Carr, Edward Hallett.  What is history.  NY, Knopf, 1963, taken from the George Macaulay Trevelyan Lectures in the 
University of Cambridge in 1961, p.35. 
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when inadequately preserved or prepared.  As often happens in public health, even without an 
understanding of the underlying etiology, effective preventive measures can be taken. 

Successes in prevention reinforce the concept that disease can be prevented through human action 
other than prayers and sacrifices to the gods, which in turn encourages additional attempts at 
prevention.  By the 1600’s, the practices of isolation and quarantine had begun to be employed to 
prevent the spread of certain diseases; by the 1800’s these practices had become common in the 
American colonies.  Methods of smallpox inoculation also began to be used and apparently 
mitigated some epidemics, even before Edward Jenner's introduction of a safe vaccine based on 
cowpox virus. 

With the 19th century came two dramatic advances in the effectiveness of public health – “the great 
sanitary awakening” (Winslow, quoted in The Future of Public Health [FPH]: 58) and the advent of 
bacteriology and the germ theory.  Those of us who see all progress in the field of health in terms of 
laboratory discoveries and medicines have not had the experience of living in a 19th century city.  In 
New York City, piles of garbage two-three feet high were accompanied by epidemic smallpox and 
typhus.  The crowding, poverty, filth, and lack of basic sanitation in the working class districts of the 
growing cities provided efficient breeding grounds for communicable diseases.  Diseases that 
formerly arrived from outside to cause epidemics in basically healthy populations now became 
permanent residents.  Quarantine and isolation, which were somewhat effective against individual 
cases and illness brought by travelers, were inadequate against mass endemic disease. 

Moreover, industrialization and urbanization brought people of different classes geographically 
closer.  No longer able to escape to their country estates, well-to-do families also fell prey to the 
highly contagious diseases that incubated among the working class.  The shared vulnerability and the 
succession of reports of conditions in the working class supported the view that while poverty might 
still reflect individual weakness and moral defects, society nevertheless had to take actions to 
improve conditions. 

In England, the Poor Law Commission led by Edwin Chadwick studied the English health of the 
working class.  Their famous – and controversial – General Report on the Sanitary Conditions of the 
Labouring Population of Great Britain presented a “damning and fully documented indictment of the 
appalling conditions” (Chave, in FPH: 59-60).  The studies revealed that the average age at death for 
laborers was 16 years.  For tradesmen it was 22 years; for the gentry, 36 years.  In London more than 
half of the working class died before their fifth birthday (Winslow, in FPH). 

A comparable document in the United States was Lemuel Shattuck's 1850 Report of the Massachusetts 
Sanitary Commission.  Unlike Chadwick's report, however, Shattuck's report went largely ignored due 
to the political turmoil in the United States.  After the Civil War, though, many of its 
recommendations were adopted, and it is now regarded as one of the most influential American 
public health documents (FPH: 61). 

Though controversial in many ways, sanitary reforms fit reasonably well with the moral views of the 
time.  Much of the scientific rationale for the reforms – the relatively nonspecific model by which 
filth and putrid matter gave off emanations (miasma) that gave rise to disease – has only modest 
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correspondence to modern biological understanding.  Nevertheless, many of the reforms did reduce 
the transmission of disease and were therefore effective. 

But the advance in understanding of infectious disease that constituted the arrival of the 
bacteriologic era at the end of the century dramatically increased the effectiveness of public health 
action.  In one dramatic example, mosquito control brought the number of yellow fever deaths in 
Havana from 305 to 6 in a single year (Winslow, in FPH: 65).  Cholera, typhoid fever, and 
tuberculosis, the great scourges of humanity, rapidly came under control in the industrialized 
countries. 

 
Time line for the history of public health and epidemiology. 

Antiquity Concepts of health closely tied to religion (e.g., Old Testament) 
 Greek writers draw links to environmental factors (e.g., Hippocrates) 
 Romans associate plumbism with wine from lead-glazed pottery  

1334 Petrarch introduces the concept of comparison and indeed of a clinical trial 
1603 John Graunt – Bills of Mortality and the “law of mortality”.  The first life table, giving the 

probability of dying at each age. 
1700 Bernadino Ramazzini – “father of occupational epidemiology”; also breast cancer in nuns 

1706-1777 Francois Bossier de Lacroix (known as Sauvages) – systematic classification of diseases 
(Nosologia Methodica) 

1747 James Lind – scurvy experiment 
1775 Percival Pott – scrotum cancer findings 
1798 Edward Jenner – cowpox vaccination against smallpox 

1787-1872 Pierre Charles Alexandre Louis (1787-1872) – the “Father of Epidemiology”, La methode 
numerique 

 LaPlace, Poisson – the birth of statistics 
1834 William Farr, William Guy, William Budd (all students of Louis) – founded the Statistical 

Society of London 
1847 Ignaz Semmelweiss (Vienna) – discovers transmission and prevention of puerperal fever 
1849 John Snow – waterborne transmission of cholera 
1850 Epidemiological Society of London established 
1851 John Grove – On the nature of epidemics (presented the germ theory) 

 Oliver Wendell Holmes and George Shattuck, Jr. (and Shattuck's student, Edward Jarvis) 
– founded the American Statistical Society 

1870 Beginning of the era of bacteriology 
1887 The Hygienic Laboratory, forerunner of the U.S. National Institutes of Health, is created 

within the Marine Hospital Service in Staten Island, NY 
1900 Yule – notion of spurious (i.e., nonsubstantive) correlations, “Simpson's paradox” 

1914-1918 Joseph Goldberger studies pellagra 
1920 Split between U.S. organized medicine and physicians interested in public health (the latter 

were interested in national health insurance; public health concern vs. individual concern) 
1937 Austin Bradford Hill, Principles of Medical Statistics 
1942 Office of Malaria Control in War Areas (in US; became Communicable Disease Center 

(CDC) in 1946, Center for Disease Control in 1970, Centers for Disease Control in 1980, 
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and Centers for Disease Control and Prevention in 1992) 
1948 World Health Organization (WHO) 
1948 John Ryle becomes first chairman of social medicine at Oxford.  Observed that physicians 

have curiously little concern with prevention. 
1950's-
1970's 

Epidemiology successes – fluoride, tobacco, blood pressure and stroke, CHD risk factors,  
toxic shock syndrome, Legionnaire's disease, Reye’s syndrome, endometrial cancer and 
exogenous estrogens  

1975 Lalonde Report (Canada) 
1979 Healthy People U.S. and Health Objectives for the Nation 
1988 U.S. Institute of Medicine Report of the Committee for the Study of the Future of Public Health – 

Public health system is in “disarray”  – AIDS, injuries, teen pregnancies, Alzheimer's 
disease 

Rise of epidemiology 

Epidemiology was at the core of many of the studies that led to the above advances and to 
subsequent ones.  But until well into the 20th century, epidemiology was not a distinct profession 
and/or practice, so it is not meaningful to say when its contributions began.  The studies that led to 
the Chadwick and Shattuck reports drew on concepts that had arisen during earlier centuries, 
including the use of quantitative reasoning, the idea of comparing groups or populations, the 
collection of vital statistics, and methods of analysis (e.g., the life table). 

The birth of modern epidemiology occurred during the 19th century.  According to David Morens 
(Epidemiology Monitor, February 1999: 4), epidemic investigations prior to the middle of that century 
were mostly descriptive, rather than etiologic in orientation. Peter Panum, however, investigated the 
1846 measles outbreak on the Faroe Islands “much the way an Epidemic Intelligence Service 
Officer at CDC would today”.  The classic investigations on the transmission of cholera (John 
Snow), typhoid fever (William Budd), and puerperal fever (Ignaz Semmelweis) led to understanding 
and the ability to reduce the spread of major infections.  John Grove presented the germ theory in 
his 1851 treatise On the nature of epidemics. 

Pierre Charles Alexandre Louis (1787-1872), sometimes called the “Father of Epidemiology”, 
systematized the application of numerical thinking (“la methode numerique”) and championed its cause. 
Using quantitative reasoning, he demonstrated that bloodletting was not efficacious therapy, and 
wrote books on tuberculosis and typhoid.  Louis' influence was widespread, primarily through his 
students.  (An interesting historical observation is that Louis was of lower class background; absent 
the French Revolution, he would probably not have had the opportunity to contribute to science 
and medicine.) 

Many of Louis' students became leading exponents of and contributors to epidemiology.  William 
Farr pioneered the use of statistics in epidemiology and introduced the concepts of the death rate, 
dose-response, herd immunity, and cohort effect.  He also showed that prevalence is a function of 
incidence and duration and the need for large numbers to demonstrate associations.  He and two 
other students of Louis (William Guy and William Budd) founded the Statistical Society of London. 
William Guy studied tuberculosis in relation to occupation and, I believe, conceptualized the odds 
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ratio – the method for estimating relative risk from case-control data.  Two other of Louis' students, 
Oliver Wendell Holmes and George Shattuck, Jr. (and Shattuck's student, Edward Jarvis) founded 
the American Statistical Society (see genealogy table in Lilienfeld and Lilienfeld, 2nd ed., Fig. 2-1).  

Epidemiology continued to grow and develop, particularly in Britain and America.  In addition to 
the continuing challenges from urban crowding and large-scale immigration, the revolution in 
bacteriology had great applicability for military forces, for which infection and disease were major 
threats to effectiveness.  Thus, 20th century combat brought epidemiologists into the war effort. 
The Hygienic Laboratory (the forerunner of the U.S. National Institutes of Health, originally 
established as a one-room bacteriology laboratory in an attic of the Marine Hospital Service in Staten 
Island, NY) provided laboratory support for the U.S. military during the Spanish-American War 
(Winkelstein, 2000).  The U.S. Army Medical Corps and its British counterpart played major roles in 
preserving the health of the troops in several wars.   

The relationship of epidemiology to war has been a reciprocal one.  The U.S. Centers for Disease 
Control and Prevention (CDC) was born as the World War II Office of Malaria Control in War 
Areas, becoming the Communicable Disease Center in 1946, the Center for Disease Control in 
1970, the Centers for Disease Control in 1980, and receiving its present name in 1992.  The CDC's 
Epidemic Intelligence Service was established in response to concern about importation of exotic 
diseases from Asia, a concern arising during the Korean War.  In the second half of the 20th 
century, epidemiology flourished, with the creation of departments of epidemiology in many 
universities and corporations, dramatic expansion of research (and funding for biomedical research 
in general), broadening of methodological and technological capabilities, growth of professional 
societies and journals, and coverage of epidemiology in the mass media.  Growing fears of 
bioterrorism during the latter half of the 20th century blossomed with the mailing of anthrax spores 
to two U.S. senators and two news organizations and prompted a major infusion of resources into 
public health. 

 

Threads in the fabric of the development of epidemiology 

Quantitative reasoning 
Comparative studies – comparison of groups or populations 
Vital statistics system 
Hygienic and public health movement 
Improvements in diagnosis and classification  
Statistics 
Computers 
Personal computers 
User-friendly statistical software 
Biotechnology revolution 
Genomics 
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The importance of context 

Public health advocates often accuse medicine of being reactive, since physicians treat disease after it 
occurs whereas public health professionals work to prevent disease.  Interestingly, though, advances 
in public health knowledge and practice occur typically as reactions to public health problems.  A 
century and a half ago, for example, cholera epidemics in London stimulated the public health 
movement and the development of the London Epidemiological Society.  During the past two 
decades, the emergence and re-emergence of major infectious pathogens (HIV, TB) have stimulated 
the resurgence of infectious disease epidemiology, which as recently as the 1970's seemed to be on 
the road to extinction, as well as to an enormous expansion in other types of research directed at 
infectious disease.   

Wars are also a very important factor in public health, devastating to public health and public health 
programs in populations that suffer attack and engines of advances in public health knowledge in 
countries whose homeland remains undamaged.  Improved treatment of wounds (Britain) and the 
purification, testing, and manufacture of penicillin (Britain and the U.S.) are only two of the many 
advances stimulated by military exigencies.  Apart from military motives, the growth of government 
is responsible for public health advances for other reasons when there are supportive attitudes about 
what government should do.  For example, the French Revolution and the growth of populist 
thinking in Europe were strong stimuli to interest in public health.   

Scientific progress is fundamental to public health advances, of course, since regardless of what 
people think that government should do, what it can do is constrained by available knowledge and 
technology.  What government can do is also constrained by attitudes and beliefs about what is 
proper.  Former U.S. Surgeon General [C. Everett] Koop has related how, during a 1940's radio 
program to talk about his studies of childhood cancer, he was told that he could not say the word 
“cancer” (it was to be referred to as “that dread disease”).  Progress in preventing HIV and sexually 
transmitted diseases has had to contend with legal and extra-legal restrictions on open discussion 
about sex and particularly about anal sex. 

These are only a few of the myriad influences on the evolution of public health and epidemiology.  
Further examples of these influences, most of which affect each other as well as public health, are: 

Changing demography, economics, transportation, commerce, technology, organizations, politics, wars – 
The entire health care delivery system has been transformed through the rise of managed care 
organizations.   

Changing diseases and afflictions through the centuries – 
Hunger, infections, malnutrition, reproductive disorders, chronic diseases, environmental and 
occupational diseases, violence and injury, health care and pharmaceuticals, mental health, aging 
– different disease patterns dominate at different times, as the conditions of life change 

Developing scientific knowledge and technology changes understanding of disease and approaches to 
studying it – 
Introduction of Pap smear in 1940s led to knowledge of natural history of cervical cancer.  
Development of coronary angiography enabled visualizing of atherosclerosis during life as well 
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as coronary artery spasm.  Consider the impact of the development of microscopy, the 
stethoscope, electrocardiograms, culture techniques, biochemistry, cytology, computers, 
angiography, radioimmunoassay, DNA probes, … 

Expanding social and political consciousness – 
Hygienic movement, Marxism, social democracy, health promotion movement, minority health. 
Increased demand for (and on) epidemiology and public health (e.g., the Lalonde Report). 

Expanding social organization and investment in public health resources increases the opportunities for 
epidemiologic research and application – 
− Hospitals 
− Vital statistics systems 
− Health surveys 
− Research funding 
− Disease registries 
− Insurance systems 
− Record systems, computerized databases 

The challenge of hindsight 

In order to grasp the significance of the evolution of ideas, we need to put ourselves in the mindset 
of the time and appreciate the imagination (and deviance) necessary to see things in a new way.  
Many of the problems faced by past investigators seem so manageable compared to the ones we face 
today.  But how did those problems look without the benefit of the knowledge and concepts that we 
take for granted.   

Induction and latency 

Consider the example of the incubation period.  In infectious diseases, there is commonly an 
incubation period, often on the order of 1-14 days.  Until this phenomenon became known and 
accepted, it must have been difficult to make the connection between the onset of an illness and an 
exposure some two weeks earlier.  Panum helped to document this phenomenon, and his studies of 
measles onset and previous exposure to cases are a classic of careful description and inference.  With 
chronic diseases, the “incubation period” is much longer.  Pellagra develops over a period of several 
months.  Atherosclerotic heart disease and cancer can take 5, 10, 20, or even 30 years.  Lengthy 
separation of cause and effect is certainly much more formidable than the 2 weeks involved in 
measles, but is it more formidable in terms of the level of knowledge then and now?   

Rarity of disease 

Rarity of a disease is in some respects an advantage for studying it and in some respects an obstacle.  
Epidemics are easy to study in the sense that each occurrence represents a form of natural 
experiment.  They provide contrasts between the before and the after (e.g., arrival of a ship to the 
Faroe Islands, arrival of a person with typhoid fever in a previously unaffected village).  With an 
endemic disease, on the other hand, there is no obvious contrast to stimulate perception of new 
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events or new modes of living that could have introduced the disease.  On the other hand, very rare 
diseases are difficult to study because of the difficulty of assembling enough cases. 

Thoroughness of methods 

Some famous investigators are recognized as such for advances in the methodology of their studies 
– advances in rigor, exquisite thoroughness, and painstaking attention to detail – before such 
methods were in common use.  We now take it for granted, and grant proposal reviews enforce, that 
an investigator will conduct a systematic review of existing evidence, make use of vital statistics data, 
formulate precise definitions of disease and other variables, collect data in an even-handed manner, 
employ checks of reliability and validity of the data, and analyze the data with due attention to 
alternative explanations of the findings.  But each of these and other desirable methodologic 
practices had to be introduced at a time when it was not common practice.  A common theme in the 
“classics” is that each investigation involved careful, systematic and detailed observation – “shoe 
leather” epidemiology.  Not all of the practice of epidemiology is as glorious as the celebrated 
insights. 

Disease prevention 

The classic studies also gave rise to health promotion/disease prevention recommendations 
involving sanitary practices, personal hygiene, and diet – even before the identification of the actual 
etiologic or preventive agent.  But is there a lesson in the observation that the dietary changes 
recommended by Goldberger for prevention of pellagra – increased intake of meat and dairy 
products – is in some respects the reverse of current recommendations for the prevention of cancer 
and CHD?  It is also interesting to contrast these diseases and the interventions they recommended 
with those for contemporary epidemics (CHD, lung cancer, motor vehicle injuries, handgun 
fatalities).  Do you suppose the public reacts differently to being told to eat less meat than it did to 
being told to eat more meat? 

Insight based on but not constrained by knowledge 

Enduring recognition over time comes from distinctive accomplishment, from achievement beyond 
the expected.  One mark of distinction is the attainment of insight that builds on existing knowledge 
but is not unduly constrained by it.  Scientific advances generally build on knowledge that has been 
successively accumulated by many people over many years.  But such knowledge is understood in 
terms of existing paradigms (see Thomas Kuhn, The structure of scientific revolutions).  If the existing 
paradigm or theoretical structure that governs the interpretation of observations is inadequate to the 
problem at hand, then progress demands a new or modified paradigm. 

Almost by definition, a great step forward in thinking occurs in advance of general understanding.   
Avogadro's theory that the number of molecules in a gas is a function of its volume took 50 years to 
become accepted.  X-rays were originally regarded as an elaborate hoax (Kuhn, 1970).  In a number 
of the epidemiologic classics, the prevailing theories were misleading.  A key contribution was the 
discarding of certain beliefs of the time, and the investigator had to contend with active opposition 
to his investigations. 
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According to David Morens (Epidemiology Monitor, February  1999: 4), when Panum's 1847 work on 
measles appeared in French several years later, an unsigned review of his work in the British and 
Foreign Medico-Chirurgical Review observed “ ‘It is seldom, indeed, that an opportunity like that here 
described is afforded to a prudent and able man of science, who, like our author, rejecting all 
previously conceived opinions, diligently investigates the truth for himself.’ ”  Joseph Goldberger, in 
his studies of pellagra about 65 years later also had to depart from the accepted wisdom of the time.  
Not long before he began his work, a 1914 commission had concluded that pellagra was an 
infectious and/or hereditary disease.  Goldberger's careful study of all the facts enabled him to 
deduce that pellagra was not, in fact, a communicable disease.  This study took him three months.  It 
then took him several years, including some outlandish (heroic?) experiments in order to convince 
his scientific peers of the correctness of his deductions.  In Goldberger's case, others had known the 
pertinent facts, but their import had not been grasped. 

William Farr fought the idea that cholera was spread by germs because in his data high altitude was 
associated with cholera, consistent with theories about atmospheric pressure and miasmas.  Lind's 
discoveries were not adopted by the British Navy for a full 40 years, and Percival Pott's discovery 
about how to prevent scrotal cancer, though quickly adopted in Denmark, was not adopted in 
England for nearly a century.  The classic papers on lung cancer and tobacco smoke, published in 
the Journal of the American Medical Association by Wynder and Graham and Doll and Hill, were almost 
rejected by the editor because of the lack of existing knowledge supporting the association.  Despite 
numerous studies yielding similar findings, eminent statisticians (R.A. Fisher, Berkson) remained 
highly skeptical for many years. 

“Truth is the daughter of Time and not of authority.”  Sir Francis Bacon (1561-1626) 

“It is the customary fate of new truths to begin as heresies and to end as 
superstitions.”  Thomas Henry Huxley, “The Coming of Age of ‘The Origin of 
Species’” (1880) (http://babbage.clarku.edu/huxley/CE2/CaOS.html) 

The study of history broadens our vision and suggests that for us to rise above the common wisdom 
of our time we may have to accept the discomfort that comes with deviating from the conventional.  
For example, if an epidemiologist were to suggest that psychiatric disorders are spread by 
transmission of thoughts, this suggestion would be ridiculed.  Was the suggestion that water was a 
vehicle of transmission of cholera and typhoid similarly regarded in the last century?  What about 
the transmission of measles virus through air?  Can we achieve the acuity of hindsight without the 
wait? 

 



_____________________________________________________________________________________________ 
www.epidemiolog.net, © Victor J. Schoenbach 1999, 2000 2. Historical perspective - 26 
rev. 8/21/2000, 3/9/2001, 5/20/2003 
 

Conceptual and philosophic basis for  
epidemiologic advances – changing paradigms 

Humors in the body 
Miasma (17th century) 
Contagium vivum 
Concept of specificity of disease and causal agent 
Multicausality 
Molecular and genetic 
Biotechnology 
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3. Studying populations – basic demography 

Some basic concepts and techniques from demography - population growth, population 
characteristics, measures of mortality and fertility, life tables, cohort effects. 

The “demi” in epidemiology 

Since the primary subject matter of epidemiology is people (except for veterinary epidemiologists, 
who apply the same concepts and methods to studying other animal populations), a logical place to 
begin the study of epidemiology is with some basic concepts of demography. 

Population growth – an epidemic of homo sapiens* 

For its first few million years, the species that we refer to as homo sapiens numbered probably fewer 
than 10 million, due to high mortality.  In about 8000 B.C., with the beginning of agriculture, 
significant population growth began, bringing world population to about 500 million over a 6000-
year period.  At that point (1650 AD), growth accelerated sharply, so that world population doubled 
in 150 years (1 billion in 1800), doubled again in 130 years (1930), and doubled yet again in 45 years 
(4 billion in 1975).  Every decade the world’s population increases by about 1 billion, mostly in the 
developing countries.  The population will reach 6 billion in early 1999.  It is projected to reach 9.5 
billion by 2030 and 12.6 billion by 2100. 

World Population in mid-1997 (millions) 

    Region Population 
    Asia   3,552 
    Africa 743 

    Europe 729 

    Latin America & Caribbean 490 

    North America 298 

    Oceania (Australia, NZ, and Pacific) 29 

    World  5,840 
(does not add due to rounding)

 
 

* Note about sources:  Much of the following has been drawn from publications by the Population 
Reference Bureau (PRB), especially “Population: A lively introduction” and “The future of world 
population” (see bibliography).  This table comes from their 1997 World population data sheet.  The 
PRB web site (www.prb.org) has a wealth of data and links to sources of information on population- 
and health-related topics. 
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In 1997, 86 million more people lived on planet Earth than the previous year, for an estimated 
annual world population growth rate of 1.47%.  At that rate, world population would double in 47 
years.  The world population growth rate is the difference between the birth rate of 24 per 1,000 
people and the death rate of 9. 

Over the time, differing growth rates can dramatically alter the age, geographic, racial, and affluence 
distribution of the world’s population.  In 1950, two thirds of the world’s population lived in what is 
usually referred to as the developing world.  The proportion was three-quarters in 1990 and is 
projected to grow to 85% by 2025 and 90% by 2100.  Thus, whatever improvements in health take 
place in the industrialized world, world demographic and health indicators will be primarily 
influenced by the situation in the developing world. 

The Demographic Transition 

A fundamental model developed to describe population dynamics is the Demographic Transition 
model.  The model posits four stages in the evolution of the population in a society. 

1. High fertility, high mortality (pre-industrial) 

2. High fertility, declining mortality (industrializing) 

3. Declining fertility, low mortality 

4. Low fertility, low mortality (stable population) 

The first stage (pre-industrial) prevailed throughout the world prior to the past few centuries.  Rapid 
population growth takes place in Stages 2 and 3, because high birth rates, necessary for population 
survival in Stage 1, are embedded in the cultural, religious, economic, and political fabric of pre-
modern societies.  As economic and public health advances decrease mortality rates, rapid 
population growth occurs until the society adjusts to the new realities and fertility decline. 

The Demographic Transition Model was constructed from the European experience, in which the 
decline in death rates was gradual.  It remains to be seen how this model will play out in the 
developing world of today, in which the decline in death rates has occurred much more rapidly and 
in which social change takes place against a backdrop of and in interaction with the post-industrial 
world of electronic communications, multi-national production and marketing, and international 
travel.  There is some evidence that the model will also apply to the developing world of today.  But 
the timetable for completion of the demographic transition in the developing world will determine 
the ultimate size of the world’s population. 

Demographic balancing equation 

If birth and death are the two most fundamental demographic processes, migration is probably the 
third.  The size of the world’s population is (at least at present) completely determined by birth and 
death rates, but the population in any particular region or locale is also determined by net migration.  
These three processes are expressed in the demographic balancing equation—the increase (or 
decrease) in a population as the algebraic sum of births, deaths, immigration, and emigration.  The 
following table gives the equation for the world and for the U.S. for 1991. 
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The demographic balancing equation for the United States 
(from McFalls, 1991) (numbers in thousands) 

  Starting 
population + ( Births – Deaths ) +

( Immigration – 
Emigration ) = Ending 

population

  Starting 
population + (Natural increase) + (Net migration) = Ending 

population

World = 5,245,071 + (142,959 – 50,418)    

 = 5,245,071 + 92,541  = 5,337,612 

    
U.S. = 248,168 + (4,179 – 2,162) + (853 – 160)   

 = 248,168 + 2,107 + 693 = 250,878 

In recent decades, on a world basis, the migration has perhaps had its greatest impact on 
urbanization.  In the forty years from 1950 to 1990, the urban population in the countries of the 
Third World increased over five-fold, from 286 million to about 1.5 billion.  About 40 percent of 
this growth resulted from rural to urban migration.  The U.N. predicts that by the year 2000 there 
will be 19 Third World cities with populations over 10 million.  In contrast to Tokyo, Los Angeles, 
New York, London, and other glamorous metropolises, overcrowded urban areas in poor countries 
are characterized by inadequate housing, sanitation, transportation, employment opportunities, and 
other essentials of healthy living, the ingredients for misery and the spread of microorganisms. 

Population age structure and the population pyramid 

For every 10 people in the world: 

3 are younger than 15 years of age 

4 live in an urban area 

6 live in Asia (2 in China, 1 in India) 

8 live in developing countries 

An important dynamic in population growth is the reciprocal relationship between the rate of 
natural increase (births - deaths) and the age structure of the population.  The latter is one of the 
strongest influences on the growth rate of a population, since both fertility and mortality vary greatly 
by age.  A younger population has a higher rate of natural increase; a high rate of natural increase in 
turn lowers the median age of a population. 

In Africa, which has the highest birth (40/1,000) and growth (2.6%) rates, only 56% of the 
population are older than 15 years.  In contrast, in Europe, where average birth rates have been 
close to replacement level for many years, four-fifths of the population (81%) are older than 15 
years.  In fact, Europe as a whole experienced overall negative growth in 1997, due to birth and 
death rates of 10 and 14, respectively, in Eastern Europe (including Russia).  Since nearly all (96%) 
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of the increase in the world’s population takes place in the developing world, the developing 
countries are becoming younger while the wealthier countries are becoming older. 

Nevertheless, fertility control is increasing in the developing world.  As it does, the age structure of 
the population shifts upwards, since the larger birth cohorts of previous years are followed by 
relatively smaller birth cohorts.  The average age of the world's population, around 28 years, is 
projected to increase to 31-35 years, so that the proportion of persons 60 years and older will grow 
from about 9% to 13-17% (Lutz, 1994).  This proportion will range from as low as 5% in sub-
Saharan Africa to much as 30% in Western Europe.  In China, where fertility has been successfully 
regulated for decades, the proportion of the population age 60 and older will rise to about 20% in 
2030 (Lutz, 1994). 

The population pyramid 

Demographers display the age structure of a population by constructing a graph in which the 
population size in each age band is depicted by a horizontal bar that extends from a centerline to the 
left for one gender and to the right for the other, with the age bands arranged from lowest (at the 
horizontal axis) to highest.  A population pyramid for a population that is growing rapidly, e.g. 
Kenya, resembles a pillar that is very broad at the base (age 0-1 years) and tapers continuously to a 
point at the top.  In contrast, the population pyramid for a zero-growth population, e.g. Denmark, 
resembles a bowling pin, with a broader bottom and middle, and narrower base and top. 

Kenya, 1998 

 

The population pyramid for a country shows the pattern of birth and death rates over the past 
decades, since apart from immigration and emigration, the maximum size of any age group is set by 
the birth cohort that it began as, and its actual size shows its subsequent mortality experience.  For 
example, the 1989 population pyramid for Germany shows the deficit of older males resulting from 
losses in World Wars I and II and narrowings corresponding to the markedly lower wartime birth 
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rates.  Similarly, bulges in the reproductive years often produce bulges at the bottom, since more 
women of reproductive age usually translates into more births. 

Denmark, 1998 (note change in scale) 

 

 

 

 

 

 

 

 

 

Using the pyramid it is easy to see how a growing population becomes younger and the transition to 
lower fertility makes it older.  Widespread family planning makes new birth cohorts smaller, so that 
the pyramid consists of a broad middle (persons born before the adoption of family planning) being 
pushed upward by a narrower base.  Initially this age distribution makes life easier for adults, 
especially women, since effort and resources for childrearing and support are proportionally lower.  
However, when the adults who first adopted family planning reach retirement age, there are fewer 
younger people available to support them.  Unless productivity and savings have risen sufficiently, 
the society will be hard pressed to support its elderly members—an issue of concern in affluent 
societies today. 

The population pyramid for Iran has a number of distinctive features.  Iran embraced family 
planning in the 1960's, one of the first developing countries to do so.  The Islamic revolution of 
1979, however, regarded the family planning program as "pro-West" and dismantled it.  Moreover, 
the war with Iraq made population growth seem advantageous.  When the war ended and 
reconstruction became the priority, the government reversed its policy and inaugurated a new family 
planning program with an extensive information campaign and, in 1993, powerful economic 
disincentives for having more than three children.  These measures reduced the total fertility rate 
(see below) from 5.2 children in 1989 to 2.6 children in 1997.  (This account is taken from Farzaneh 
Roudi, Population Today, July/August1999).  The jump in the birth rate following the revolution can 
be seen in the large size of the 15-19 year-old band (born 1979-1983) compared to the next older 
one; the subsequent curtailment of births shows up as a relatively small number of children 4 years 
old and younger.  (Note:  these population pyramids come from the U.S. Bureau for the Census 
International Database and were downloaded from the Population Bureau web site.) 
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Iran, 1998 

 

Influence of population age composition 

Since rates of most diseases and medical conditions, injuries, and health-related phenomena such as 
violence vary greatly by age, a population’s age structure affects much more than its growth rate.  As 
the 76 million “Boomers” in the post-World War II baby boom cohort to which President Bill 
Clinton belongs have moved up through the population pyramid, as a pig which has been swallowed 
by a python, they expanded school and university enrollments, created an employment boom first in 
obstetrics, pediatrics, construction, urban planning, and diaper services, and subsequently increased 
demand for baby clothes, toys, appliances, teachers, school buildings, faculty, managers, automobile 
dealers, health professionals, and investment counselors. 

But in their wake, the Boomers have faced the contraction of many of those employment 
opportunities as their larger numbers and the smaller job-creating needs of the following generation 
increased competition at every stage.  On the horizon are substantial increases in the need for 
geriatricians and retirement facilities, providing more employment opportunity for the generations 
that follow the Boomers but also a heavier burden for taxes and elder-care.  A baby “boomlet” is 
also moving up the pyramid, as the Boomers’ children create an “echo” of the baby boom. 

The baby boom is a key contributor to the projected shortfalls in funding for Social Security, 
Medicare, and pensions in the coming decades.  The following projections were made several years 
ago but are still relevant: 
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When the baby boom cohort retires 

  1995 2030 

 Retired population (%) 12 20 
    
 Workers per retired person 3.4 2.0 
    
 Combined Social Security and 15% 28% 
 Medicare tax rate per worker   
 (including employer’s share)   
    
 (Source: Who will pay for your retirement?  The looming crisis.  Center for Economic 

Development, NY, NY. Summarized in TIAA-CREF quarterly newsletter the 
Participant, November 1995: 3-5.) 

The U.S. is the fasted growing industrialized country, with a 1% growth rate (about 30% of which is 
due to immigration).  Providing for the needs of senior citizens will be even more difficult in 
Europe, where most countries are now close to zero population growth and already 14% of the 
population are age 65 years or older.  It has been projected that in 100 years there will be only half as 
many Europeans as today, which for many raises concerns about economic health, military strength, 
and cultural identity. 

Sex composition 

Another fundamental demographic characteristic of a population is its sex ratio (generally expressed 
as the number of males per 100 females).  A strongly unbalanced sex ratio affects the availability of 
marriage partners, family stability, and many aspects of the social, psychological, and economic 
structure of a society. 

Sex ratios are affected by events such as major wars and large-scale migration, by cultural pressures 
that favor one sex, usually males, by unequal mortality rates in adulthood, and by changes in the 
birth rate.  Because of higher male mortality rates, the sex ratio in the U.S. at birth falls from about 
106 at birth, to about 100 by ages 25-29, and to 39 for ages 85 and above.  Migration in search of 
employment is a frequent cause of a sex ratio far from 100.  For example, oil field employment in 
the United Arab Emirates has brought that country’s sex ratio as high as 218. 

Although changes in birth rates do not alter sex ratios themselves, if women usually marry older 
men, a marked increase or decrease in the birth rate will produce an unbalanced sex ratio for 
potential mates.  Girls born at and after a marked increase in the birth rate will encounter a deficit of 
mates in the cohort born before birth rates increased; boys born before a marked decrease will 
encounter a deficit of younger women.  The substantial declines in birth rates in Eastern Europe 
following the collapse of Communism may lead to a difficult situation for men born before the 
collapse.  In the U.S., casualties from urban poverty and the War on Drugs have created a deficit of 
marriageable men, particularly African American men.  Because of assortive mating and the legacy of 
American apartheid, the effects of the deficit are concentrated in African American communities, 
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with many African American forced to choose between raising a family by themselves or remaining 
childless. 

Women’s status in society is a key factor in relation to the sex ratio and fertility in general.  For 
example, women’s opportunities for education and employment are strongly and reciprocally related 
to the birth rate.  In China, where a “one-child” policy for urban families was adopted as a dramatic 
step toward curbing growth in its huge population, the sex ratio at birth is now 114 (a normal ratio is 
105 boys for 100 girls).  The approximately 12% shortfall of girls arises from families’ desire for a 
mail offspring and is believed to be due to a combination of sex-selective abortion, abandonment, 
infanticide, and underreporting (Nancy E. Riley, China’s “Missing girls”: prospects and policy.  
Population Today.  February 1996;24:4-5). 

Racial, ethnic, and religious composition 

Race (a classification generally based on physical characteristics) and ethnicity (generally defined in 
relation to cultural characteristics), though very difficult to define scientifically, have been and 
continue to be very strong, even dominant factors, in many aspects of many societies.  Thus, the 
racial, ethnic, and religious composition of a population is linked with many other population 
characteristics, as a function of the beliefs, values, and practices of the various groups and of the way 
societies regard and treat them.  While people in the United States are most conscious of racial and 
ethnic issues in relation to African Americans, Latinos, Asian Americans, and Native 
Americans/American Indians, conflicts related to race, ethnicity, and religion are a major 
phenomenon throughout the world and throughout history, as the following VERY selective list 
recalls: 

Balkans - Serbs, Croats, and Muslims (Bosnia), Serbs and Albanians (Kosovo) 

Northern Ireland - Catholics and Protestants 

Rwanda - Hutu’s and Tutsi’s 

Middle East/Northern Africa - Jews, Christians, and Muslims 

Iran’s massacre of Bahai’s 

Kurds in northern Iran and Turkey 

Indonesia - massacres of ethnic Chinese 

East Timor 

India/Pakistan - Hindus and Muslims 

Europe - Christians and Jews (centuries of persecution climaxing though not ending with the 
Nazi’s systematic extermination of over 6 million Jews, gypsies, and other peoples) 

Germany - Catholics and Protestants (The Hundred Years War) 

Americas - Europeans, white Americans, African Americans, and Native Americans/American 
Indians 
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The pervasiveness, strength, viciousness, and persistence of human reactions to differences in 
physical features, practices, beliefs, language, and other characteristics have had and will have 
powerful effects on public health. 

Demographic concepts, measures, and techniques 

The discussion above uses many demographic terms, concepts, and measures.  We now give precise 
definitions. 

The (crude) birth rate is the number of births during a stated period divided by population size. 

The (crude) death rate is the number of deaths during a stated period divided by population 
size. 

Population-based rates are usually expressed per 100, 1000, 10,000, or per 100,000 to reduce the 
need for decimal fractions.  For example, 2,312,132 deaths were registered in the United States in 
1995, yielding a (crude) death rate was 880 per 100,000 population.  This rate represented a slight 
increase over the preceding year’s rate of 874 (Source:  Anderson et al., Report of final mortality statistics, 
1995.  Monthly Vital Statistics Report 45(11) suppl 2, June 12 1997, National Center for Health 
Statistics (CDC), http://www.cdc.gov/nchswww/data/mv4511s2.pdf).  Birth rates are generally 
expressed per 1,000 per year.  For example, the lowest birth rates in the world are about 10, in 
several European countries; the highest are about 50, in several African countries. 

When the numerator (deaths or births) in a given calculation is small, data for several years may be 
averaged, so that the result is more precise (less susceptible to influence by random variability).  For 
example, taking the average number of births over three years and dividing by the average 
population size during those years yields a 3-year average birth rate.  The average population size 
may be the average of the estimated population size for the years in the interval or simply the 
estimated population for the middle of the period (e.g., the middle of the year for which the rate is 
being computed).  Where the population is growing steadily (or declining steadily), the mid-year 
population provides a better estimate than the January 1st or December 31st population size, so the 
mid-year population is also used for rates computed for a single year.  Typical birth and death rate 
formulas are:  

 Births during year  
Birth rate   = –––––––––––––––––––––––––––––––––– × 1,000 

 Mid-year population  

 

 
 Deaths during year  
Death rate  = –––––––––––––––––––––––––––––––––– × 1,000 

 Mid-year population  
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 Deaths during the year period  
5-year average death rate  = ––––––––––––––––––––––––––––––––––––––––––––––––– × 1,000 

  
 

Population estimate for the 
middle of the third year  

Fertility and fecundity 

An obvious limitation of the birth rate is that its denominator includes the total population even 
though many members (e.g., young children) cannot themselves contribute to births - and only 
women give birth.  Thus, a general fertility rate is defined by including in the denominator only 
women of reproductive age: 

  Births during year  
 General fertility rate  = –––––––––––––––––––––––––––––––––––––––––––––––– × 1,000 
  Women of reproductive age 

(mid-year estimate) 
 

Note that in English, fertility refers to actual births.  Fecundity refers to the biological ability to 
have children (the opposite of sterility).  In Spanish, however, fecundidad refers to actual births, and 
fertilidad (opposite of sterilidad) refers to biological potential (Gil, 2001). 

Disaggregating by age 

A key consideration in interpreting overall birth, death, fertility, and almost any other rates is that 
they are strongly influenced by the population’s age and sex composition structure.  That fact does 
not make these “crude” overall rates any less real or true or useful.  But failure to take into account 
population composition can result in confusion in comparing crude rates across populations with 
very different composition. 

For example, the death rate in Western Europe (10) is higher than in North Africa (8).  In other 
words, deaths are numerically more prominent in Western Europe than in North Africa.  It would 
be a serious error, though, to interpret these rates as indicating that conditions of life and/or health 
care services are worse in Western Europe than in North Africa.  The reason is that Western Europe 
would be expected to have a higher (crude) death rate because its population is, on the average, 
older (15% age 65 or above) than the population of North Africa (4% age 65 and above). 

To enable comparisons that take into account age structure, sex composition, and other population 
characteristics, demographers (and epidemiologists) use specific rates (i.e., rates computed for a 
specific age and/or other subgroup - demographers call these “refined” rates).  These specific rates 
can then be averaged, with some appropriate weighting, to obtain a single overall rate for 
comparative or descriptive purposes.  Such weighted averages are called adjusted or standardized 
rates (the two terms are largely synonymous).  The United States age-adjusted death rate for 1995 
was 503.9 per 100,000, slightly lower than the 507.4 age-adjusted death rate for 1994 (NCHS data in 
Anderson et al., 1997, see above).  The reason that the age-adjusted death rate declined from 1994 to 
1995 while the crude death rate increased is that the latter reflects the aging of the U.S. population, 
whereas the former is adjusted to the age distribution of a “standard” population (in this case, the 
U.S. population for 1940). 
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Total fertility rate (TFR) 

Standardization of rates and ratios is the topic for a later in the course.  But there is another 
important technique that is used to summarize age-specific rates.  For fertility, the technique yields 
the total fertility rate (TFR) -- the average number of children a woman is expected to have during 
her reproductive life.  The average number of children born to women who have passed their 
fecund years can, of course, be obtained simply by averaging the number of live births.  In contrast, 
the TFR provides a projection into the future. 

The TFR summarizes the fertility rate at each age by projecting the fertility experience of a cohort of 
women as they pass through each age band of their fecund years.  For example, suppose that in a 
certain population in 1996 the average annual fertility rate for women age 15-19 was 110 per 1000 
women, 180 for women age 20-29, and 80 for women 30 years and older.  The TFR is simply the 
sum of the annual fertility rate for each single year of age during the fecund years.  So 1,000 women 
who begin their reproductive career at age 15 and end it at age 45 would be expected to bear: 
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Calculation of total fertility rate (TFR) 
For 1000 women from age 15 through age 45 years 

   
Age Births  

15 110  
16 110  
17 110 (average annual fertility 
18 110 from ages 15-19 = 110/1000) 
19 110  
   

20 180  
21 180  
22 180 (average annual fertility 
. . .  from ages 20-29 = 180/1000) 
29 180  
   

30 80  
31 80 (average annual fertility 
. . .  from ages 30-45 = 80/1000) 
44 80  
45 80  
 ————  
 3,630  
   

or about 3.6 children born to each woman. 
   

(This TFR could also be calculated more compactly as 
110 x 5 + 180 x 10 + 80 x 16 = 3,630) 

Note that the TFR is a hypothetical measure based on the assumption that the age-specific fertility 
rates do not change until the cohort has aged beyond them.  The TFR is a projection, not a 
prediction – essentially, a technique for summarizing a set of age-specific rates into an intuitively 
meaningful number. 
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Life expectancy 

The technique, of using current data for people across a range of ages to project what will happen to 
a person or population who will be passing through those ages, is also the basis for a widely-cited 
summary measure, life expectancy.  Life expectancy is the average number of years still to be lived 
by a group of people at birth or at some specified age.  Although it pretends to foretell the future, 
life expectancy is essentially a way of summarizing of a set of age-specific death rates.  It thus 
provides a convenient indicator of the level of public health in a population and also a basis for 
setting life insurance premiums and annuity payments. 

In order to understand life expectancy and TFR's, it is important to appreciate the difference 
between these demographic summary measures and actual predictions.  A prediction involves 
judgment about what will happen in the future.  Life expectancy and TFR’s are simply ways of 
presenting the current experience of a population.  Thus, my prediction is most of us will live 
beyond our life expectancy!   

The explanation for this apparent paradox is that life expectancy is a representation of age-specific 
death rates as they are at the present time.  If age-specific death rates do not change during the rest 
of our lives, then our life expectancy today will be an excellent estimate of the average number of 
years we will live.  However, how likely are today’s age-specific death rates to remain constant?  
First, we can anticipate improvements in knowledge about health, medical care technology, and 
conditions of living to bring about reductions in death rates.  Second, today’s death rates for 40-90 
year-olds represent the experience of people who were born during about 1900-1960.   

Today’s over-forties Americans lived through some or all of the Great Depression of the 1930s, two 
world wars, the Korean War, the Vietnam War, atmospheric nuclear bomb testing, unrestrained 
DDT use, pre-vaccine levels of mumps, polio, measles, rubella, chicken pox, pre-antibiotic levels of 
mycobacterium tuberculosis, syphilis, and other now-treatable diseases, varying levels of exposure to 
noxious environmental and workplace substances, a system of legally-enforced apartheid in much of 
the nation, limited availability of family planning, and lower general knowledge about health 
promotive practices, to list just a smattering of the events and conditions that may have affected 
subsequent health and mortality.  Although changes in living conditions are not always for the better 
(death rates in Russia and some other countries of the former Soviet Union have worsened 
considerably since the breakup), the United States, Western Europe, Japan, and many countries in 
the developing world can expect that tomorrow’s elderly will be healthier and longer-lived than the 
elderly of the previous generation.  For these reasons life expectancy, computed from today’s age-
specific death rates, probably underestimates the average length of life remaining to those of us alive 
today. 

Since it is a summary of a set of age-specific mortality rates, life expectancy can be computed from 
any particular age forward.  Life expectancy at birth summarizes mortality rates across all ages.  Life 
expectancy from age 65 summarizes mortality rates following the conventional age of retirement.  
Accordingly, life expectancy at birth can be greatly influenced by changes in infant mortality and 
child survival.  The reason is that reductions in early life mortality typically add many more years of 
life than reductions in mortality rates for the elderly.  The importance of knowing the age from 
which life expectancy is being computed is illustrated by the following excerpt from a column 
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prepared by the Social Security Administration and distributed by Knight Ridder / Tribune News 
Service (Chapel Hill Herald, June 28, 1998: 7): 

 
Q. I heard that the Social Security retirement age is increasing.  Is this true and if so, why? 

A. Yes, it’s true.  When Social Security was just getting started back in 1935, the 
average American’s life expectancy was just under age 60.  Today it’s more than 25 
percent longer at just over 76.  That means workers have more time for retirement, 
and more time to collect Social Security.  And that’s why Social Security’s retirement 
age is gradually changing ... to keep pace with increases in longevity.  A worker 
retiring today still needs to be age 65 to collect full benefits, but by 2027, workers 
will have to be age 67 for full retirement benefits. 

It is certainly the case that longevity today is much greater than when the Social Security system was 
begun, so that it is now expected to provide support over a much larger fraction of a person’s life.  
However, the life expectancies cited are life expectancies from birth.  Although children who die 
obviously do not collect retirement benefits, neither do they make contributions to Social Security 
based on their earnings.  For Social Security issues, the relevant change in life expectancy is that 
from age 62 or 65, when workers become eligible to receive Social Security retirement benefits.  
Every year's increase in life expectancy beyond retirement means an additional year of Social 
Security benefits.  This life expectancy (now 15.7 and 18.9 years, respectively, for U.S. males and 
females age 65 years) has also increased greatly since 1935. 

Life expectancy computation and the current life table 

Life expectancy is computed by constructing a demographic life-table.  A demographic life table 
depicts the mortality experience of a cohort (a defined group of people) over time, either as it 
occurs, has occurred, or would be expected to occur.  Imagine a cohort of 100,000 newborns 
growing up and growing old.  Eventually all will die, some as infants or children, but most as elderly 
persons.  The demographic life table applies age-specific risks of death to the surviving members of 
the cohort as they pass through each age band.  Thus, the demographic life table (also called a 
current life table) is a technique for showing the implications on cohort survival of a set of age-
specific death rates. 
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Excerpt from the U.S. 1993 abridged life table  
(total population) 

Age Risk Number  
interval Of still  
(years) Death alive Deaths 

x-x+n nQx lx nDx 

(A) (B) (C) (D) 
<= 1 yr .00835 100,000 835 

1-5 .00177 99,165 176 
5-10 .00106 98,989 105 
10-15 .00126 98,884 125 
15-20 .00431 98,759 426 
20-25 .00545 98,333 536 
25-30 .00612 97,797 599 
30-35 .00797 97,198 775 
35-40 .01031 96,423 994 
40-45 .01343 95,429 1,282 
45-50 .01842 94,147 1,734 
50-55 .02808 92,413 2,595 
55-60 .04421 89,818 3,971 
60-65 .06875 85,847 5,902 
65-70 .10148 79,945 8,113 
70-75 .14838 71,832 10,658 
75-80 .21698 61,174 13,274 
80-85 .32300 47,900 15,472 

>= 85 yr 1.00000 32,428 32,428 

(Source:  National Center for Health Statistics) 
    

(The algebraic symbols beneath the column headings show 
traditional life table notation; “x” refers to the age at the start of 

an interval, “n” to the number of years of the interval.) 

For example, here are the first four columns of the U.S. 1993 abridged life table, from the National 
Center for Health Statistics world wide web site (“abridged” means that ages are grouped rather than 
being listed for each individual year).  The table begins with a cohort of 100,000 live births (first line 
of column C).  For each age interval (column A), the cohort members who enter the interval 
(column C) are subjected to the risk of dying during that age interval (column B), producing the 
number of deaths shown in column D and leaving the number of survivors shown in the next line 
of column B.  Thus, in their first year of life, the 100,000 live newborns experience a risk of death of 
0.00835 (835/100,000), so that 835 die (B x C) and 99,165 survive (B - D) to enter age interval 1-5 
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years.  Between ages one and five, the 99,165 babies who attained age one year are subjected to a 
five-year risk of death of 0.00177 (177/100,000), so that 176 die (0.0017 x 99,165) and 98,989 
(99,165 - 176) attain age six. 

Notice that the age-specific risks of death (proportion dying, column B) increase from their lowest 
value at age 5-10 years, at first gradually, then increasingly steeply until during the age interval 80-85 
nearly one-third of cohort survivors are expected to die.  Correspondingly, the numbers in column 
D (deaths) also increase gradually, then more steeply—but not quite as steeply as do the risks in 
column B.  The reason is that the actual number of deaths depends also on the number of people at 
risk of death (survivors, column C) which drops gradually at first, then more and more rapidly as the 
risks increase.  Notice also the very high risk of death for infants:  the 0.0085 means that 835 of 
100,000 infants—nearly 1% --die during just one year.  In contrast, only 177 of the surviving infants 
die during the following four years. 

Death risks versus death rates 

An important technical issue to consider at this point is that the risks in column B are not the same 
as the age-specific death rates discussed above, though the latter are the basis for deriving the risks 
in column B.  There are two reasons.  First, all but the first two of the values in column B show the 
risk for a five-year interval.  Second, an (annual) death rate is an average value over an interval, based 
on the average population at risk for the interval, typically estimated by the mid-year population 
(which is why such death rates are called “central death rates”).  In contrast, the risks in column B 
apply not to the average population or mid-year population but to the population at the start of the 
interval, which in a life-table is always greater than the average population size during the interval. 

Assume that the death rate during an age interval remains fixed, so that the cohort experiences 
deaths during each month of the interval.  Cohort members who die in the first months of the 
interval are obviously no longer at risk of dying later during the interval.  A decreasing population 
with fixed death rates means that the number of deaths in each month of the interval also decreases.  
The calculation of the risk for the interval takes into account the fact that the cohort shrinks during 
the interval.  At young ages, when age-specific death rates are small, the shrinkage is slight so the 
one-year risk is very close to the annual death rate and the five-year risk is very close to five times 
the average annual death rate.  But at older ages, substantial shrinkage occurs and the risk is 
therefore less than the number of years times the average annual death rate. 

To illustrate: 

During infancy, the cohort loses 835 members, so that it shrinks from 100,000 to 99,165.  The 
average or mid-year population, then, is approximately (.5)(100,000 + 99,165) or, equivalently, 
100,000 -.5(835) = 99,582.5.  This number is very close to 100,000, so it is easy to see why the death 
rate during the first year (835 deaths divided by 99,582.5 = 0.00839) is almost identical to the first-
year risk (0.00835).  Similarly, during the next four years (ages 1-5), the average annual death rate 
during the interval is approximately 0.000444 (176 deaths/4 years, divided by 99,077, the average 
population during the interval).  Multiplying this rate by four years gives 0.00178, nearly identical to 
the four year risk (0.00177). 
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At the other end of the life table, cohort size loses 15,472 members, declining from 47,900 at age 80 
to 32,428 at age 85.  The average annual death rate is 0.07704 (15,472 / 5 years divided by the 
average size of the cohort, 40,164).  Multiplying this rate by five years gives 0.38522, which is 
considerably greater than the five-year risk in column B (0.32300).  We can come much closer to this 
five-year risk if we treat the five-year interval like a miniature life-table by dividing up the five-year 
interval into single years and applying the average annual death rate (0.07704) to each year of the 
cohort: 

 Annual Proportion Cumulative Cumulative 
 Death surviving Proportion Proportion 

Age Rate that year surviving dying 

80-81 0.07704 0.92296 0.92296 0.07704 
81-82 0.07704 0.92296 0.85186 0.14814 
82-83 0.07704 0.92296 0.78623 0.21377 
83-84 0.07704 0.92296 0.72566 0.27434 
84-85 0.07704 0.92296 0.66975 0.33025 

The cumulative 5-year risk calculated from the cumulative proportion dying comes very close to the 
value figure in column B of the table (0.32300).  If we divide each year into 12 months, or 52 weeks, 
or 365.25 days, the life-table-type calculation comes even closer.  (Using calculus, it can be shown 
that in the limit, as the number of units becomes infinite and their size approaches zero, the life-
table computation of the 5-year = 1 - exp(-5 x 0.07704) = 0.3197.) 

Deriving life expectancies 

Now we present the rest of the NCHS (abridged) U.S. 1993 life table, by including its three right-
most columns. 

Column E shows the sum of the number of years lived by all members of the cohort during each 
age interval.  During a five-year interval, most cohort members will live for five years, but those who 
die during the interval will live fewer years.  During the lowest risk five years (ages 5-10), nearly all of 
the 98,989 cohort members who enter the interval (column C) will live 5 years, for a total number of 
years of life of 494,945, which is just slightly above the value in column E.  Between ages 80 and 85, 
however, only about two-thirds of the entering cohort live all five years, so the number in column E 
(201,029) is much lower than five times column C (239,500).  However, if we use the average 
population size (40,164) to estimate years of life lived during ages 80-85, we obtain 5 x 40,164 = 
200,820, which is very close to the number in Column E.  (The numbers in column E also can be 
explained in terms of the concept of a “stationary population”.) 

The next column (F) gives the sum of the number of years of life during the specific age interval and 
the remaining intervals.  For example, the 395,851 total years of life remaining for the cohort 
members who attain age 80 are the sum of the 201,029 years to be lived during 80-85 plus the 
194,822 years left for those who survive to age 85.  The 669,345 years for cohort members reaching 
age 75 are the sum of the 273,494 years to be lived during the age 75-80 interval plus the 395,851 
years remaining for members who reach age 80. 
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U.S. 1993 abridged life table (total population) 
(Source:  National Center for Health Statistics) 

Age Risk Number     
Interval of still  Years Years Life 
(years) death alive Deaths lived remaining expectancy

x-x+n nQx lx nDx nLx Tx  

(A) (B) (C) (D) (E) (F) (G) 

<= 1 yr .00835 100,000 835 99,290 7,553,897 75.5 
1-5 .00177 99,165 176 396,248 7,454,607 75.2 
5-10 .00106 98,989 105 494,659 7,058,359 71.3 
10-15 .00126 98,884 125 494,177 6,563,700 66.4 
15-20 .00431 98,759 426 492,829 6,069,523 61.5 
20-25 .00545 98,333 536 490,352 5,576,694 56.7 
25-30 .00612 97,797 599 487,486 5,086,342 52.0 
30-35 .00797 97,198 775 484,098 4,598,856 47.3 
35-40 .01031 96,423 994 479,771 4,114,758 42.7 
40-45 .01343 95,429 1,282 474,168 3,634,987 38.1 
45-50 .01842 94,147 1,734 466,717 3,160,819 33.6 
50-55 .02808 92,413 2,595 455,985 2,694,102 29.2 
55-60 .04421 89,818 3,971 439,733 2,238,117 24.9 
60-65 .06875 85,847 5,902 415,279 1,798,384 20.9 
65-70 .10148 79,945 8,113 380,318 1,383,105 17.3 
70-75 .14838 71,832 10,658 333,442 1,002,787 14.0 
75-80 .21698 61,174 13,274 273,494 669,345 10.9 
80-85 .32300 47,900 15,472 201,029 395,851 8.3 
>= 85  1.00000 32,428 32,428 194,822 194,822 6.0 

Life expectancy, then, the average number of years of life remaining after a given age, is the total 
years of life left (column F) divided by the number of cohort members who have attained that age 
(column C).  Since the cohort numbers 100,000 at birth, life expectancy at birth is simply 7,553,897 
/ 100,000 = 75.5.  The 89,818 cohort members who attain age 55 years have a total of 2,238,117 
total years of life remaining, or an average of 24.9 years.   

An advantage of surviving is that the average age the cohort will expect to attain keeps rising also.  
Fifty-year-olds have an average life expectancy of 29.2, for an expected age at death of 79.2; 70-year-
olds have an average life expectancy of 14.0, for an expected age at death of 84 years.  The reason, 
of course, is that cohort members who live shorter lives bring down the average; when they drop 
out the average is reduced by less than the number of years of the interval.  

Cohort life tables 

Because the current life table uses risks derived from current (or recent) death rates at each age, the 
life expectancies are simply a technique for summarizing them more meaningfully than if we took a 
simple average of age-specific death rates.  Of course, in actual fact, age-specific death rates are likely 
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to change, hopefully to decline.  If they do, then by the time a cohort of newborns reach age 20, 
they will experience not the 1993 death rates for 20-year-olds but those in effect in 2013.  Similarly, 
they will experience the death rates for 30-year-olds in effect in 2023, for 40-year-olds in 2033, and 
so forth. 

The cohort life table is constructed to take account of changing death rates.  Of course, if such a life 
table is to be based on observed death rates, it can apply only to a cohort born sufficiently in the 
past.  If, for example, we create a cohort life table for persons born in 1880, then we can use the 
observed death rates for the appropriate age for each year or interval beginning in 1880.  Average 
years of life remaining at each age of a life table constructed from historical death rates summarizes 
the actual mortality experience of past birth cohorts.  In epidemiology, cohort life tables are used 
much more often than current life tables, because the life table technique is often useful for 
analyzing data collected during the follow-up of a cohort (some authors call these follow-up life 
tables). 

The cohort in a current or cohort life table loses members only to death, so that everyone who 
survives an interval is included in the next one.  The cohorts studied by epidemiologists, on the 
other hand, can lose members who become lost to follow-up so that their vital status cannot be 
determined.  Moreover, epidemiologists usually study outcomes other than all-cause mortality, so 
epidemiologic cohorts lose members who migrate or withdraw from the study or who become 
ineligible to have the outcome of interest (e.g., due to such reasons as death from another cause, 
surgical removal of an organ prior to the development of the disease of interest, or discontinuance 
of a medication being studied).  In addition, the members of an epidemiologic cohort may not enter 
the cohort at the same calendar time or age. 

A follow-up life table provides a way of representing and analyzing the experience of an 
epidemiologic cohort.  In one common type of follow-up life table, people being studied are entered 
into the cohort on the basis of an event, such as employment, illness onset, surgery, attaining age 18, 
or sexual debut, and are then followed forward in time.  Their time in the cohort (and in the life 
table) is computed with respect to their enrollment event.  At each time interval following initiation 
of follow-up, the number of outcomes observed is analyzed in relation to the cohort members 
whose status is observed for all or part of the interval.  Where the precise time of follow-up for each 
cohort member is unknown, then some intermediate number is used, in analogy to the use of the 
mid-year population for a central death rate. 

 

Cohort effects 

The life table and the TFR are both based on the concept of a cohort proceeding through time, and 
both employ the assumption that age-specific rates remain constant.  In actuality, of course, age-
specific rates do change over secular time, and populations are composed of many cohorts, not only 
one.  Since age, secular time, and cohort are fundamentally tied to one another - as time advances, 
cohorts age - it can be difficult to ascertain whether an association with one of these aspects of time 
reflects the influence of that aspect or of another. 
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When we look at a single age-specific rate for a given year, we have no indication of the extent to 
which that rate reflects the influences of chronological age, calendar time-associated changes in the 
social and physical environment, or characteristics of the cohort that happens to be passing through 
that age during that year.  Even if we look at a given age interval across a span of calendar years or at 
multiple ages in a given year, there is no way for us to know whether what appear to be changes 
associated with aging or the passage of time are really reflections of the characteristics of different 
cohorts (i.e., characteristics acquired due to environmental experiences at a formative period of life, 
such as exposure to lead in infancy or to radiation in adolescence). 

Attempts to disentangle the interwoven effects of age, secular time, and cohort are referred to as 
“age-period-cohort” analyses.  The most straightforward approach involves assembling data from 
more than one period and from a broad range of ages, and then examining the data in relation to 
age, period, and cohort.  For example: 

 

Age-period-cohort analysis of mean serum cholesterol (mg/dL, hypothetical data)

60-69 200A 210B 235C 240D 230E 
50-59 205B 230C 235D 225E 215F 
40-49 240C 230D 220E 210F 200G 
30-39 225D 215E 205F 195G 185H 
20-29 210E 200F 190G 180H 170I 

 1950-59 1960-69 1970-79 1980-89 1990-96 

          Birth cohorts: 

 A - 1890-1899 D - 1920-1929 G - 1950-1959 
 B - 1900-1909  E - 1930-1939 (underlined) H - 1960-1969 
 C - 1910-1919 F - 1940-1949 I - 1970-1979 

From the columns (calendar decades), it appears that serum cholesterol increases by 15 mg/dL per 
decade of age.  If we had only one calendar decade of data, this observation is all that we can make, 
leading us to overstate the relationship between age and cholesterol.  With the full data, we can 
follow the birth cohorts longitudinally, which reveals that for a given cohort cholesterol rises by 5 
mg/dL per decade of age, but that also each new cohort has 10 mg/dL lower average cholesterol 
than the previous one. 

This observation can be labeled a “cohort effect” and has the capability to confuse interpretation of 
cross-sectional (one point in time) data.  (The reason that the 15 mg/dL increase does not continue 
at the older ages in the earlier decades is that I decided to precede the secular decline in cholesterol 
with a secular rise, so that the earliest cohorts had lower cholesterol levels than the ones that came 
afterwards.) 
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Thought question:  Professors typically comment that with each entering class (i.e., cohort), students 
seem to be younger.  Is this an effect of age, secular time, or cohort?  (See bottom of page for the 
answer.) 
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Answer:  Age - the aging of the professors! 



_____________________________________________________________________________________________
www.sph.unc.edu/EPID168/  © Victor J. Schoenbach 3. Descriptive studies and surveillance - Assignment - 55
rev. 8/18/1999

Descriptive studies and surveillance - Assignment

Reading:  John C. Bailar and Elaine M. Smith.  Progress against cancer?  N Engl J
Med 1986; 314:1226-32.

 1. During the 20 years from 1962 to 1982, the number of Americans dying from cancer increased
56%, from 278,562 to 433,795.  If a news reporter asked you how these numbers could be
regarded as anything other than an indication of clear defeat in the "War against Cancer"
declared by President Nixon in 1971, what issues about interpretion of these numbers would be
important to explain to the reporter?

 2. Assuming perfect information, which measure — mortality, incidence, or survival — is the best
index of possible progress against cancer?  Why?

 3. What are the limitations of using national mortality statistics to assess changes in cancer rates?

 4. If breast cancer was the leading cause of cancer death in women in 1982, why are the breast
cancer mortality rates in Figure 2 so far below those for lung and colon/rectum cancer?

 5. Prostate cancer mortality rates in Figure 2 have remained stable despite continual increases
among nonwhite men.  What are possible reasons why the overall rates have remained stable in
spite of this increase?

 6. For which change in site-specific cancer mortality in Figure 2 would epidemiology most like to
claim credit?  Who or what probably deserves credit?  Explain.

 7. What are some of the limitations of available incidence data for assessing progress against
cancer?

 8. What are some of the limitations of using case survival data for assessing progress against
cancer?

The following questions pertain to the Standardization topic, which has not been covered yet.  But
see what you can do with them from information in the article or from your own knowledge.

 9. Why has the dramatic decline in age-adjusted cancer mortality in Americans under age 30 had so
little impact on total cancer mortality?

 10. Why do the authors elect to use a direct, rather than an indirect, adjustment procedure for
mortality and incidence rates?

 11. Figure 5 projects age-adjusted cancer mortality to the year 2000.  Would direct or indirect
adjustment have been more appropriate for this figure?  If the NCI goal is achieved, will crude
cancer mortality fall more or less sharply than the projection in Figure 5?

 12. Has the War on Cancer been lost?  Should resources be shifted from research on cures to
research on prevention?  Why?
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Descriptive studies and surveillance - Assignment solutions

 1. The absolute number of cancer deaths is a function of the number of Americans and their
personal characteristics, such as age and gender.  During the period from 1962 to 1982, the U.S.
population has increased in size, and the population age distribution has shifted so that both
median age and the proportion of Americans above age 65 have increased.  These changes
would greatly increase the number of cancer deaths independently of any advance or retreat in
the "War on Cancer".  Conversely, the decline in the population sex ratio (males:females) would
lower the number of cancer deaths (since the death rate for men is greater than that for women).
Therefore rates and proportions, which express numbers of deaths in relation to population size,
are more informative than are raw numbers.  Similarly, adjustment for characteristics (e.g., age
and sex) that are regarded as irrelevant to the question at hand provide a better comparison.

 2. The choice of a measure(s) depends upon the study question or objective as well as on the
availability of data.  Mortality measures reflect both incidence and survival and are also more
widely available (from vital statistics data), so mortality is the best single indicator for a "bottom
line" index.  On the other hand, nonfatal disease entails suffering, disability, and costs, so
incidence is in some ways a better (and more demanding) measure of disease burden than is
mortality, especially when the disease does not lead rapidly and inevitably to death.  Of course,
progress against cancer can take many forms, including reduced incidence, detection and simpler
treatment of presymptomatic or precancerous lesions, improved survival, less pain and suffering,
and improved quality of life among survivors.  A thorough examination would involve all these
dimensions.

 3. Cancer mortality statistics necessarily depend upon the classification and coding of cause of
death.  Death may occur from or in the presence of multiple pathologic processes (e.g., cancer,
heart disease, lung disease), in which case a decision must be made in selecting the "underlying
cause" that determines how the death is tabulated in vital statistics reports.   All of these factors
can differ from place to place and can change over time, as diagnostic methods, access to care,
and understanding of disease improve.  So various factors besides the incidence of a disease and
the effectiveness of treatment for it can complicate comparisons of mortality rates.

 4. The breast cancer (and prostate cancer) mortality rates shown in Figure 2 are based on the entire
population (p 1227, col 2), even though primarily (only?) women (and only men) contribute
deaths to the respective numerators.

 5. For overall prostate cancer mortality rates to remain stable in spite of increases among nonwhite
men, prostate cancer mortality rates among white men must have declined.

 6. Epidemiology would presumably most like to claim credit for the decline in stomach cancer,
because of its steepness and because the decline reflects lower incidence, i.e., prevention.  But
the decline is probably a result of improvements in socioeconomic status, nutrition, and
transport, storage, and preservation of foodstuffs, which did not come about as the result of
findings or recommendations from epidemiology.  In fact, the decline began before chronic
disease epidemiology had really got underway.
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 7. Incidence data are available for only a (nonrandom) portion of the U.S. population (SEER data
cover only 10%) and go back only about 25 years.  There are too few data to estimate stable
annual rates for nonwhites.  Furthermore, the clinical importance of lesions found through
sensitive screening procedures is sometimes uncertain.  If lesions have the microscopic
appearance of cancer they will be reported, yet in some cases they may not behave as cancer or
may progress so slowly that they will not influence the life or health of the patient (as appears to
be the case for the majority of prostate cancers).

 8. Survival rates have as their denominator cases of a disease.  Any problems in defining a case and
classifying individuals as cases can confound survival rates.  In particular, "overdiagnosis"
(classifying as cancer lesions that do not or at least do not yet exhibit malignant behavior) will
spuriously inflate survival rates.  Also, earlier detection of truly malignant lesions, by advancing
the time of detection ("lead time") from the time when symptoms occur, will increase the time
between detection and death (survival time) regardless of an effect of treatment.

 9. Because such deaths account for a very small portion of total cancer mortality, their influence on
total cancer mortality is minor.

 10. Direct adjustment uses weighted averages obtained from a single set of weights, so the adjusted
rates are comparable to one another.  Indirect adjustment uses weights from each separate group
to compute its adjusted rate, so technically speaking, these rates can be compared only to the
standard population.

 11. Direct adjustment is appropriate because the figure compares mortality rates for different years
(which would be problematic unless all are adjusted using the same weights) and the numbers of
deaths are adequate to satisfy direct adjustment's need for stable estimates of age-specific rates.
Since the population of the U.S. is aging, declines in age-specific mortality rates will be partly
offset by a greater proportion of the population in age groups with higher mortality rates.
Therefore, the actual (crude) death rate for cancer will not decline as sharply as will the age-
adjusted death rate (assuming we achieve the NCI goal).

 12. Perhaps not lost, but certainly not won.  On the other hand, people affected by cancer (their
own or a loved one's) are generally much more interested in and grateful for new treatments
than are people who are never affected by cancers grateful for preventive measures.  This is the
paradox of public health and a major challenge to shifting the allocation of resources towards
prevention.

Bailar and Smith assert:  "By making deliberate choices among these measures, one can convey any
impression from overwhelming success against cancer to disaster." (page 1231).  Or as stated in the
"evolving text", the choice of a measure depends upon the objective of the measure (!).
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4.  The Phenomenon of  Disease 

 Concepts in defining, classifying, detecting, and tracking disease and other health 
states.  The concept of natural history – the spectrum of development and 
manifestations of pathological conditions in individuals and populations. 

Definition and classification of disease 

Although the public health profession is sometimes inclined to refer to the health care system as a 
"disease care system", others have observed that public health also tends to be preoccupied with 
disease.  One problem with these charges is that both "health" and "disease" are elusive concepts. 

Defining health and disease 

Rene Dubos (Man Adapting, p348) derided dictionaries and encyclopedias of the mid-20th century 
for defining "disease as any departure from the state of health and health as a state of normalcy free 
from disease or pain".  In their use of the terms "normal" and "pathological", contemporary 
definitions (see table) have not entirely avoided an element of circularity. 

Rejecting the possibility of defining health and disease in the abstract, Dubos saw the criteria for 
health as conditioned by the social norms, history, aspirations, values, and the environment, a 
perspective that remains the case today (Temple et al., 2001).  Thus diseases that are very widespread 
may come to be considered as "normal" or an inevitable part of life.  Dubos observed that in a 
certain South American tribe, pinta (dyschromic spirochetosis) was so common that the Indians 
regarded those without it as being ill.  Japanese physicians have regarded chronic bronchitis and 
asthma as unavoidable complaints, and in the mid-19th century U.S., Lemuel Shattuck wrote that 
tuberculosis created little alarm because of its constant presence (Dubos, 251).  As for the idealistic 
vision of health embodied in the WHO Constitution, Dubos wrote: 

". . . positive health . . . is only a mirage, because man in the real world must face the 
physical, biological, and social forces of his environment, which are forever 
changing, usually in an unpredictable manner, and frequently with dangerous 
consequences for him as a person and for the human species in general." (Man 
Adapting, 349) 

With the sequencing of the human genome, the question of what is disease arises must be dealt with 
lest every genetic variation or abnormality be labeled as disease-associated (Temple et al., 2001).  
Such labeling can have severe ramifications or alternatively be beneficial.  Temple et al. reject 
Boorse's definition [“a type of internal state which is either an impairment of normal functional 
ability – that is, a reduction of one or more functional abilities below typical efficiency – or a 
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limiation on functional ability caused by environmental agents”*] as clinically impractical and not 
helpful for simplifying interpretation of genetic variations.  These authors assert that the key element 
is risk of adverse consequences and offer the definition “disease is a state that places individuals at 
increased risk of adverse consequences” (Temple et al., 2001, p807, italics in original).  The World Health 
Organization classifies adverse consequences as including physical or psychological impairment, 
activity restrictions, and/or role limitations, though these may be culturally-dependent (Temple et al., 
2001, p808).  Indeed, since the risk of adverse consequences is often variable across patients, 
Temple et al. suggest that the “‘cutoff’ between the categories of diseased and nondiseased could be 
based on many factors, including … potential for treatment” (p808) and that if the risk from a 
genetic abnormality is very low it may be better characterized as a “risk factor” than a “disease”.  In 
response to a criticism from Gerald Byrne (Science 7 Sept 2001;293:1765-1766), James Wright (a co-
author of Temple et al.) acknowledges that no definition will work in all contexts, offers yet another 
definition for dealing with risk-taking behaviors, and suggests that “given the potential genetic 
explanations for behavioral disorders (2), with time … mountain climbing might be viewed by some 
as [a disease manifestation]” (p.1766; reference 2 is a paper by DE Comings and K Blum in Prog 
Brain Res 2000)! 

Clearly, general definitions of health and disease involve biological, sociological, political, 
philosophical, and many other considerations. Such definitions also have important implications, 
since they delimit appropriate arenas for epidemiology and public health.  But even with a consensus 
on a general definition, we will still face major challenges in recognizing and classifying the myriad 
diversity of health-related phenomena encountered in epidemiology and other health (disease) 
sciences. 

 

Some definitions of disease and health 

Dorland's Illustrated Medical Dictionary (28th ed., Phila, Saunders, 1994): 
Disease – "any deviation from or interruption of the normal structure or function of any 
part, organ, or system (or combination thereof) of the body that is manifested by a 
characteristic set of symptoms and signs . . .".  

Health – "a state of optimal physical, mental, and social well-being, and not merely the 
absence of disease and infirmity." 

Stedman's Medical Dictionary (26th ed., Baltimore, Williams & Wilkins, 1995): 

Disease –  
1. An interruption, cessation, or disorder of body functions, systems, or organs; 

                                                 
* C. Boorse, in What is disease? In: Humber JM, RF Almeder, eds, Biomedical ethics reviews, Humana Press, Totowo NJ, 
1997, pp.7-8, quoted in Temple et al. (2001), p807. 
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2. A morbid entity characterized usually by at least two of these criteria:  recognized etiologic 
agent(s), identifiable group of signs and symptoms, or consistent anatomical alterations. 

3. Literally dis-ease, the opposite of ease, when something is wrong with a bodily function." 

Health 
1. The state of the organism when it functions optimally without evidence of disease or 

abnormality. 

2. A state of dynamic balance in which an individual's or a group's capacity to cope with all the 
circumstances of living is at an optimum level. 

3. A state characterized by anatomical, physiological, and psychological integrity; ability to 
perform personally valued family, work, and community roles; ability to deal with physical, 
biological, and psychological and social stress; a feeling of well-being; freedom from the risk 
of disease and untimely death." 

Taber's Cyclopedic Medical Dictionary ( 17th ed. Phila., FA Davis, 1993.  Ed. Clayton L. 
Thomas): 
Disease – "Literally the lack of ease; a pathological condition of the body that presents a 
group of clinical signs and symptoms and laboratory findings peculiar to it and that sets the 
condition apart as an abnormal entity differing from other normal or pathological body 
states.  The concept of disease may include the condition of illness or suffering not 
necessarily arising from pathological changes in the body.  There is a major distinction 
between disease and illness in that the former is usually tangible and may even be measured, 
whereas illness is highly individual and personal, as with pain, suffering, and distress."  
[Examples given include:  hypertension is a disease but not an illness;  hysteria or mental 
illness are illnesses but have no evidence of disease as measured by pathological changes in 
the body.] 

Classification is the foundation 

As stated in an early (1957) edition of the Manual of the International Statistical Classification of Diseases, 
Injuries, and Causes of Death (ICD): 

"Classification is fundamental to the quantitative study of any phenomenon.  It is 
recognized as the basis of all scientific generalization and is therefore an essential 
element in statistical methodology.  Uniform definitions and uniform systems of 
classification are prerequisites in the advancement of scientific knowledge.  In the 
study of illness and death, therefore, a standard classification of disease and injury for 
statistical purposes is essential."  (Introduction, pp. vii-ix) 

The eminent Australian statistician, Sir George H. Knibbs, credited Francois Bossier de Lacroix 
(1706-1777), better known as Sauvages, with the first attempt to classify diseases systematically, in 
his Nosologia Methodica. 
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A classification is not merely a set of names to be applied to phenomena, although a nomenclature 
– a list or catalog of approved terms for describing and recording observations – is essential.  As 
explained in the ICD: 

"Any morbid condition that can be specifically described will need a specific 
designation in a nomenclature. . .  This complete specificity of a nomenclature 
prevents it from serving satisfactorily as a statistical classification [which focuses on 
groups of cases and aims to bring together those cases that have considerable 
affinity]. . . . A statistical classification of disease must be confined to a limited 
number of categories which will encompass the entire range of morbid conditions.  
The categories should be chosen so that they will facilitate the statistical study of 
disease phenomena. 

"Before a statistical classification can be put into actual use, it is necessary that a 
decision be reached as to the inclusions for each category.  . . . If medical 
nomenclature were uniform and standard, such a task would be simple and quite 
direct.  Actually the doctors who practise and who will be making entries in medical 
records or writing medical certificates of death were educated at different medical 
schools and over a period of more than fifty years.  As a result, the medical entries 
on sickness records, hospital records, and death certificates are certain to be of 
mixed terminology which cannot be modernized or standardized by the wave of any 
magician's wand.  All these terms, good and bad, must be provided for as inclusions 
in a statistical classification." 

There is not necessarily a "correct" classification system.  In classifying disease conditions, choices 
and compromises must be made among classifications based on etiology, anatomical site, age, and 
circumstance of onset, as well as on the quality of information available on medical reports.  There 
may also need to be adjustments to meet varied requirements of vital statistics offices, hospitals, 
armed forces medical services, social insurance organizations, sickness surveys, and numerous other 
agencies.  The suitability of a particular system depends in part on the use to be made of the 
statistics compiled and in part on the information available in deriving and applying the system. 

Defining and measuring the phenomena 

Perhaps the first and most important issue in planning or interpreting an epidemiologic study is the 
definition and measurement of the disease and/or phenomena under study.  How satisfactorily this 
issue can be addressed depends on the nature of the phenomena, the extent of knowledge about it, 
and the capability of available technology.  The specific circumstances can range from the report of 
a case or series of cases that do not fit the characteristics of any known disorder to a disease that has 
been thoroughly studied and for which highly accurate and specific diagnostic procedures are 
available. 

In the former category would fall the investigation of the condition that now bears the label chronic 
fatigue syndrome, where a vague collection of nonspecific symptoms was proposed to constitute a 
previously unrecognized disease entity, which still awaits a consensus regarding its existence.  In 
situations such as these, a first task is formulating at least a provisional case definition in order to 
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proceed with the investigation.  In the latter category would fall rabies, where a specific, highly 
virulent organism has been identified and produces characteristic manifestations.  Psychiatric 
disorders would fall somewhere in between.  The nub of the problem is that the clarity with which 
features of the condition – etiologic factors, co-factors, natural history, response to treatment – can 
be linked to it depends on how effective are definition and measurement at excluding other entities 
whose different features will become mixed with those truly characteristic of the condition. 

Consider an example.  Although angina pectoris had been described in the 18th century (by 
William Heberden), and some 19th century physicians recognized an association between this 
symptom and coronary artery sclerosis found at autopsy, the syndrome of acute myocardial 
infarction (MI) was not recognized until the 20th century.  According to W. Bruce Fye [The delayed 
diagnosis of myocardial infarction: it took half a century. Circulation 1985; 72:262-271)] the delay was 
due to the belief until 1912 that MI was invariably fatal and also to (1) the inconstant relationship of 
symptoms to pathological findings, (2) excessive reliance on auscultation as an indicator of cardiac 
disease, (3) failure to routinely examine coronary arteries or myocardium at autopsy, (4) tardiness of 
clinicians to incorporate new pathophysiologic discoveries into medical practice, (5) willingness to 
accept theories of disease not supported by scientific evidence, (6) pre-occupation with the new field 
of bacteriology, and (7) the lack of diagnostic techniques with which to objectively identify coronary 
artery obstruction or its consequences during life.  (This list of reasons fits very well into Thomas 
Kuhn's description of the process of paradigm shifts – see citation in chapters 1 and 2.) 

Classification criteria and disease definition 

Since no two entities are completely identical, we (often unconsciously) group them together or 
differentiate between them according to what we believe to be important for our purposes.  Even 
conditions with different etiologies may nevertheless have the same prognosis or the same response 
to treatment.  Decisions about how far to subdivide categories of what appears to be a single entity 
depend, therefore, on the difference it may make, the level of knowledge, and our conceptual model.   

As we gain more sophisticated understanding of the pathophysiological and biochemical 
mechanisms of disease conditions – to which the dramatic advances in molecular biology have 
contributed greatly – opportunities to differentiate among conditions now treated as a single entity 
and questions about whether to do so are becoming more frequent.  For example, a mutation in the 
p53 gene is present in about 50% of cancers.  Should cancers be classified according to whether or 
not an aberrant p53 gene is present?  Is this aspect more important than the anatomical site or the 
histologic type?  If two cancers of the same site and histologic type have mutations at different loci 
of p53, should they be classified apart? 

There are two broad approaches to defining a disease entity.  These two approaches are 
manifestational criteria and causal criteria [see discussion in MacMahon and Pugh]. 

Manifestional criteria 

Manifestational criteria refer to symptoms, signs, behavior, laboratory findings, onset, course, 
prognosis, response to treatment, and other manifestations of the condition.  Defining a disease in 
terms of manifestational criteria relies on the proposition that diseases have a characteristic set of 
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manifestations.  The term "syndrome" (literally, "running together" [Feinstein, 2001]) is often 
applied to a group of symptoms or other manifestations that apparently represent a disease or 
condition whose etiology is as yet unknown.  Most chronic and psychiatric diseases are defined by 
manifestational criteria (examples:  diabetes mellitus, schizophrenia, cancers, coronary heart disease). 

Causal criteria 

Causal criteria refer to the etiology of the condition, which, of course, must have been identified in 
order to employ them.  Causal criteria are most readily available when the condition is simply 
defined as the consequences of a given agent or process (e.g., birth trauma, lead poisoning).   The 
other group of conditions where causal criteria are available consists mostly of infectious diseases 
for which the pathogen is known, e.g., measles.  Through the use of causal criteria, diverse 
manifestations recognized as arising from the same etiologic agent  (e.g., the various presentations of 
infection with Treponema pallidum [syphilis] or with Borrelia burgdorferi [Lyme disease]) can be classified 
as the same disease entity.  Similarly, conditions that have a similar presentation (e.g., gonorrhea, 
chlamydia) can be differentiated.  Temple et al. (2001) associate these two approaches with two 
opposing schools, which they term, respectively, “nominalist” (defining disease in terms of labeling 
symptoms) and “essentialist (reductionist)” (defining disease in terms of underlying pathological 
etiology).  [Scadding suggests that the nominalist approach may be “roughly accurate”, whereas the 
essentialist approach may be “precisely wrong”*.] 

Manifestational versus causal criteria 

The rationale for defining diseases based on manifestational criteria is borne largely of necessity – 
until we know the etiology, what else can we do? – and partly of the expectation that conditions with 
similar manifestations are likely to have the same or at least related etiology.  Although this 
expectation has often been fulfilled, it is by no means a certainty.  Simply because two conditions 
have identical manifestations (to the extent that we are currently able to and knowledgeable enough 
to measure these) does not ensure that they are the same entity in all other relevant respects, notably 
etiology.  For example, even if major depressive disorder could be diagnosed with 100% agreement 
among psychiatric experts, the possibility would still exist that the diagnosis embraces multiple 
disease entities with very different etiologies.  Similarly, an etiologic process that leads to major 
depressive disorder may be expressed with different manifestations depending upon circumstances 
and host characteristics. 

Replacement of manifestional criteria by causal criteria 

Nevertheless, the process seems to work.  The evolution of the definition and detection of a disease, 
with the replacement of definitions based on manifestational criteria with definitions based on causal 
criteria, is well illustrated by HIV/AIDS.  In 1981, clinicians in San Francisco reported seeing young 
American men with Kaposi's sarcoma, a tumor previously seen only in elderly Mediterranean males.  
Physicians in Europe found similar tumors in people from Africa.  Shortly afterward, the Centers for 
Disease Control (CDC) noted that requests for pentamidine, a rarely prescribed antibiotic used for 

                                                 
* Scadding G, Lancet 1996;348:594, cited in Temple et al. (2001), p808. 
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treating pneumocystis carinii pneumonia (PCP – an opportunistic infection generally seen only in 
medically immunosuppressed patients), had increased sharply from California.  Investigation 
revealed that PCP was occurring in apparently otherwise healthy young men. 

A first step in investigating a new, or at least different, disease is to formulate a case definition that 
can serve as the basis for identifying cases and conducting surveillance.  The Acquired 
Immunodeficiency Syndrome (AIDS) was defined by the CDC in terms of manifestational criteria as 
a basis for instituting surveillance (reporting and tracking) of this apparently new disease.  The 
operational definition grouped diverse manifestations – Kaposi's sarcoma outside its usual 
subpopulation, PCP and other opportunistic infections in people with no known basis for 
immunodeficiency – into a single entity on the basis of similar epidemiologic observations (similar 
population affected, similar geographical distribution) and their sharing of a particular type of 
immunity deficit (elevated ratio of T-suppressor to T-helper lymphocytes). 

After several years human immunodeficiency virus (HIV, previously called human lymphotrophic 
virus type III) was discovered and demonstrated to be the causal agent for AIDS, so that AIDS 
could then be defined by causal criteria.  However, because of the long latency between infection 
and the development of AIDS, manifestational criteria are still a part of the definition of AIDS, 
though not of HIV infection itself.  The original CDC reporting definition was modified in 1985 
(Morbidity and Mortality Weekly Report [MMWR] 1985;34:373-5) and again in 1987 (MMWR 1987:36 
[suppl. no. 1S]:1S-15S) to incorporate (1) a broader range of AIDS-indicator diseases and conditions 
and (2) HIV diagnostic tests.  The proportions of AIDS cases that meet only the newer definitions 
vary by gender, race, and risk category. 

In parallel with the institution of U.S. reporting definitions there has been an evolution in the 
international disease classification for AIDS.  An original interim ICD classification for AIDS was 
issued on October 1, 1986, with the expectation that periodic revisions would be required.  The first 
revision (January 1, 1988) characterized the causal agent and the change in terminology from human 
T-cell lymphotropic virus-III (HTLV-III) to HIV (Centers for Disease Control.  Human 
immunodeficiency virus (HIV) infection codes and new codes for Kaposi's sarcoma: official 
authorized addenda ICD-9-CM (Revision 2) effective October 1,1991.  MMWR 1991; 40(RR-9):1-
19).  The 1991 revision dealt only with morbidity reporting and provided for more detail about 
manifestations of HIV infection.  All manifestations of HIV infection were to be coded, but a 
hierarchical classification was made for the stage of HIV infection.  Distinctions were made between 
conditions occurring with HIV infection (e.g., 042.0: HIV with toxoplasmosis) and those occurring 
due to HIV infection (e.g., 042.1: HIV causing tuberculosis). 

To recapitulate the above discussion, where we are fortunate, the classification based on 
manifestational criteria will closely correspond with that based on causal criteria but this is by no 
means assured because: 

1. A single causal agent may have polymorphous effects (e.g., cigarette smoking is a causal 
factor for diverse diseases, herpes zoster causes chicken pox and shingles); 
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2. Multiple etiologic pathways may lead to identical (or at least apparently identical) 
manifestations, so that a (manifestationally-defined) disease entity may include subgroups 
with differing etiologies; 

3. Multicausation necessitates a degree of arbitrariness in assigning a single or necessary cause 
to a disease category.  For example, nutritional status and genetic constitution are 
contributing factors for tuberculosis.  Had medical knowledge developed differently, 
tuberculosis might be known as a nutritional disorder with the bacillus as a contributory 
factor. 

4. Often, not all persons with the causal agent (e.g., hepatitis A) develop the disease. 

In actual epidemiologic practice, most disease definitions are based on manifestational criteria and 
proceed on the general assumption that the greater the similarity of the manifestations, the more 
likely the illness represents a unitary disease entity.  The objective is to form classifications that will 
be useful in terms of studying the natural history of the disease and its etiology and also for 
treatment and prevention.  There are numerous contemporary (e.g., Gulf War syndrome, chronic 
fatigue syndrome) as well as historical examples of this basic approach.  In his essay on "The 
Blame-X syndrome", Feinstein (2001) points to some of the difficulties that arise in linking 
manifestations to etiology when a causative pathophysiologic processes has not been identified and 
how cultural, social, political, and legal factors become bound up with the scientific questions. 

Disease classification systems 

As diseases are defined they are organized into a classification.  The primary disease classification 
system in use is the International Classification of Disease (ICD), now published by the World Health 
Organization.  Introduced in 1900 for the purposes of classifying causes of death, the ICD 
apparently has its origins in a list of categories prepared by William Farr and Marc D'Espine in 1853 
(see Feinstein, 2001, for citation).  The ICD was expanded to cover illness and injury in 1948.  In the 
United States, the National Center for Health Statistics publishes an adapted version of the ICD to 
incorporate syndromes and illnesses not listed in the WHO edition.  The American Psychiatric 
Association performs a similar function for classification of mental disorders, with its Diagnostic and 
Statistics Manual (DSM) (see below). 

Disease classification systems do not necessarily provide the kind of information needed for public 
health research and policymaking.  Diseases and deaths related to tobacco use, for example, cannot 
be identified from ICD codes, though there has been a movement toward having tobacco use 
appear as a cause on the death certificate.  In the injury area, injuries are classified according to the 
nature of the injury (e.g., laceration, puncture, burn) rather than the nature of the force that caused it 
(e.g., gunshot, fire, automobile crash, fall).  Injury prevention researchers advocate the use of  E 
(External) codes to permit tabulation by the external cause of the injury. 

Classification systems, of course, must be periodically revised to conform to new knowledge and 
re-conceptualizations.  Revisions typically include changes in: 

1. usage of diagnostic terms (e.g., for heart disease); 

2. disease definitions; 
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3. organization of categories based on new perceptions about similarities among conditions 
(e.g., joint occurrence of hypertension and CHD); 

4. coding rule (e.g., priorities for selecting an underlying cause of death when multiple diseases 
are present). 

Such changes come at a price, in the form of discontinuities in disease rates over time and confusion 
for the unwary.  For example, prior to 1986, carcinoid tumors were reportable to the National 
Cancer Institute's Surveillance, Epidemiology, and End Results program (SEER) only if they were 
specifically described as "malignant gastric carcinoid."  In 1986, any tumor described as "gastric 
carcinoid" was considered malignant and therefore was reportable to SEER.  This change produced 
a substantial rise in the rate of gastric carcinoid tumors in 1986. 

Similar problems in comparing rates over time, across geographical area, or among different health 
care providers can arise from differences or changes in "diagnostic custom" or terminology 
preferences (see Sorlie and Gold, 1987).  In addition, the Diagnosis Related Group (DRG) system 
introduced in the United States to control the costs of federal reimbursement to hospitals for health 
care has undoubtedly influenced discharge diagnoses in favor of those with higher reimbursement 
opportunity.  See Feinstein (2001) for more on these and other issues of nomenclature and 
classification. 

Conceptual questions in classifying diseases 

Even without the complicating factors of diagnostic custom or changes in classification systems, by 
its very nature classification poses difficult conceptual questions whose resolutions underlie the 
disease definitions we employ.  Some examples: 

1. What constitutes "similarity"? 
Examples:  adult versus juvenile onset diabetes; melanoma in the retina versus in the skin; 
pneumonia of viral, bacterial, or chemical origin; cancers with different genetic "signatures". 

2. What is the appropriate cutpoint on a continuum? 
Examples:  blood pressure and hypertension; plasma glucose and diabetes; alcohol 
consumption and alcoholism; fetal death and gestational age. 

3. How should ambiguous situations be handled? 
Examples:  hypertension controlled with drugs; subclinical infection; alcoholism, 
schizophrenia or depressive disorder in remission. 

As perceptions and understanding changes, so do the answers to the questions.  For example, in 
moving from DSM-III to DSM-IV, the American Psychiatric Association removed the distinction 
between "organic" and "inorganic" psychiatric disorders, added categories for premenstrual 
syndrome and gender identity problems, and introduced a V-code (nonpathological descriptor) for 
religious or spiritual problems ("Psychiatrists set to approve DSM-IV", JAMA 7/7/93, 270(1):13-
15).  
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Classifying cause of death 

Since mortality data are generally the most widely available, epidemiologists encounter the above 
problems most often in evaluating the accuracy of cause-specific mortality rates. Cause-specific 
mortality rates are tabulated using the "underlying cause of death", and until recently this was the 
only cause available in electronic form.  The underlying cause of death is defined as "the disease or 
injury which initiated the train of morbid events leading directly to death, or the circumstances or 
violence which preceded the fatal injury" (Manual of the International Statistical Classification of Diseases, 
Injuries, and Causes of Death, Geneva, WHO, 1977: 609-701, quoted in Kircher and Anderson, JAMA 
1987:349).  According to Kircher and Anderson, most physicians confuse cause and mechanism.  
For example, congestive heart failure, cardiorespiratory arrest, asphyxia, renal failure are mechanisms 
– the means by which the cause exerts its lethal effect. 

The following are additional operational problems in assigning a cause of death (see Israel et al. 
1986): 

1. Many conditions can coexist without a direct etiologic chain.  When a combination of causes 
is forced into a single cause, the choice may be arbitrary, even if systematic, and the true 
circumstances obscured. 

2. There is confusion about disease terms; e.g., it is often unclear whether "metastatic" disease 
refers to a primary or secondary tumor. 

3. There is confusion among certifiers about the meaning of classification terms (e.g., 
"underlying", "immediate", and "contributory" causes).  [Confusion is perhaps to be 
expected, given the complexity of concept and circumstances.  According to the ICD, "The 
words 'due to (or as a consequence of)' . . . include not only etiological or pathological 
sequences, but also sequences where there is no such direct causation but where an 
antecedent condition is believed to have prepared the way for the direct cause by damage to 
tissues or impairment of function even after a long interval."  (Manual of the international 
statistical classification of diseases, injuries, and causes of death, based on the recommendations of the Ninth 
Revision Conference, 1975. Geneva: WHO, 1977:700, quoted in MMWR 1991 (26 July);40:3)] 

4. Death certificates are often completed late at night or in haste, sometimes to speed funeral 
arrangements, by a sleepless physician who has never seen the deceased before and for 
whom care of the living is understandably a higher priority.  Partly for these reasons death 
certificate information is often sloppy or incomplete.  Amended certificates with more 
complete information can be but are rarely filed, and unlikely diagnoses are rarely queried. 

Both mortality statistics and case ascertainment for epidemiologic studies can readily be affected by 
such problems and circumstances (see Percy, et al. 1981).  Epidemiologic studies for which cause of 
death is important often have a copy of each death certificate reviewed by a trained nosologist, an 
expert in classifying diseases, to confirm or correct questionable cause of death information.  If 
resources are available, medical records may be obtained to validate a sample of the death certificates 
and/or to resolve questions. 

To illustrate the challenge of classifying cause of death, consider the following case example from 
Kircher and Anderson: 
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A 65-year-old woman was first seen by her physician five years before her death 
when she complained of dyspnea and substernal chest pain precipitated by exertion.  
The electrocardiogram on a standardized exercise test demonstrated depression in 
the ST segments of 1.5 mV.  The patient's symptoms were alleviated by a 
hydrochlorothiazide-trimterene combination (Dyazide) and sublingual nitroglycerine 
until nine months before death, when the frequency and severity of angina increased.  
Propranolol hydrochloride was prescribed. 

One month before death and ten days after the onset of a flulike illness, the patient 
developed chills, fever, and pleuritic pain.  An x-ray film of the chest revealed patchy 
consolidation of both lungs.  The leukocyte count was 20 x 109/L (20,000/mm3).  
Blood cultures were positive for pneumococci.  Seventy-two hours after penicillin G 
potassium therapy was initiated, the symptoms subsided. 

One month after the episode of pneumonia, the patient sustained a myocardial 
infarction.  Five days after the patient's admission to the hospital, death occurred 
suddenly.  An autopsy revealed severe coronary atherosclerosis, left anterior 
descending coronary artery thrombosis, acute myocardial infarction, left ventricular 
myocardial rupture, hemopericardium, and cardiac tamponade. 

In this case, the immediate cause of death was rupture of the myocardium.  The 
rupture was due to an acute myocardial infarction occurring five days before death.  
The underlying cause of death – the condition setting off the chain of events leading 
to the death – was chronic ischemic heart disease.  The deceased had had this 
condition for at least five years before her death.  Influenza and pneumonococcal 
pneumonia should also be shown as other significant conditions that contributed to 
death. 

Instructions for coding cause of death on death certificates can be found on the web page for the 
National Vital Statistics System of the National Center for Health Statistics, CDC 
(http://www.cdc.gov/nchs/about/major/dvs/handbk.htm).  As of August 2000, the web page 
included links for a tutorial by the National Association of Medical Examiners and various 
handbooks. 

Psychiatric disorders – a special challenge 

The challenges of classification of physical disease are formidable, but psychiatric disorders present 
an even greater challenge due to the difficulty of finding satisfactory answers to the most basic of 
questions, "what is a case?" (John Cassel, Psychiatric epidemiology. In: S. Arieti (ed), American 
handbook of psychiatry.  2nd ed. NY, Basic Books, 1974, vol. 2, 401-410; Kendell, Arch Gen Psychiatry 
1988; 45:374-376).  Despite a (modest) increase in resources and effort aimed at unraveling the 
etiology of these disorders, causal relationships have been very difficult to demonstrate.  A key 
reason for the lack of progress may be problems with the definition of mental disorders (Jacob KS.  
The quest for the etiology of mental disorders.  J Clin Epidemiol 1994;47:97-99). 
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Laboratory and other objectively measurable physiological signs have been a tremendous asset for 
defining and classifying diseases.  Accordingly the need to rely almost exclusively on symptoms, 
behavioral observation, response to treatment, course, and outcome – manifestations that are more 
difficult to measure with reliability and precision – has put psychiatric nosology at a great 
disadvantage compared with physical illness. Although recent progress in psychiatric nosology, 
reflected in DSM III, III-R, and IV is believed to have improved reliability of diagnoses, the 
resulting diagnostic classifications are probably heterogeneous with respect to etiology.  
Subclassification based on biological and molecular variables, to take advantage of the significant 
advances in biology and biotechnology, and on refined measures of environmental and 
psychological variables may reveal etiologic associations that are masked by the current reliance on 
syndrome-based definitions (Jacob).  On the other hand, if a disorder represents a "final common 
pathway", as has been argued with respect to unipolar major depressive disorder, then diverse 
etiologies could conceivably result in a biologically cohesive phenomenon. 

Measuring accuracy in classification and detection 

In general, any deviation between the (often-unknown) truly relevant biological entity and the result 
of the system used to define and detect or quantify it can be regarded as measurement error.  Later 
in the course we will take up the concept of information bias, which deals with the effects of 
measurement error on study findings.  Here, though, we will present the basic measures used in 
epidemiology to quantify accuracy of detection and classification methods.  These measures can be 
applied to the detection of any entity, of course, whether it is a disorder, an exposure, or any 
characteristic.  Besides their use in epidemiology in general, these measures are important for the 
selection and interpretation of diagnostic tests used in clinical practice. 

If a condition or characteristic can be present or absent, then the accuracy of our system of 
detection and labeling can be assessed by its ability to detect the condition in those who have it as 
well as by its ability to correctly classify people in whom the condition is absent. Note that for a rare 
condition, overall accuracy [(a+d)/n in the table below] primarily reflects the correct identification 
of noncases, thus giving little information about the correct identification of cases.  Also, overall 
accuracy ignores the fact that different kinds of errors have different implications.   

Epidemiologists therefore employ separate, complementary measures for the correct classification of 
cases and of noncases.  The basic measures are: 

Sensitivity – the proportion of persons who have the condition who are correctly identified as 
cases. 

Specificity – the proportion of people who do not have the condition who are correctly 
classified as noncases. 

The definitions of these two measures of validity are illustrated in the following table. 
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Classification contingency table 

  True status   

  + –   

Classified +  a b (a + b) (Positive tests) 
status – c d (c + d) (Negative tests)

Total  a + c b + d   

  (Cases) (Noncases)   

In this table: 

Sensitivity  (accuracy in classification of cases) =  a / (a + c) 

 Specificity (accuracy in classification of noncases) =  d / (b + d) 

Sometimes the following terms are used to refer to the four cells of the above table: 

a = True positive, TP  –  people with the disease who test positive 

b = False positive, FP  –  people without the disease who test positive 

c = False negative, FN  –  people with the disease who test negative 

d = True negative, TN  –  people without the disease who test negative 

However, these terms are somewhat ambiguous (note that "positive" and "negative" refer to the 
result of the test and not necessarily to the true condition).  The relative costs (financial and human) 
of false negatives and false positives are key factors in choosing between sensitivity and specificity 
when a choice must be made.  The more urgent is detection of the condition, the greater the need 
for sensitivity.  Thus, a condition that has severe consequences if left untreated and which can be 
readily treated if detected early implies the need for a test with high sensitivity so that cases are not 
missed.  A condition for which an expensive, invasive, and painful diagnostic workup will follow the 
results of a positive test implies the need for a test with high specificity, to avoid false positive tests. 

Criterion of positivity and the receiver operating characteristic 

Often, however, the differences between cases and noncases are subtle in relation to the available 
classification system or detection methods.  In such cases we can increase one type of accuracy only 
by trading it off against the other by where we set the "criterion of positivity", the cutpoint point 
used to classify test results as "normal" or "abnormal". 

Screening for abnormal values of physiologic parameters is a typical situation. If we are attempting 
to classify people as diabetic or not based on their fasting blood glucose level, then we can set our 
cutpoint low in order to be sure of not missing diabetics (i.e., high sensitivity for detecting cases) but 
in doing so we will also include more people whose blood glucose falls at the upper part of the 
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distribution but are not diabetic (i.e., low specificity).  If instead we choose a high cutpoint in order 
to avoid diagnosing diabetes when it is not present, then we are likely to miss diabetics (low 
sensitivity) whose blood glucose falls in the lower part of the distribution.  Tests that involve 
rendering a judgment based on an image or specimen (e.g., mammography and cytology) involve 
similar, though less quantifiable, tradeoffs.  As we shall see, in addition to the relative consequences 
of false negative and false positive tests, the decision of where to set the criterion of positivity 
should also take into account the prevalence of the condition in the population to be tested. 

One useful technique for comparing the performance of alternative tests without first having to 
select a criterion for positivity and also for selecting a cutpoint is to graph the receiver/response 
operating characteristic (ROC) for each test (the concept and terminology come from 
engineering).  The ROC shows the values of sensitivity and specificity associated with each possible 
cutpoint, so that its graph provides a complete picture of the performance of the test.  For example, 
the sample ROC curve in the figure indicates that at 80% sensitivity, the test is about 95% specific.  
At 95% sensitivity, the specificity is only about 74%.  If high sensitivity (e.g., 98%) is essential, the 
specificity will be only 60%. 

Sample ROC curve 

  specificity      
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An ROC curve that consisted of a straight line from the lower left-hand corner to the upper right-
hand corner would signify a test that was no better than chance.  The closer the curve comes to the 
upper left-hand corner, the more accurate the test (higher sensitivity and higher specificity). 
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Predictive value 

Sensitivity and specificity are, in principle, characteristics of the test itself.  In practice, all sorts of 
factors can influence the degree of sensitivity and specificity that are achieved in a particular setting 
(e.g., calibration of the instruments, level of training of the reader, quality control, severity of the 
condition being detected, expectation of positivity).  However, for any particular sensitivity and 
specificity, the yield of a test (accurate and inaccurate positive test results) will be determined by how 
widespread the condition is in the population being tested.  The typical difficulty is that, since the 
number of people without the condition is usually much larger than the number with the condition, 
even a very good test can easily yield more false positives than true ones.   

The concept of predictive value is used to assess the performance of a test in relation to a given 
frequency of the condition being sought.  The positive predictive value (PPV) is defined as the 
proportion of people with the condition among all those who received a positive test result.  
Similarly, the negative predictive value is the proportion of people without the condition among 
all those who received a negative test result.  Using the same table as before: 

Classification contingency table 

  True status   

  + –   

Classified +  a b (a + b) (Positive tests) 
status – c d (c + d) (Negative tests)

Total  a + c b + d   

  (Cases) (Noncases)   

Positive predictive value  (PPV)   =   a / (a + b) 

Negative predictive value (NPV)  =  d / (c + d) 

Predictive value is an essential measure for assessing the effectiveness of a detection procedure.  
Also, since predictive value can be regarded as the probability that a given test result has correctly 
classified a patient, this concept is also fundamental for interpreting a clinical measurement or 
diagnostic test as well as the presence of signs or symptoms.  The PPV provides an estimate of the 
probability that someone with a positive result in fact has the condition; the NPV provides an 
estimate that someone with a negative result does not in fact have the condition.  (For a full 
discussion of the use of predictive value and related concepts in diagnostic interpretation, see a 
clinical epidemiology text, such as that by Sackett et al.) 

In a clinical encounter prompted by symptoms, there is often a substantial probability that the 
patient has the condition, so both sensitivity and specificity are important in determining the 
proportion of cases and noncases among those who receive positive tests.  However, in a screening 
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program in the general population, the specificity will typically dominate.  Even with perfect 
sensitivity, the number of true cases cannot exceed the populatiion size multiplied by the prevalence, 
which is usually small.  The number of false positives equals the false positive rate (1–specificity) 
multiplied by the number of nocases, which for a rare disease is almost the same as the population 
size.  So unless the prevalence is greater than the false positive rate, the majority of test positives will 
not have the disease.  For example, if only 1% of the population has the condition, then even if the 
specificity is 95% (false positive rate of 5%) the group who receive positive tests will consist 
primarily of noncases: 

Cases detected (assume 100% sensitivity): 
100% sensitivity x 1% with the condition = 1% of population 

False positives: 
95% specificity x 99% without the condition = 94.05% of population correctly classified, 
leaving 5.95% incorrectly labeled positive 

Total positives: 
1% + 5.95% = 6.95% of population 

Proportion of positives who are cases (PPV)  =  1% / 6.95%  =  14% 

In a population of 10,000 people, the above numbers become 100 (1%) cases, all of whom are 
detected, and 9,900 noncases, 595 of whom receive positive tests, for a total of 695 people receiving 
positive tests, 100 of whom have the condition.   We will take up some of the these issues at the end 
of our discussion of natural history of disease. 

The dependence of PPV on sensitivity, specificity, and prevalence can be expressed algebraically, as 
follows:  

 True positives  1 
PPV = –––––––––––––––––––––––––– = ––––––––––––––––– 
 True positives + False positives   False positives 
   1 + –––––––––––– 
    True positives 

 

 1 
PPV = ––––––––––––––––––––––––––––––––
  (1 – specificity) (1 – prevalence) 
 1 + ––––––––––––––––––––––––––
  sensitivity × prevalence 

This expression shows that PPV is related to the ratio of false positives to true positives.  The larger 
the ratio, the lower the PPV.  If the condition is rare, then (1 – prevalence) is close to 1.0, and even 
with perfect sensitivity (sensitivity = 1.0), the ratio of false positives to true positives is no less than 
the ratio of (1 – specificity) [the false positive rate] divided by the prevalence.  So for small 
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prevalences, even a small false positive rate (e.g., 1%) can reduce PPV substantially.  Conversely, 
applying the test in a high prevalence population (e.g., prevalence 10%) can yield an acceptable PPV 
in spite of a much higher false positive rate (e.g., 10%).  When a test is used for diagnostic purposes, 
the patient is suspected of having the condition, so the PPV for a positive result is much greater 
than when the same test is used for population screening. 

Natural history of disease 

Diseases and other phenomena of interest in epidemiology are processes.  For example, the process 
by which bronchogenic lung cancer arises involves a progression over many years of the 
development of abnormal cells in the bronchial epithelium.  Several grades of abnormality 
(metaplasia, mild dysplasia, moderate dysplasia, severe displasia) have been described.  For the most 
part these abnormalities have the potential to disappear spontaneously or regress. However, in one 
or a number of cells the abnormality progresses to carcinoma in situ and then to invasive carcinoma.  
Depending upon the focus of investigation, the process can extend to very early stages.  If our focus 
is on primary prevention, we might consider the process of smoking onset, usually in adolescence, 
the development of nicotine addiction and the smoking habit, and repeated attempts to quit.  We 
might also consider the effects of tobacco marketing on smoking onset and maintenance, and the 
effects of legislation, litigation, competition, and investment opportunities on tobacco industry 
practices. 

Thus, defining, observing, and measuring health and disease requires an appreciation of the concept 
of natural history – the evolution of a pathophysiologic process.  "Natural" refers to the process in 
the absence of intervention.  Natural history encompasses the entire sequence of events and 
developments from the occurrence of the first pathologic change (or even earlier) to the resolution 
of the disease or death.  The natural history of a disease may be described through a staging 
classification.  Staging can aid in defining uniform study groups for research studies, determining 
treatment regimens, predicting prognosis, and in providing intermediate end-points for clinical trials. 

Natural history therefore includes a presymptomatic period and a postmorbid period.  Of 
particular interest for epidemiologists is the former, the period of time before clinical manifestations 
of the disease occur and, for infectious diseases, the period of time between infection and 
infectiousness.  For non-infectious diseases, the term induction period refers to the "period of time 
from causal action until disease initiation" (Rothman and Greenland, p14).  The induction period 
may be followed by a latent period (also called latency), which is the "time interval between disease 
occurrence and detection" (Rothman and Greenland, p15). This distinction, though not made by all 
authors, is important for diseases that can be detected through screening tests, since the latent 
period represents the stage of the disease natural history when early detection is possible. 

 The distinction is also important for designing epidemiologic studies.  Since the time of disease 
detection may be advanced through the application of screening and diagnostic tests, the number of 
cases detected can change with technology.  Also, the collection of historical exposure data should 
be guided by a concept of when such exposure would have been biologically relevant.  For a factor 
believed to contribute to the initiation of a disease, exposure must occur before that point.  For a 
factor believed to contribute to promotion or progression of the condition, exposure can take place 
following initiation. 
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For infectious diseases, there are two markers of epidemiologic importance:  disease detection and 
the onset of infectiousness.  Incubation period refers to the "time from infection to development 
of symptomatic disease" (Halloran, p530).  This term is sometimes applied to non-infectious 
diseases, but often without a precise meaning.  The incubation period thus covers both the 
induction and latent periods as these are defined for non-infectious diseases.  In contrast, the term 
latent period has a different meaning for infectious diseases, where it denotes "the time interval from 
infection to development of infectiousness" (Halloran, p530).  Since an infected person may be 
infectious before developing symptoms, while symptomatic, or after disappearance of symptoms, 
there is no absolute relationship of incubation and latent periods for infectious disease.  Relevant 
concepts are inapparent or silent infection (asymptomatic, either infectious or non-infectious) and 
carrier (post-symptomatic but still infectious) (Halloran, pp530-531). 

 

Infectious disease 

Incubation "time from infection to development of symptomatic disease" 
(Halloran, p530) 

Latency "the time interval from infection to development of infectiousness" 
(Halloran, p530) 

Non-infectious disease 

Induction "period of time from causal action until disease initiation" (Rothman 
and Greenland, p14) 

Latency "time interval between disease occurrence and detection" (Rothman 
and Greenland, p15) 

 

Acute versus chronic diseases 

Historically, disease natural histories have been classified into two broad categories: acute and 
chronic.  Acute diseases (typically infections) have short natural histories.  Chronic diseases (e.g., 
cancer, coronary heart disease, emphysema, diabetes) have long natural histories.  So great has been 
the dichotomy of acute/infectious disease versus chronic/noninfectious disease that many 
epidemiologists and even departments of epidemiology are frequently regarded as one or the other.   

In 1973 in the first Wade Hampton Frost Lecture, Abraham Lilienfeld regretted the concept of 
"Two Epidemiologies" and sought to emphasize the aspects in common between infectious and 
noninfectious epidemiology (see Am J Epidemiol 1973; 97:135-147).  Others (e.g., Elizabeth Barrett-
Connor, Infectious and chronic disease epidemiology: separate and unequal?  Am J Epidemiol 1979; 
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109:245) have also criticized the dichotomy both in terms of its validity and its effect on 
epidemiologic investigation. 

The growth of evidence for viral etiologies for various cancers (notably T-cell leukemias and cervical 
cancer) as well as other chronic diseases (e.g., juvenile onset diabetes mellitus and possibly multiple 
sclerosis) and for the central roles of immune system functions in chronic diseases demonstrates the 
importance of building bridges between the two epidemiologies.  Also problematic for the identities 
acute = infectious and chronic = noninfectious are slow viruses, such as HIV.  HIV may or may not 
produce a brief, flu-like syndrome within a week or so after infection.  During the several weeks or 
months the host antibody response develops, and the virus enters a prolonged subclinical state 
during which the virus appears to remain quiescent.  Many years may elapse until a decline in CD4 
lymphocytes occurs and results in (chronic) immune deficiency.   

Knowledge of the pathophysiology of early HIV infection is the basis for the Serologic Testing 
Algorithm for Recent HIV Seroconversion (STARHS, Janssen et al., 1998).  The STARHS technique 
uses an assay whose sensitivity has been deliberately reduced. Specimens found to be HIV-positive 
in a sensitive assay are retested with the "de-tuned assay".  Failure to detect antibody with the less 
sensitive assay most likely signifies that the infection was recently-acquired and the antibody 
response has not fully developed.  Thus, the technique makes it possible to establish what 
proportion of HIV infections in a population occurred recently, indicating the level of continuing 
transmission. 

Spectrum of disease 

Diseases typically involve a spectrum of pathologic changes, some of which are considered disease 
states and some pre-disease states.  The spectrum of disease concept has been studied, at the cellular 
and molecular level, for both coronary artery disease and cancer.  Seeing more of the full spectrum 
or sequence can make us less certain at what point the "disease" has actually occurred. 

Coronary artery disease: 

Coronary artery disease pathogenesis is now understood in considerable detail (e.g., see Fuster et al. 
N Engl J Med, Jan 23, 1992;326(4):242 and Herman A. Tyroler, Coronary heart disease in the 21st 
century. Epidemiology Reviews 2000;22:7-13).  "Spontaneous" atherosclerosis is initiated by chronic 
minimal (Type I) injury to the arterial endothelium, caused mainly by a disturbance in the pattern of 
blood flow in certain parts of the arterial tree.  This chronic injury can also be potentiated by various 
factors, including hypercholesterolemia, infection, and tobacco smoke constituents.   

Type I injury leads to accumulation of lipids and monocytes (macrophages).  The release of toxic 
products by macrophages leads to Type II damage, which is characterized by adhesion of platelets.  
Growth factors released by macrophages, platelets, and the endothelium lead to the migration and 
proliferation of smooth-muscle cells, contributing to the formation of a "fibrointimal lesion" or a 
"lipid lesion".  Disruption of a lipid lesion leads to Type III damage, with thrombus formation.   
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Small thrombi can contribute to the growth of the atherosclerotic plaque.  Large thrombi can 
contribute to acute coronary syndromes such as unstable angina, myocardial infarction, and sudden 
ischemic death.  Autopsy studies have revealed early, microscopic lesions in infants, though they 
regress.  In adolescents, fatty streaks containing smooth-muscle cells with lipid droplets are 
observed.  At this age fatty streaks are not surrounded by a fibrotic cap, which develops on some 
lesions in the 20's.  Progression to clinically manifest, enlarging atherosclerotic plaques, such as those 
causing exertional angina, may be slow (probably in response to Type I and Type II injury) or rapid 
(in response to Type III injury).  At what point in this process is "coronary artery disease" present? 

Cancer: 

Cancer is also a multistage process, involving tumor initiation, promotion, conversion, and 
progression.  Shields and Harris (Molecular epidemiology and the genetics of environmental cancer.  
JAMA August 7, 1991;266(5):681-687) describe the process as follows:  "Tumor initiation involves 
the direct effects of carcinogenic agents on DNA, mutations, and altered gene expression.  The 
attendant defects are involved in tumor promotion, whereby cells have selective reproductive and 
clonal expansion capabilities through altered growth, resistance to cytotoxicity, and dysregulation of 
terminal differentiation.  Tumor promotion further involves an 'initiated' cellular clone that may also 
be affected by growth factors that control signal transduction.  During this process, progressive 
phenotypic changes and genomic instability occur (aneuploidy, mutations, or gene amplification).  
These genetic changes enhance the probability of intiated cells transforming into a malignant 
neoplasm, the odds of which are increased during repeated rounds of cell replication.  During tumor 
progression, angiogenesis allows for a tumor to grow beyond 1 or 2 mm in size.  Ultimately, tumor 
cells can disseminate through vessels, invading distant tissues and establishing metastatic colonies."  
(681-682)  When did "cancer" begin? 

One of the cancers where understanding of natural history process has progressed to the 
identification of specific gene mutations is colon cancer.  The process begins with initiation, e.g. 
chemical or radiation genetic damage to cell.  It is now believed that alteration of a gene on 
chromosome 5 induces a transformation from normal colonic epithelium to a hyperproliferative 
epithelium.  Initiated cells may then go through a series of distinct stages.  The transformation 
process is enhanced by "promoters", which may be harmless in the absence of initiation.  Stages that 
have so far been identified and the accompanying genetic alterations are shown in the accompanying 
figure. The progression from normal epithelium to cancer takes about ten years. 

Stage of the cancer at diagnosis is influenced by various factors including screening and largely 
determines the outcome of therapy.  Basic stages are:  localized (in tissue of origin), regional spread 
(direct extension to adjacent tissues through tumor growth), and metastatic spread (tumor sheds 
cells that form new tumors in distant areas).  Symptoms of various kinds develop according to the 
particular tissues and organs affected, and even the particular type of tumor cell (e.g., tumors in 
nonendocrine tissues can sometimes produce hormones).  

Thus, the natural history of a disease can involve many, complex processes and developments long 
before the appearance of a clinical syndrome and even before the existence of the "disease" can be 
detected with the most sophisticated clinical tests.  Moreover, particularly since some of the early 



_____________________________________________________________________________________________ 
www.epidemiolog.net, © Victor J. Schoenbach 2000  4.  Phenomenon of disease - 79 
rev. 5/8/2001, 9/16/2001, 6/23/2002 
 

stages are spontaneously reversible, it is not always clear even theoretically when the "disease" itself 
is present. 

Adenoma Class I 
 

[Ras gene mutation] 
 

Adenoma Class II 
 
[Chromosome 18 loss – DCC gene?] 

 
Adenoma Class III 

 
[Chromosome 17 loss] 

 
Carcinoma 

 
[Chromosome 5? loss] 

 
Metastasis 

 
(DCC = "deleted in colorectal cancer" gene)  Correction of any one of 
chromosomes 5, 17, or 18 reduces malignancy, but only chromosome 18 
restoration increases responsiveness to growth-inhibitory effects of 
transforming growth factor beta (TGF-beta). 

Sources:  Eric J. Stanbridge, Identifying tumor suppressor genes in human 
colorectal cancer.  Science 5 Jan 1990; 247:12-13; Colorectal cancer: new 
evidence for the adenoma/carcinoma sequence.  Editorial.  The Lancet 25 
July 1992; 340:210-211) 

 

Understanding the natural history of diseases and other conditions of interest is fundamental for 
prevention and treatment, as well as for research.  The effectiveness of programs for early detection 
and treatment of cancer, for example, depends upon the existence of an extended period where the 
cancer or a premalignant lesion is asymptomatic yet detectable and where treatment is more effective 
than after symptoms appear.  In order to evaluate the efficacy of therapeutic interventions, 
knowledge of the natural history in the absence of treatment is crucial.  These concepts will be 
illustrated by considering cancer screening procedures. 

Natural history and screening 

Population screening is defined as the application of a test to asymptomatic people to detect 
occult disease or a precursor state (Screening in Chronic Disease, Alan Morrison, 1985).  The immediate 
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objective is to classify them as being likely or unlikely of having the disease under investigation. The 
goal is to reduce mortality and morbidity on the basis of evidence that earlier treatment improves 
patient outcomes.  The design and evaluation of population screening programs depend crucially on 
the natural history of the disease in question. 

For a screening program to be successful it must be directed at a suitable disease and employ a good 
test.  Diseases for which screening may be appropriate are typically cancers of various sites (e.g., 
breast, cervix, colon, prostate), infectious diseases with long latency periods such as HIV and 
syphilis, and physiologic derangements or metabolic disorders such as hypertension, 
hypercholesterolemia, phenylketonuria, etc.  What these conditions have in common is that they 
have serious consequences which can be alleviated if treatment is instituted early enough.  The 
natural histories of these conditions involve a period of time when the condition or an important 
precursor condition (e.g., dysplasia) is present but during which there are no symptoms that will lead 
to detection. 

Earlier in this topic we defined the latent period as the time between disease initiation and its 
detection. Cole and Morrison (1980) and Morrison (1985) refer to the total latent period as the total 
pre-clinical phase  (TPCP).  However, only a portion of the TPCP is relevant for screening – the 
period when the condition can be detected with the screening test.  Cole and Morrison refer to this 
portion as the detectable pre-clinical phase (DPCP).  The preclinical phases end when the patient 
seeks medical attention because of diagnostic symptoms.  The DPCP is that part of the TPCP that 
begins when the screening test can detect the disease.  Thus, the DPCP can be advanced if the 
screening test can be improved.  The preclinical phase can be shortened by teaching people to 
observe and act promptly on early or subtle symptoms. 

For a condition to be a suitable one for population screening, it must have a prolonged DPCP, thus 
providing ample time for advancing the date of disease detection and treatment.  For a screening test 
to be suitable, it must be inexpensive, suitable for mass use, and without risk.  It must have good 
sensitivity, so that the condition is not missed too often, which may give clients false reassurance.   
Moreover, the relevant sensitivity is for detecting the DPCP, rather than clinical disease, since it is 
the detection of the DCPC that provides the advantage from screening.  The test must have 
excellent specificity, to avoid an excessive number of false positive tests.  Importantly, the test must 
be able to maintain these attributes when administered and interpreted in volume in routine practice. 

A major stumbling block in recommending population screening is the need to balance any benefit 
from early detection of cases against the expense, inconvenience, anxiety, and risk from the medical 
workups (e.g., colonoscopy, biopsy) that will be needed to follow-up positive tests on people who 
do not in fact have the condition.  As demonstrated earlier, even a highly accurate test can produce 
more false positives than true ones when applied in a population where condition is very rare.  Low 
positive predictive value (high proportion of false positives) has been a principal argument against 
HIV screening among applicants for marriage licenses, screening mammograms for women under 
age 50 years, and prostate cancer screening with prostate specific antigen (PSA). 

(Although the test itself may be the same, it is important to distinguish between the use of a test for 
screening and its use for diagnosis.  Since in the latter context the test has been motivated by the 
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presence of signs or symptoms and history, the prevalence of the condition among the test 
recipients is much greater, so that a positive test has a much higher positive predictive value.  The 
term case-finding is sometimes used to refer to the application of the test to asymptomatic patients 
in a primary care setting.  Case-finding likely assures effective follow-up for people receiving a 
positive test, though possible issues related to economic and personal costs of false positives 
remain.) 

Criteria for early detection of disease through screening 
Criteria to be met before screening for a given disease: 

1. Natural history of disease must be understood 

2. Effective treatment is available 

3. A test is available by which the disease can be recognized in its pre-clinical phase 

4. The application of screening makes better use of limited resources than competing medical 
activities 

Evaluation of screening programs 

Early outcomes for evaluating a screening program are stage of the disease and case fatality.  If the 
screening is effective, the stage distribution for cases should be shifted towards earlier stages and a 
greater proportion of patients should survive for any given time period.  Late outcomes are reduced 
morbidity and mortality.  However, these outcome measures can all be affected by features of 
disease definition and natural history.  Three potential pitfalls are lead time, length bias, and 
overdiagnosis. 

Lead time is the amount of time by which screening advances the detection of the disease (i.e. 
the time between detection by a screening test and detection without a screening test).  Even if 
the interval between the (unknown) biologic onset of the disease and death is unchanged, earlier 
detection will lengthen the interval between diagnosis and death so that survival appears 
lengthened.  Lead time bias results when a screening program creates the appearance of delaying 
morbidity and mortality but in reality does not alter the natural history. 

 

Length bias results if tumors are heterogeneous in respect to their aggressiveness, with slower 
growing tumors having a more favorable prognosis (or at least longer time to death).  Slower 
growing tumors are more likely to be detected by screening, since they are present and 
asymptomatic longer (i.e., they have a longer DPCP) than are rapidly growing, aggressive 
tumors.  So tumors detected by screening will overrepresent slow growing, hence survivable, 
tumors than will cancers detected because of appearance of symptoms (the latter cases are called 
"interval cases" because they are detected during the interval between screens). 

 

Overdiagnosis results from the detection, by the screening test, of nonmalignant lesions that 
are judged to be malignant or to have malignancy potential.  Prior to the use of the screening 
test, such lesions would not be detected, so their true prognosis may be unknown.  If persons 
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with these apparently very early lesions are counted as having the disease, yet such lesions would 
not in any event progress to clinically-significant tumors, the survival experience of cases 
detected by screening will appear better.  Overdiagnosis is a particular concern in evaluating the 
efficacy of prostate cancer screening. 

Randomized trials, in which mortality is compared between a group offered screening and a group 
not offered screening (the classic study of this type is the Health Insurance Plan [HIP] trial of breast 
cancer screening) provide protection against these biases.  But because they must usually be very 
large and of long duration, such trials are often difficult and very costly.  The National Cancer 
Institute is currently conducting a very large (74,000 men and 74,000 women) and lengthy 
randomized trial to evaluate the effectiveness of screening for prostate, lung, colorectal, and ovarian 
cancers. 

Both natural history and screening considerations come into play in such questions as the 
interpretation of secular changes in incidence and mortality.  According to the NCI SEER 
(Surveillance, Epidemiology and End Results) Program, newly diagnosed cases of breast cancer 
increased between 1950 and 1979 at an annual rate of 1%, and between 1980 and 1984 at an annual 
rate of 3% (Breast cancer incidence is on the rise – but why?  JNCI June 20, 1990; 82(12):998-1000).  
There has also been a "dramatic" upsurge in in situ breast cancer diagnosed since 1983.  Breast 
cancer mortality overall was stable in the 1970s and began to fluctuate in the mid-1980s.  Are the 
observed changes due to increased use of mammography?   In support of that interpretation is the 
fact that among white women age 50 and older, localized disease has increased (i.e., a shift in the 
stage distribution) during the 1980s.  There has also been a rapid increase in sales and installation of 
new mammography units during the 1980s, and the number of mammograms has risen dramatically.  
Or, could the observed changes be due to changes in risk factors (e.g., oral contraceptives, alcohol 
consumption, diet)?   The observation of a striking increase in estrogen-receptor positive cancers 
suggests some biological change has occurred. 

Another cancer where issues of natural history and early detection are of great importance is cancer 
of the prostate.  The substantial (e.g., around 30% in men age 50 years and older) prevalence of 
previously undetected prostate cancer found at autopsy has demonstrated that many more men die 
with prostate cancer than from prostate cancer.  Although "indolent" prostate cancers have the 
pathological features of cancer, if their growth is so slow that they will never become clinically 
manifest, should they be considered as the same disease as cancers of clinical importance?  In 
addition, the lengthy natural history of most prostate cancers raises the concerns of lead time bias, 
length bias, and overdiagnosis for any observational approach to evaluating the efficacy of screening 
for early prostate cancer.  In addition, there are major questions about the effectiveness of both 
existing modes of treatment and existing modes of early detection.  Prostate cancer incidence 
doubled from 90 per 100,000 in 1985 to 185 per 100,000 in 1992, undoubtedly as a result of the 
dissemination of prostatic-specific antigen (PSA) screening.  Meanwhile, prostate cancer mortality 
has decreased, though more modestly.  These trends are consistent with the claim that screening 
with PSA reduces mortality, though the issue remains controversial for a number of reasons.  
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5.  Measuring Disease and Exposure

Descriptive statistics; measuring occurrence and extent of disease; prevalence, incidence
(as a proportion and as a rate), and survivorship; weighted averages, exponents, and

logarithms.

“I often say that when you can measure what you are speaking about, and express it
in numbers, you know something about it; but when you cannot express it in
numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the
beginning of knowledge, but you have scarcely, in your thoughts, advanced to the
stage of Science, whatever the matter may be.”

Lord Kelvin (quoted in Kenneth Rothman, Modern Perspectives in Epidemiology, 1 ed.
Boston, Little Brown, 1986, pg 23)

At the beginning of this text we noted four key aspects of epidemiology:  its multidisciplinary nature,
and its concern with populations,  measurement, and comparison. As all empirical scientistis,
epidemiologists devote a great deal of attention to issues of measurement – the application of
numbers to phenomena.  Every object of study – a disease, an exposure, an event, a condition –
must be defined and measured.  Since epidemiology deals with populations, epidemiologists need
methods to describe and summarize across populations. This chapter discusses various aspects of
measurement, including the definition, computation, and interpretation of key measures of health
events and states in populations.  The next chapter deals with comparisons between these measures.

Numeracy: applying numbers to phenomena

Numeracy is the concept of summarizing phenomena quantitatively.  Faced with an infinitely
detailed and complex reality, the researcher attempts to identify and quantify the meaningful aspects.
Two of the innumerable examples of this process in epidemiology are:

Atherosclerosis score: David Freedman, an epidemiologist who received his doctoral degree
from UNC, conducted his dissertation research on the relationship of atherosclerosis in
patients undergoing coronary angiography to plasma levels of homocysteine.  A basic
question he had to address was how to measure atherosclerosis in coronary angiograms.
Should he classify patients as having a clinically significant obstruction, count the number of
obstructions, or attempt to score the extent of atherosclerosis?  An atherosclerosis score
would capture the most information and could provide a better representation of the
phenomenon as it might be affected by homocysteine levels.  But should an atherosclerosis
score measure surface area of involvement or extent of narrowing?  How should it treat
lesions distal to an occlusion, which have no effect on blood flow?  These and other
decisions would need to depend upon his conceptual model of how homocysteine would
affect the endothelium.  For example, would homocysteine be involved primarily in causing
initial damage, in which case the total surface area involved would be relevant, or would it be
involved in the progression of atherosclerosis, in which case the extent of narrowing would
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be relevant.  Compromises might be forced by limitations in what measurements could be
made from the angiograms.

Measuring smoking cessation:  at first glance, smoking cessation, in a study of the effects of
smoking cessation or of the effectiveness of a smoking cessation program, would seem to be
straightforward to define and measure. Even here, though, various questions arise.  The
health benefits from cessation may require abstinence for an extended period (e.g., years).
However, biochemical validation techniques, considered necessary when participants would
have a reason to exaggerate their quitting success, can detect smoking during a limited period
of time (e.g., about seven days for salivary cotinine).  Should cessation be defined as no
tobacco use for 7 days, to facilitate validation, or for at least a year, when the relapse rate is
much lower?

Conceptual models underlie measures

In general, how we apply numbers and what type of measures we construct depend upon:

1. the purpose of the measure

2. the nature of the data available to us.

3. our conceptualization of the phenomenon

These three factors will pervade the types of measures to be covered.

Ideally we would like to watch phenomena unfold over time.  In practice we must often take a few
measurements and infer the rest of the process.  Conceptual models pervade both the process of
applying numbers to phenomena and the process of statistically analyzing the resulting data in order
to identify patterns and relationships.  Not being able to record all aspects of phenomena of interest,
we must identify those aspects that are biologically, psychologically, or otherwise epidemiologically
important.  These aspects are embodied in operational definitions and classifications.  The method
by which we apply numbers and analyze them must preserve the important features while not
overburdening us with superfluous information.  This basic concept holds for data on individuals
(the usual unit of observation in epidemiology) and on populations.  Although we employ
mathematical and statistical models as frameworks for organizing the resulting numbers, for
estimating key measures and parameters, and for examining relationships, conceptual models guide
all of these actions.

Levels of measurement

One area where objectives, availability of data, and conceptual models come to bear is the level of
measurement for a specific phenomenon or construct.  Consider the construct of educational
attainment, a variable that is ubiquitous in epidemiologic research.  We can (1) classify people as
being or not being high school graduates; (2) classify them into multiple categories (less than high
school, high school graduate, GED, trade school, technical school, college, professional degree,
graduate degree); (3) record the highest grade in school they have completed; or (4) record their
scores on standardized tests, which we may need to administer.
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The first alternative listed illustrates the most basic “measurement” we can make: a dichotomous
(two category) classification.  People can be classified as “cases” or “noncases”, “exposed” or
“unexposed”, male or female, etc.  Communities can be classified as having a mandatory seat-belt
law or not, as having a needle exchange program or not, etc.

Potentially more informative is a polytomous (more than two categories) classification, such as
country of origin, religious preference, ABO blood group, or tumor histology (e.g., squamous cell,
oat cell, adenocarcinoma).  A polytomous classification can be nominal – naming categories but not
rank ordering them, as is the case for the four examples just given – or ordinal, where the values or
categories can be rank-ordered along some dimension.  For example, we might classify patients as
“non-cases”, “possible cases” “definite cases” or injuries as minimal, moderate, severe, and fatal.

The values of the different levels of a nominal variable provide no information beyond identifying
that level, and so they can be interchanged without constraint.  We can code squamous cell “1”, oat
cell “2”, and adenocarcinoma “3”; or instead, squamous cell “2” and oat cell “1” or even “5”).  The
numbers simply serve as names.  The values of the different levels of an ordinal variable signify the
ranking of the levels.  The values can be changed, but generally not interchanged.  We can use “1”,
“2”, “3”, respectively, for non-case, possible case, and definite case, or we can use “1” “3” “8”, but
we can not use “1” “3” “2”, since this coding would not preserve the ordering.

When the values themselves, or at least the size of the intervals between them, convey information,
then the phenomenon has been measured at the interval level. Temperature measured on the
Fahrenheit scale is an interval scale, since although we can say that 80˚F is twice 40˚F, the ratio is
not meaningful in terms of the underlying phenomenon. Psychological scales are often regarded as
being interval scales.  What differentiates an interval scale from most of the measures we use in
physical sciences is the absence of a fixed zero point.  Since only the intervals convey meaning, the
scale can be shifted up or down without changing its meaning.  An interval scale with values “1”,
“1.5”, “2”, “3”, “4” could just as well be coded “24”, “24.5”, “25”, “26”, “27”.

A ratio scale, however, has a non-arbitrary zero point, so that both intervals and ratios have
meaning.  Most physical measurements (height, blood pressure) are ratio scales. The values of an
ratio scale can be multiplied or divided by a constant, as in a change of units, since comparisons of
intervals and ratios are not distorted.  If value B is twice value A before multiplication, it will still be
twice value A afterwards.  A ratio scale with values “1”, “1.5”, “2”, “3”, “4” can be transformed to
“2”, “3”, “4”, “6”, “8” (with appropriate substitution of units), but not as “2”, “2.5”, “3”, “4”, “5”,
since only intervals but not ratios will be preserved.

One type of ratio scale is a count, such as birth order or parity.  A count is a discrete variable,
because its possible values can be enumerated.  A continuous variable, as defined in mathematics,
can take on any value within the possible range, and an infinitude of values between any two values.
Measurements in epidemiology are no where nearly as precise as in the physical sciences, but many
measurements used in epidemiology have a large enough number of possible values to be treated as
if they were continuous (e.g., height, weight, or blood pressure).

Whether continuous or discrete, however, both interval and ratio scales generally imply a linear
relationship between the numerical values and the construct being measured.  Thus, if we measure
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educational attainment by the number of years of school completed, we are implying that the
increase from 10th grade to 11th grade is the same as the increase from 11th grade to 12th grade, even
though the latter usually conveys a high school diploma.  We are also implying that completing 12th

grade with three advance-placement or honors classes in a high-achievement school is the same as
completing 12th grade with remedial courses in a low-achievement school, or as completing 12th

grade but reading at only a 9th grade level, or completing 12th grade but without taking any
mathematics beyond elementary algebra, etc., not to mention ignoring the educational aspects of
travel, speaking multiple languages, or having learned a trade.  Even chronological age may not be an
interval or ratio scale when certain ages have special meaning (e.g., 16 years, 18 years, 21 years, 40
years, 65 years).  Many measures that appear to be interval or ratio scales may not really behave as
such, due to threshold effects (differences among low values have no real significance), saturation
effects (differences among high values have no real significance), and other nonlinearities.

Absolute and relative measures — the importance of a denominator

While the absolute values of age, educational attainment, blood pressure, and cigarettes/day are
meaningful, other measures are expressed as concentrations (e.g., 20 μg of lead per deciliter of
blood, 500 T-cells per cubic centimeter of blood, 1.3 persons per room, 392 persons/square
kilometer) or relative to some other dimension (e.g., body mass index [weight/height2], percent of
calories from fat, ratio of total cholesterol to HDL cholesterol).  Most population-level measures are
not meaningful unless they are relative to the size and characteristics of a population and/or to
expected values, even if only implicitly.  Other than a report of cases of small pox, since the disease
has now been eradicated world wide, how else can we assess whether a number of cases represents
an outbreak or even an epidemic?  For this reason epidemiologists often refer disparagingly to
absolute numbers of cases or deaths as “numerator data”.  Exceptions illustrate the general
principle.  A handful of cases of angiosarcoma of the liver in one manufacturing plant led to an
investigation that uncovered this hazard from vinyl chloride.  A handful of cases of adenocarcinoma
of the vagina in teenage women in one hospital led to the identification of the effect of
diethylstilbesterol (DES) on this disease.  A handful of cases of acquired immunodeficiency
syndrome (AIDS) alerted public health to the start of this pandemic.   Since these were very rare or
previously unobserved conditions, an expectation was already defined.

Types of ratios

As illustrated with several of the above examples, we express a quantity relative to another by
forming a ratio, which is simply the quotient of two numbers, a numerator divided by a
denominator.  Ratios are ubiquitous in epidemiology, since they enable the number of cases to be
expressed relative to their source population.

Two special classes of ratios in epidemiology are proportions and rates.  Proportions are ratios in
which the numerator is “contained in” or “part of” the denominator.  The statement that 12% of
the population is age 65 or above expresses a proportion, since people age 65 and above are a
fractional component of the population.  Because the numerator is a fractional component of the
denominator, a proportion can range only between 0 and 1, inclusive.  Proportions are often
expressed as percentages, but any scaling factor can be used to yield a number that is easier to
express.  For example, the proportion 0.00055 would often be expressed as 5.5 per 10,000 or 55 per
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100,000.  Note that the ratio of abortions to live births, although of the same order of magnitude, is
not a proportion, since the numerator is not contained in the denominator.

Although many types of ratios (including proportions) are frequently referred to as “rates”, in its
precise usage a rate is the ratio of a change in one quantity to a change in another quantity, with the
denominator quantity often being time (Elandt-Johnson, 1975).  A classic example of a rate is
velocity, which is a change in location divided by a change in time.  Birth rates, death rates, and
disease rates are examples if we consider events ― births, deaths, newly diagnosed cases ― as
representing a “change” in a “quantity”.  Rates can be absolute or relative, according to whether the
numerator is itself a ratio that expresses the change relative to some denominator.  Most rates in
epidemiology are relative rates, since as discussed above the number of cases or events must
generally be related to the size of the source population.

 “Capturing the phenomenon”

All measures, of course, are summaries or indicators of a complex reality.  The question always is,
“does the measure capture what is important about the phenomenon given our objective?”.   This
principle applies at both the individual level (for example, when can a person's constantly-varying
blood pressure and heart rate be meaningfully represented by single numbers) and population level.

For example, although the proportion of a group of patients who survive for 5 years is a measure of
treatment effectiveness, if the proportion is low then when deaths occur is especially important.
The statement that the “five-year survival rate following coronary bypass surgery was 60%” does not
tell us whether the 40% who died did so during the procede, soon afterward, gradually during the
period, or not until at least three years following surgery. When the time-to-occurrence of an event
is important, then survivorship analysis is employed, such as in the following figure similar to that
reported from the Beta-blocker Heart Attack Trial (BHAT), a double-blinded, randomized trial of
propranolol to treat patients experiencing an acute myocardial infarctions.

Life table cumulative mortality in the Beta Blocker Heart Attack Trial (BHAT)
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[Source:  JAMA, March 26, 1982; 247:1707]



_____________________________________________________________________________________________
www.epidemiolog.net, © Victor J. Schoenbach 5.  Measuring disease and exposure - 86
rev. 10/15/2000, 1/28/2001, 8/6/2001

Distributions – the fuller picture

More generally, when the object of study involves not merely “presence” or “occurrence” but rather
a polytomous or measurement variable, we should examine the full distribution, e.g.

Serum cholesterol levels - Distribution
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Although distributions are informative, they are cumbersome to work with and to present.
Therefore we try to “capture” the essential information about the distribution by using summary
statistics, such as the mean, median, or quartiles, and the standard deviation or interquartile range
(see below).  While it is often essential to compress a distribution, curve, or more complex picture
into a number or two, care must be taken that the necessary simplification does not distort the
resulting computation, presentation, and interpretation.  Indeed, it may be the persons at one end of
the distribution who are most important or informative in respect to health consequences.

If the data are distributed in a familiar fashion, we can adequately characterize the entire distribution
by its parameters (e.g., the mean and standard deviation for a “normal” [Gaussian] distribution).  But
it can be hazardous to assume that the data conform to any particular distribution without verifying
that assumption by examining a histogram (e.g., see Statistics for Clinicians, Figure 7-7, for several
distributions with identical mean and standard deviation but dramatically different appearance).

Common summary statistics for description and comparison
Mean  –  The “average” value of the variable
Median  –  The middle of the distribution of the variable – half of the values lie
below and half lie above
Quartiles  –  The values that demarcate the 1st, 2nd, and 3rd quarter of the
distribution of the variable [the median is the 2nd quartile]
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Percentiles  –  The values that demarcate a percentage of the distribution, e.g., the
20th percentile (also called the second decile) is the value below which the lowest
20% of the observations fall.

Standard deviation  –  Roughly speaking, the distance of a typical observation
from the mean of the distribution (more precisely, the square root of the average
of the squared distances of observations from the mean)  [Not to be confused
with the standard error, which is a measure of the imprecision of an estimate.]
Interquartile range  –  The distance between the 1st and 3rd quartiles.

Skewedness  –  The degree of asymmetry about the mean value of a distribution.
Positively skewed or right-skewed means that the distribution extends to the right;
in a positively-skewed distribution, the mean (overall average) lies to the right of
the median, due to the influence of the outlying values.

Kurtosis  –  The degree of peakedness of the distribution relative to the length
and size of its tails.  A highly peaked distribution is “leptokurtic”; a flat one is
“platykurtic”.

When interpreting summary statistics, it is important to consider whether the summary statistics
represent the most relevant features of the distributions that underlie them.  Several examples:

Community health promotion:
Suppose that surveys before and after a community alcohol control program find a reduction
in mean alcohol consumption of 1 drink/day in the target population.  That reduction could
reflect either:

•  a 5 drink/day reduction for each person in the highest consumption 20 percent of
the population

or

•  a 1.25 drink/day reduction for all people but those in the highest consumption 20%,

with very different implications for health.

Black-white differences in birth weight:
The distribution of birth weight has an approximate Gaussian (“normal”) shape, with a
range from about 500 grams (the lower limit of viability) to about 5,000 grams and a mean of
about 3,000 grams.  Statistically the distribution is smooth and reasonably symmetrical.
However, the biological implications vary greatly across the distribution, since the majority
of infant deaths occur for babies weighing less than 2,500 grams.  For babies weighing
1,000-2,000 grams, the mortality rate is 33%; for babies weighing less than 1,000 grams, the
mortality rate is 75%.

The birth weight distributions for Black and White Americans are generally similar, with that
for Blacks shifted slightly to the left.  But that slight shift to the left translates into a
substantially greater proportion below 2,500g, where mortality rates are much higher.



_____________________________________________________________________________________________
www.epidemiolog.net, © Victor J. Schoenbach 5.  Measuring disease and exposure - 88
rev. 10/15/2000, 1/28/2001, 8/6/2001

Per capita income:
Should health care resources for poor people be allocated on the basis of per capita income
of counties?  At least one study has found that the barriers to health care experienced by the
poor in the U.S. appear to be similar in wealthy counties and in other counties, so that per
capita income (i.e., mean income per person) is not as good a criterion for determining the
need for public health care programs as is the number of poor persons in the area (Berk M,
Cunningham P, Beauregard K.  The health care of poor persons living in wealthy areas.
Social Science in Medicine 1991;32(10):1097-1103).

The moral:  in order to interpret a change or difference in a summary measure it is necessary to
know something about the shape of the distribution and the relationship between the variable and
the relevant health outcome.

Heterogeneity and distributions of unknown factors – any summary is a
weighted average

Since populations differ in characteristics which affect health, an overall number, such as a
proportion or mean, often conceals subgroups that differ meaningfully from the overall picture.
Even when we cannot identify these subgroups, we should be mindful of their likely existence.
Because most diseases vary across subgroups, epidemiologic measures are more interpretable with
knowledge of the composition of the group they refer to, at least in terms of basic demographic
characteristics (notably age, sex, geographical area, socioeconomic status, employment status, marital
status, ethnicity) and important exposures (e.g., smoking).

E.g., a workforce experiences 90 lung cancer deaths per l00,000 per year:  To know what to
make of this it is essential to know the age distribution of the workforce and if possible the
distribution of smoking rates.

Virtually any measure in epidemiology can be thought of as a weighted average of the measures for
component subgroups. We can use “specific” measures (e.g., “age-specific rates,” “age-sex-specific
rates”) where the overall (“crude”) measure is not sufficiently informative.  Also, we can produce
“adjusted” or “standardized” measures in which some standard weighting is used to facilitate
comparisons across groups.  Adjusted measures are typically weighted averages – the weights are
key.  The concept of weighted averages is fundamental and will resurface for various topics in
epidemiology.  (Rusty on weighted averages?  See the Appendix on weighted averages.)

Types of epidemiologic measures

Purpose of the measure:

There are three major classes of epidemiologic measures according to the question or purpose.  We
use measures of frequency or extent to address questions such as “How much?”, “How many?”,
“How often?”, “How likely?”, or “How risky?”.  We use measures of association to address
questions about the strength of the relationship among different factors.  We use measures of
impact to address questions of “How important?”.
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Availability of data:

We can also categorize epidemiologic measures according to the type of data necessary to obtain
them:

1. Measures derived from routine data collection systems, e.g., vital events registration, cancer
registries, reporting of communicable diseases.

2. Measures derived from data collected in epidemiologic studies or for related purposes (e.g.,
clinical studies, health insurance records).

3. Measures derived from theoretical work in biometry - no data necessary!    e.g., Risk of
disease in exposed = Pr[D|E]

d(Nt)
Incidence density    = – ————

Nt dt

The usefulness of the third class of measures is in refining measurement concepts and in advancing
understanding.  Measures in the first two classes generally involve compromises between the
theoretical ideal and practical reality.  Epidemiology is fundamentally a practical field.  In the rest of
the chapter we will touch on the first class and then dwell on the second.

Measures derived from routinely collected data

In this area come the vital statistics data compiled by health authorities and statistical agencies, such
as the World Health Organization, the U.S. National Center for Health Statistics, state health
departments, and their counterparts in other countries.  Examples of measures published from such
data are:

•  total death rates

•  cause-specific death rates

•  birth rates (births per 1,000 population)

•  infant mortality rates

•  abortion/live birth ratio

•  maternal mortality rate

 [See Mausner and Kramer, ch 5; Remington and Schork, ch 13.]

The denominator for vital statistics and other population-based rates (e.g., death rates, birth rates,
marriage rates) is generally taken from population estimates from the national census or from other
vital events data, as in the case of the infant mortality rate:



_____________________________________________________________________________________________
www.epidemiolog.net, © Victor J. Schoenbach 5.  Measuring disease and exposure - 90
rev. 10/15/2000, 1/28/2001, 8/6/2001

Deaths of children < 1 year of age in one year
Infant mortality rate  = ————————————————————————

Total live births in one year

Results are usually scaled so that they can be expressed without decimals (e.g., 40 deaths per 1,000 or
4,000 deaths per 100,000).

Optional aside – Assessing precision of an estimated rate, difference in rates, or ratio of
vital statistics rates

If r is a rate (e.g., an infant mortality rate) and n is the denominator for that rate (e.g.,
number of live births), then a 95% confidence interval for r can be constructed using the
formula:

 r ± 1.96 × √(r/n)

E.g., in an area with 30 infant deaths and 1,000 live births, r = 30/1,000 = 30 per 1,000 or
0.03.  The 95% confidence interval for r is:

   0.03 ± 1.96 × √(0.03/1,000)  =  0.03 ± 0.0107  =  (0.0193,0.0407),

   or between 19.3 and 40.7 per thousand

The 95% confidence interval for the difference, D, between two rates, r1 and r2, based,
respectively, on number of deaths d1 and d2, and denominators n1 and n2, is:

  (r1 – r2) ± 1.96 × √(r1/n1 + r2/n2)

The 95% confidence interval for the ratio, R, of r1 and r2 is:

  R ± R × 1.96 × √(1/d1 + 1/d2)

where d2 (the number of deaths for the denominator rate) is at least 100.

Source:  Joel C. Kleinman.  Infant mortality.  Centers for Disease Control.  National Center
for Health Statistics  Statistical Notes, Winter 1991;1(2):1-11.

The basis for the above can be stated as follows.  The number of rare events in a large
population can often be described by the Poisson distribution, which has the notable feature
that its mean is the same as its variance.  For a Poisson distribution with mean d (and
variance d), if the number of events is sufficiently large (e.g., 30), then 95% of the
distribution will lie within the interval d ± 1.96√d.  If we divide this expression by the
population size (n), we obtain the 95% confidence interval for the rate as:

d/n ± (√d)/n   =   r ± √(r/n)

Reporting systems and registries for specific diseases, hospital admissions, and ambulatory care visits
provide data on incidence or health care utilization for some conditions.  Communicable diseases
have long been reportable, though the completeness of reporting is quite variable.  Major
investments in state cancer registries are creating the basis for a national cancer registry system in the
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U.S.  Several states have reporting systems for automobile collisions.  For the most part, however,
data on non-fatal disease events are less available and complete than mortality data.

Remember:  All rates, ratios, and other measures can be:

Specific to a group defined by age, sex, and/or other factors.

Adjusted for age, sex, or other relevant variable(s);
Crude (i.e., neither specific nor adjusted).

These terms apply with respect to particular variable(s) and are therefore not mutually exclusive.
For example, a rate can be adjusted with respect to age, specific with respect to gender, and crude
with respect to ethnicity, geographical region, etc. (e.g., an age-adjusted rate for women of all
ethnicities and all geographical regions).

The basic concept underlying adjustment procedures is that of the weighted average.  The
limitations of adjusted measures derive from this aspect – validity of comparison depends upon the
similarity of the component weights; validity of interpretation depends upon the numerical and
conceptual homogeneity of the component specific measures.

Measures derived from data collected in epidemiologic studies

For most epidemiologic studies, routinely collected data are not adequate, so data must be collected
specifically for the study purposes.  The reward for the time, effort, and expense is a greater
opportunity to estimate measures that are more suited for etiologic and other inferences.  Three
principal such measures are prevalence, incidence, and case fatality.

Prevalence – the proportion of cases within a population

Cases
Prevalence = ——————————          

Population-at-risk

Prevalence – a kind of “still life” picture – is the most basic of epidemiologic measures.  It is
defined as the number of cases divided by the population-at-risk.  Note that:

•  Prevalence is a proportion, so must lie between 0 and 1, inclusive.

•  Population at risk (PAR) means “eligible to have the condition”.

•  Prevalence can be used to estimate the probability that a person selected at random from
the PAR has the disease [Pr(D)]

Example:
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No. of persons with senile dementia at a given time
Prevalence    =  ———————————————————————————

  No. in study population at risk for senile dementia

175
=  ―――― = 0.10 = 10%

1,750

Optional aside – Assessing precision of an estimated prevalence.

Since prevalence is a proportion, a confidence interval can be obtained using the binomial
distribution or, where there are at least 5 cases, the normal approximation to the binomial
distribution.  The variance of a point binomial random variable is pq (where p is the
probability of a “success” and q=1―p), so the standard error for the estimated probability is
√(pq/n).  Thus, the 95% confidence interval for a prevalence estimate p is: p ± 1.96
√[p(1―p)/n].  For the preceding example, the 95% confidence limits are 0.10 ±
1.96√[(0.10)(0.90)/1750] = (0.086, 0.114).  When there are fewer than 5 cases, an exact
procedure is required.

Prevalence has three components:

1. Existing cases

2. Population “at risk” to have the condition

3. Point (or sometimes a period) in time to which the prevalence applies

Incidence – the occurrence of new cases

New cases
Incidence = ——————————————

Population-at-risk over time

Incidence – a “motion picture” – describes what is happening in a population.  Incidence is defined
as the number of new cases divided by the population at risk over time.  Incidence therefore
includes three components:

1. New cases

2. Population at risk.

3. Interval of time.

Note that:

•  Incidence involves the passage of time.
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•  Incidence may be expressed as a proportion or as a rate.

•  Incidence can be used to estimate the risk of an event during a stated period of time.

Example:

New cases of senile dementia in 5 years
e.g.,   Cumulative incidence   = —————————————————————

No. of persons at risk

In infectious disease epidemiology, this measure is often termed the attack rate or secondary
attack rate, especially when referring to the proportion of new cases among contacts of a primary
case.

Case fatality is a measure of the severity of a disease.  Though often called the case fatality “rate”,
the measure is generally computed as a proportion:

Case fatality – proportion of cases who die

Deaths from a condition
5-year case fatality    =   —————————————————————

Number of persons with the condition

If the time period under discussion does not encompass the entire period of risk of death from the
condition, then the time period must be stated explicitly or the statistic is uninterpretable.  The case
fatality rate for AIDS increases with every year following diagnosis, but that for an episode of
influenza or for a surgical procedure does not change after a month or so.

Example:

Deaths from senile dementia in 5 years
Case fatality rate    =   ——————————————————————

Number of persons diagnosed with senile dementia

Relationship of incidence and prevalence

Incidence, mortality, and prevalence are intimately related, of course, just as are births, deaths and
population size.  Demographers study the latter phenomena, and their techniques are used in
epidemiology (under other names, naturally, to “protect the innocent”!).
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Relationship of Incidence and Prevalence

In a stationary population, in which there is no migration of cases or noncases, if the incidence,
prevalence, and duration of a condition remain constant then the number of new cases that occur
must be balanced by the number of existing cases that leave the population through death or cure.
In such a situation, the prevalence is a function of incidence and the average duration of being a
case.  For a rare disease, prevalence ≈ incidence × duration (see “Incidence and prevalence in a
population”, below).

Influences on the relation of incidence and prevalence

The relationships among incidence, mortality, and prevalence are affected by such factors as:

Virulence of the disease - Is it rapidly fatal?
Health care - When do cases come to medical attention?

         Can cases be cured?

         Does earlier detection alter prognosis?

Behavior - Do people recognize and act promptly on symptoms?

      Do patients comply with treatment?

Competing causes of death - Are people with the disease likely to die of other causes?
Migration - Are people with the disease likely to leave the area?

                    Are people with the disease like to migrate to the area?

Because prevalence is affected by factors (e.g., duration and migration) that do not affect the
development or detection of a disease or condition, measures of incidence are generally preferred
over measures of prevalence for studying etiology and/or prevention.  Both incidence and
prevalence are useful for various other purposes (surveillance and disease control, health care

Incidence

Immigration

Cure

Prevalence

Fatality

Emigration
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planning).  Also, prevalence may be more readily estimated than incidence and may be looked to for
etiologic inferences despite its limitations.

It is important to note, however, that although incidence itself is not affected by factors unrelated to
etiology, observed incidence reflects the influence of a variety of nonetiologic factors (how quickly
the disease produces symptoms that prompt a health care visit, access to health care, whether the
health care provider selects the correct diagnostic maneuver, accuracy of the exam result and its
interpretation, and accuracy and promptness of reporting).  There are, accordingly, great difficulties
in interpreting reported incidence of many diseases and conditions (e.g., Alzheimer's disease, AIDS,
HIV, other sexually transmitted infections, Lyme disease, and prostate cancer, to name but a few).

An example of how disease natural history distorted trends in observed incidence comes from the
early years of the AIDS epidemic, when AIDS case reporting was the primary means of tracking the
HIV epidemic.  Due to the considerable variability in the time between HIV infection and
development of opportunistic infections signaling the onset of AIDS, the upward trend in AIDS
cases exaggerated the upward trend in HIV infections.  The mechanism for this effect can be
illustrated as follows.  Suppose that the numbers of new HIV infections during the first four years of
the epidemic were 500, 1,000, 1,500, 2000, respectively, indicating a linear increase of 500/year.
Suppose that 5% of HIV infections progress to AIDS during each year following infection, for a
median time-to-AIDS of 10 years.  During the first year 25 cases of AIDS will occur (5% of 500
infections).  During the second year 75 cases of AIDS will occur (5% of 500 plus 5% of 1,000).
During the third year 150 cases of AIDS will occur (5% of 500 plus 5% of 1,000 plus 5% of 1,500).
During the fourth year 250 cases of AIDS will occur, so the trend in AIDS (25, 75, 150, 250) will
initially appear to increase more steeply than the trend in HIV (HIV infections double in year 2, but
AIDS cases triple) and then will appear to level off despite no change in the HIV incidence trend.
There will also be a change in the ratio of AIDS to HIV, as also occurred during the early years of
the epidemic.  (The phenomenon was described in an article in the American Journal of Epidemiology in
about 1987; I am looking for the citation.)

Prevalence versus incidence
Prevalence Incidence

Cases Entities Events

Source population (PAR) At risk to be a case At risk to become a case

Time Static (point) Dynamic (interval)

Uses Planning Etiologic research

Considerations relevant for both prevalence and incidence

Cases
1. Case definition – What is a case?
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Examples: arthritis, cholelithiasis, cardiovascular disease, diabetes, psychiatric disorder,
epidemiologic treatment of syphilis or gonorrhea, prostate cancer

2. Case development – When is a case?

Issues:  induction, latency, progression, reversibility

Examples:  atherosclerosis, cancer, cholelithiasis, diabetes, hypertension, AIDS

3. Case detection – When is a case a “case”?

Issues: Detectability is a function of technology and feasibility.  What can be detected is not
the same as what is detected.

Examples: Atherosclerosis, breast cancer, cholelithiasis, osteoporosis, asymptomatic
infections, prostate cancer

Source population [Population at risk (PAR)]
1. What is the relevant population — who is really “at risk”?

E.g., age (most diseases), sex (breast cancer), STD's and sexual activity, uterine cancer and
hysterectomy, gallbladder cancer and cholecystectomy, genotypes?

2. What about previous manifestations?

Of the same disease? (influenza, tumors, injuries)

Of a related disease (stroke after CHD, cancer at a different site)

3. What about death from other causes? (competing risks)
E.g., deaths for diabetes reduce the rate of death from coronary artery disease, heart disease
deaths reduce the rate of death from lung cancer to the extent that smokers are at excess risk
for both

Choosing the right denominator

The choice of the most appropriate denominator can be complex.  For example, what is the most
appropriate denominator for motor vehicular injuries or deaths?

Total population?

Population age 16 years and above?

Licensed drivers?

Registered vehicles?

Vehicle miles?

Passenger miles?

Which one to choose depends upon whether the question of interest concerns:

Injury risk by age and/or sex (population denominator?)

Effect on risk of seat-belt use (passenger-miles?)
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Effect on deaths of 55 mph limit (passenger-miles?)

Role of alcohol in motor vehicular fatalities

Evaluation of alternate transportation policies

For example, older drivers have a higher crash rate per 100 million vehicle miles traveled than teen
drivers do.  But the rate of crashes per licensed driver is no higher for older drivers, because older
drivers limit their driving.

Passage of time [incidence only] – what period of observation?
1. Natural history of the disease - period of risk versus period of observation

E.g., atom bomb survivors and solid tumors, motor vehicle injury, congenital malformations

2. Different periods of observation for different subjects (does 1 person observed for 2 years =
2 people observed 1 year?)

3. Changes in incidence during the period (e.g., seasonal variation, secular change)

40 years 3 years

Cancer in atomic bomb survivors Congenital malformations

Types of source populations for incidence

Source populations can be defined in various ways, including residence in a geographical area,
employment in a company or industry, attendance in a school or university, membership in an
organization, seeking health care from a given set of providers, or explicit recruitment into a study.
Incidence involves the passage of time and therefore implies some type of follow-up of population.
A key characteristics of a source population is in what ways its membership can change over time.
Rothman and Greenland (1998) present a detailed discussion of types of populations and
terminology that has been used to describe these.  The primary distinction we will make here is that
between a fixed cohort, whose membership changes only through attrition, and a dynamic
population (Rothman and Greenland call this an open cohort), whose membership can change in
various ways. (The fixed cohort versus dynamic population terminology come from Ollie Miettinen
by way of Kleinbaum, Kupper, and Morgenstern.)
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Cohort – entrance into the population is defined on the basis of some aspect or event in the lives of
members of the study population (e.g., living in a geographical area when a major environmental
event occurred, start of employment in a worksite or industry, receipt of a medical or surgical
treatment, onset of a condition, start of an exposure, or simply enrollment into a study).  Exits from
the cohort (from death, out-migration, dropout) are problematic; entrances into the cohort are
permitted only in relation to the qualifying event that defines the start of follow-up for that person.
Note that once recruitment has been completed a cohort will become smaller over time due to
attrition, and the entire age distribution will become older.

Variants:
Retrospective or historical cohort - the population is defined at some time in the past

(e.g., based on employment records) and then followed forward in time towards the present by the
use of available records.

“Dynamic cohort” – follow-up time is counted from the time of entrance into the study or
in relation to some event that occurs at different times for different people (e.g., a medical
procedure), so that accrual to the cohort continues over a period of time.  In a classic cohort study,
follow-up time for each subject and calendar time are identical; in a dynamic cohort, each
participant's follow-up time may take place over a different interval of calendar time (this does not
appear to be a widely-used term).

Dynamic population – a population is defined over a period of time and their experience is
monitored during that period.  The study population may be defined in the same way (e.g.,
geographical residence, employment, membership, etc.).  In a dynamic population, however, both
entrances and exits are expected and accommodated.  For example, the population of a geographical
area will experience births, deaths, and possibly substantial migration.  Over time, a dynamic
population can increase or decrease in size, and its age distribution can change or remain the same.

Special case:
A dynamic population is said to be stable or stationary when its size and age distribution
do not change over time.  The assumption of stationarity is often made, since it greatly
simplifies analysis.  (See Rothman and Greenland, 1998 for more on this.)

Types of incidence measures: cumulative incidence (incidence proportion)
and incidence density (incidence rate)

There are two major types of incidence measures, differing primarily in the way in which they
construct the denominator:  cumulative incidence and incidence density (again, this is Olli
Miettinen's terminology, adopted by Kleinbaum, Kupper, and Morgenstern; Rothman and
Greenland use incidence proportion and incidence rate, respectively). Cumulative incidence (CI)
is simply the proportion of a population that experience an event or develop a condition during a
stated period of time.  Incidence density (ID) is the rate at which new cases develop in a population,
relative to the size of that population.
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Cumulative incidence (incidence proportion)

New cases during stated period
CI = ————————————————

Number of persons at risk

Incidence density (Incidence rate)

New cases during stated period
ID = —————————————————

Population-time

Cumulative incidence (CI), a.k.a. Incidence proportion (IP)

The definition of CI is based on the following “ideal” scenario:

1. A population known to be free of the outcome is identified at a point in time (a cohort);

2. All members of the cohort are at risk of experiencing the event or outcome (at least once)
for the entire period of time;

3. All first events or outcomes for each person are detected.

For example, consider a study of the risk that a rookie police officer will suffer a handgun injury
during his first six months on patrol duties.  Data are collected for a cohort of 1,000 newly-trained
police officers entering patrol duties with the San Francisco Police Department (SFPD).  During
their first six months with the SFPD, 33 of the officers suffer a handgun injury.  The other 967
officers have carried out patrol duties during the six-month period with no handgun injuries.  The 6-
months CI of handgun injury is 33/1,000 = 0.033.  We use this observed CI to estimate the six-
month risk of handgun injury to new patrol officers in San Francisco.

This example conforms to the ideal scenario for CI:  there is a population “at risk” and “in view” for
the entire period, and all first events were known.  For the moment we assume away all of the
reasons that might result in a member of the cohort not remaining “at risk” (e.g., transfer to a desk
job, extended sick leave, quitting the force) and “in view” (e.g., hired by another police department).

Some things to note about CI:

1. The period of time must be stated (e.g., “5-year CI”) or be clear from the context (e.g., acute
illness following exposure to contaminated food source);

2. Since CI is a proportion, logically each person can be counted as a case only once, even if
she or he experiences more than one event;

3. As a proportion, CI can range only between 0 and 1 (inclusive), which is one reason it can be
used to directly estimate risk (the probability of an event).
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Sample calculation:

200 people free of chronic disease X observed over 3 years

10 cases of X develop

3-year CI  =  10 cases / 200 people  =  10/200  =  .05

Thus, the 3-year risk for one of the 200 people to develop disease X, conditional on not dying
from another cause, is estimated as 0.05 or 5%.

Optional aside – Assessing precision of an estimated cumulative incidence

Since cumulative incidence is a proportion, a confidence interval can be obtained in the same
manner as for prevalence (see above).

Risk and odds

In epidemiology, the term “risk” is generally taken to mean the probability that an event will occur
in a given stated or implicit time interval (be alert for other uses, though).  In its epidemiologic
usage, risk is a conditional probability, because it is the probability of experiencing an event or
becoming a case conditional on remaining “at risk” (eligible to become a case) and “in view”
(available for the event to be detected).

Any probability can be transformed into a related measure, the “odds”.  Odds are defined as the
ratio of the probability of an outcome to the probability of another outcome.  When the only
outcomes are (case, non-case), then the odds are the ratio of the probability of becoming a case to
the probability of not becoming a case.  If the risk or probability of becoming a case [Pr(D)] is p,
then the odds of becoming a case are p/(1-p).  If the risk, or probability, of developing disease X is
0.05 (5%), then the odds of developing disease X are .05/.95 = 0.0526 (the odds always exceed the
risk, especially for large risks).

The mathematical properties of odds make them advantageous for various uses.  Whereas
probabilities are restricted to the 0 – 1 interval, odds can be any nonnegative number.  Odds = 1.0
(“fifty-fifty”) corresponds to probability = 0.5, the middle of the set of possible values.  The
logarithm of the odds can therefore be any real number, with log(odds) = 0 corresponding to the
middle of the set of possible values.  The natural (Naperian) logarithm of the odds (called the
“logit”, for “logarithmic transformation”) is widely used in biostatistics and epidemiology.  For the
above example, with risk = 5%, odds = 0.0526, the ln(odds), or logit = -2.944; since the ln(odds) is
zero when the risk is .5, a risk smaller than 0.5 yields a negative logit.  [Rusty on logarithms?  See the
Appendix on logarithms and exponents.]
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Cumulative incidence when there is loss to follow-up

In the example above, all 200 people who were originally free of disease X were observed over all 3
years.  What if instead 20 of the people had died of other causes before developing X?  Then not all
200 would have been “at risk” for the entire 3 years.

There are four principal alternatives to estimating the 3-year CI:

1. Ignore the deaths:

3-year CI = 10/200 = .05

2. Ignore the people who died (analyze only the people followed for all 3 years):

3-year CI = 10/(200-20) = .056

3. Compromise by counting the 20 people who died as if they were 10 people who were at risk
for the full 3 years:

3-year CI = 10/(200-20/2) = .053

4. Use a lifetable, in which (a) CI is computed for each segment of the period (e.g., annually) to
estimate the risk during that segment; (b) risks are converted to survival probabilities (1-risk);
and (c) risks are multiplied to obtain the 3-year survival probability and therefore the 3-year
risk (1 - survival probability).

5. Take the inverse of the Kaplan-Meier estimated survival proportion.  This method is the
same as the previous one except that the segments are made so short that only a single case
occurs in any one segment.  Segments with no cases have 100% survival, so the K-M
survival estimate is the product of the proportion surviving during each interval when a case
occurs.

Each of these methods makes certain assumptions about when the disease occurs during the three-
year period, whether it will be detected when it occurs, and whether the people who die of other
causes were more or less likely to develop X had they lived.

Incidence density (ID)

New cases during stated period
ID = —————————————————

Number of person-years of
observation

(person months, etc.)

Note that:

•  ID is a relative rate, not a proportion.
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•  The units of time must be stated, since otherwise the numeric value is ambiguous (e.g., 15
cases/100,000 person-years = 15 cases/1,200,000 person-months).*

•  Ideally, incidence density is the instantaneous rate of disease occurrence at each moment in
time.  In practice, epidemiologists generally compute average ID during one or more
periods.

Interpretation:

ID addresses the question “How rapidly is the disease occurring in the population, relative to its
size?”, or “What is the intensity with which the disease is occurring?”.  It has been argued that ID
has no interpretation at the individual level (see Morgenstern H, Kleinbaum, DG, Kupper LL,
1980).  However, it is possible that ID can be thought of as at least indirectly addressing the
question, “How soon might this happen to me?”).

Sample calculation:

In our original example for CI, we had 10 cases of chronic disease X develop in 200 people initially
free of X and observed over 3 years with no loss to follow-up.  Here are the values of CI and ID for
this example:

3-year CI  =  10 cases / 200 people  =  10/200  =  .05

ID  ≈  10 cases / (200 people × 3 years)  =  10 / 600 person-years

      ≈  0.167 cases per person-year (py)  =  0.167 / py  =  167 / 1000py

The reason for the approximation is that, as we shall see, people stop contributing person-time
when they develop the disease so the denominator must be reduced accordingly.  The more nearly
correct calculation is 10 / (200  × 3 years – 10 × 1.5 years) = 10/585 = 0.17/py, assuming that cases
occurred uniformly during the 3 years.

Calculating ID

In calculating ID, we use the same cases as for CI except that we may want to allow multiple events
per person.  If we regard the recurrences as independent of one another, then we can simply count

                                                
* The importance of stating units can perhaps be appreciated from the following:
   “On Sept. 23, 1999, NASA fired rockets intended to nudge its Mars Climate Orbiter into a stable low-altitude orbit.
But after the rockets fired, NASA never heard from its expensive spacecraft again, and scientists later concluded that it
had either crashed on the Martian surface or had bounded away, escaping the planet completely.
   “The reason for the debacle, scientists concluded months later, was that the manufacturer, the Lockheed Martin
Corporation, had specified the rocket thrust in pounds, while NASA assumed that the thrust had been specified in
metric-system newtons." Browne, Malcom W.  Refining the art of measurement.  Science Times, New York Times,
3/20/2001, page D6¶.
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them as new cases.  If not, we can define the disease as the first occurrence.  Other considerations
can also affect the choice.

There are several methods used to compute population-time.

1) If individuals are being followed over time, so that the period of disease-free observation is
known for each person, we simply add up the disease-free time for all persons:

population-time = Σ (disease-free time for each person)

2) If a fixed cohort is being followed, but not in sufficient detail to know the period of disease-
free time for each individual, we can estimate population time as follows:

population-time  =  average population size during the period
           ×   length of the period of observation

If there are N0 disease-free people at the beginning of the period, and during the period
there are “C” cases, “D” deaths from causes other than the disease of interest, and “W”
persons whose disease status is unknown (“withdrawals”), then the number of disease-free
persons at the end of the period is (N0 – C – D – W).  The average number of disease-free
people, assuming that cases, deaths, and withdrawals occur uniformly during the period, is:

N0 + (N0 – C – D – W)
————————————— = (N0 – C/2 – D/2 – W/2)

2
and the population-time at risk can be estimated as:

(N0 – C/2 – D/2 – W/2)  ×  ( time interval)

3) If we are following a dynamic population (a.k.a. “open cohort”) instead of a fixed cohort, we
can use the same strategy of multiplying the average size of the disease-free population by
the time period.  It may be possible to estimate the average number of disease-free people by
taking the average of the number of disease-free people at the beginning and end of the
period.  If we can assume that the population is “stable” (the number of disease-free people
who are lost to the population through out-migration, death, and developing the disease of
interest is balanced by in-migration), then the number of disease-free people is
approximately constant.  If we have any usable estimate of the average number of disease-
free persons (N0), then we estimate population time as N0 × (time interval)

If the disease is rare, then the number of disease-free persons (N0) will be approximately
equal to the total number of persons (N), which is more likely to be known.  In that case, we
can estimate population time as N × (time interval), where N is the average population size
without regard to disease status.  Annual death rates and other annual vital statistics rates are
typically computed using the estimated mid-year (July 1) population as the denominator,
which is approximately the average size of the population on any day in the year if the
population is approximately constant or changing in a monotonic fashion.
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Calculation of person-time in a cohort
when individual follow-up times are known

Graph of hypothetical follow-up experience for 13 advanced Alzheimer's patients
being cared for at home during January 1990 - December 1993 and followed until
December 31, 1994 for admittance to a nursing home, in order by study entrance
date (after Kleinbaum, Kupper, and Morgenstern, 1982).
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Key:

A = admitted to nursing home care

L = lost to follow-up

W = withdrew

o = died
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Cases
ID = ———————————————————————————

Sum of disease-free follow-up over all individuals

Subject Cases Follow-up

1 5.0
2 1 4.0
3 4.5
4 2.0
5 1 3.5
6 1 1.0
7 0.5
8 1 2.0
9 1 1.5
10 1.5
11 1 1.5
12 1.0
13 2.0

———— ——— ————
Total 6 30.0

6
ID = ————————— =  0.20 patients admitted per year

30 person-years
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Calculation of person-time in a cohort
when individual follow-up times are not known

N0 Lost to follow-up W
Died D

Original New cases C

cohort Remained
and

“at risk”
“in view”

t (time)

C
ID = ––––––––––––––––––––––––––––––––––––––––––––

(N0 – W/2 – D/2 – C/2) t

(t = time interval)

(Since the area of a triangle = base × height/2, the person-time lost to follow-up can
be estimated by one half times the number of withdrawals [the base of the triangle]
times the length of the time interval [the height].  The procedure is the same for
follow-up time lost due to deaths and to incident cases.  These estimates assume that
cases are detected as they occur and that only the first case per subject is counted.)
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Calculation of person-time in a stable, dynamic population

c
m c = new cases

c
c d = deaths

c
c d c m = migrants

c
N p S U S C E P T I B L E S

c m d

c
d c

c
d d p = prevalent cases

c
p p p p p p p p p p p

Processes at work: Immigration of cases, noncases

Out-migration of cases, noncases

Death of cases, noncases

Development of new cases

cases cases
ID = –––––––––– or ID = ––––––––

N0t Nt

(t = time interval)

Relationship of CI and ID

Both ID and CI are actually old acquaintances who have changed their outfits.  When we calculated
life expectancy in the first topic, we used the terms death rate, hazard, cumulative mortality,
cumulative survival.  ID is essentially the hazard, now applied to events other than death.  CI is
essentially the cumulative mortality proportion, now applied to events of any variety.  Both represent
different summary statistics from survivorship analysis (known in engineering as failure-time
analysis).

ID is the rate at which the size of the unaffected population is changing, relative to the size of the
unaffected population; CI is the proportion of the original population that has been affected by time
t.  CI is a cumulative measure from a baseline time to a specific later point in time.  CI estimates the
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average risk for a member of the cohort.  In principle, ID can apply to an instant in time, though it
can be computed only as an average over some interval.  ID is sometimes referred to as the “force
of morbidity”, in analogy to the hazard function (the “force of mortality”).

The following figure shows the relationship between CI and its inverse, the proportion unaffected
(survivorship).  ID is the relative rate of decline in the survivorship curve.

0    1    2    3    4    5    6    7    8

Years

The incidence of AIDS in gay men in San Francisco from 1984 might look something like the left
half of this graph.

The mathematical relationship between CI and ID over time can be seen by considering an incurable
disease in a hypothetical fixed cohort defined at a point in time and with no entrances or exits other
than from the disease in question.  Assuming that IDt (the force of morbidity) is constant over time,
cases will develop throughout the follow-up period.  However, since the number of unaffected (at
risk) cohort members is diminishing, the number of new cases will be smaller in each successive
time interval. Because the number of cases is smaller in each interval, the slope of the curve for CI
will tend to flatten out as it approaches 1.0 (its maximum value), at which time the entire cohort has
developed the disease.  The proportion unaffected (the inverse of CI:  1-CI) also becomes less steep.
IDt, of course, we have assumed to be constant. In this situation, the mathematical relationship
between CI and ID is:

CI = 1 – exp[–∫(IDtdt)]  =  1 – exp(–ID Δt)

For a rare disease with a constant ID (or during a sufficiently short time interval):   CI ≈ ID×Δt
(where Δt is the time interval), because since the cohort does not become depleted, the number of
new cases in each time interval remains about the same.

Cumulative incidence vs. survivorship
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Example:

•  ID = 0.01/year (1 case per 100 person-years)

•  In 5 years, CI will be 0.049, or about the same as ID×5 (=0.05); 95% of the cohort
remains disease free and therefore exposed to the 0.01/year ID.

•  In 10 years, CI will be .096, only slightly below ID×t (=0.10); 90% of the cohort remains
disease free.

•  ID = 0.05/year (5 cases per 100 person-years)

•  In 5 years, CI will be 0.226, slightly smaller than ID×5 (=0.25); 77% of the cohort remains
disease free.

•  In 10 years, CI will be 0.40, while ID×t (=0.50); only 60% of the cohort remains disease
free.

CI vs. ID - a real-life example
(courtesy of Savitz DA, Greenland S, Stolley PD, Kelsey JL.  Scientific standards of criticism: a
reaction to “Scientific standards in epidemiologic studies of the menace of daily life”, by A.R.
Feinstein.  Epidemiology 1990;1:78-83; it was actually Charles Poole who spotted this faux pas
[Poole C, Lanes SF, Davis F, et al. “Occurrence rates” for disease (letter). Am J Public Health 1990;
80:662]; the specific issue being discussed is the effect of alcohol on breast cancer risk)

“. . . substantially different occurrence rates of breast cancer: about 6.7 per
thousand (601/89,538) in the nurses cohort and about 18.2 per thousand
(131/7,188) in the NHANES cohort.”  (Feinstein AR.  Scientific standards in
epidemiologic studies of the menace of daily life. Science 1988;242:1259 quoted in
Savitz DA et al., p.79, emphasis added)

Implication:

(1) Different rates suggest errors in ascertainment of breast cancer

(2) With under/overascertainment, there may be biased ascertainment

(3) The bias may produce more complete or overdiagnosis among drinkers

CI for constant ID=0.01 and 0.08/year
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However:

Nurses:  601 cases/89,538 women over 4 years

CI = 6.7 per thousand (4 years)

ID = 1.68 per 1,000 women-years

NHANES:  121 cases/7,188 women over 10 years (10 cases should have been excluded by
Feinstein)

CI = 16.8 per thousand (10 years)

ID = 1.68 per 1,000 women-years

This example illustrates the importance of stating the follow-up period for a CI and the problem
that can arise in comparing CI's for different amounts of follow-up.

Two complementary measures of incidence: CI and ID

Cumulative incidence (CI)
1. increases with period of observation (i.e., it is “cumulative”)

2. has problems with:

- multiple events in one subject

- differing follow-up times for subjects

But

3. it is not necessary to know exact time of onset of the disease

4. directly estimates risk

Incidence density (ID)
1. suggests ability to extrapolate over time - “duration free”;

2. accommodates:

- multiple events in one subject

- different follow-up times for subjects

3. does not require a cohort to estimate or interpret

4. may be more appropriate for etiologic inference

Choosing between CI and ID
A. Objective

Estimate rate or risk

B. Natural history

Does the period of interest fit within the period of observation?  (restricted versus
extended risk period)?
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E.g., If one wanted to analyze the relative longevity of men and women, the lifetime risk
(CI) of death would be useless.

C. Availability of data, e.g.

Fixed cohort, dynamic cohort, dynamic population

Different follow-up times

Knowing when events occur may favor one method or the other.

Incidence and prevalence in a population

The relationship between incidence and prevalence is the population-level analog for many familiar
situations, such as the number of people on line at the grocery store check-out, the number of
patients in a waiting room or a hospital, or the number of simultaneous log-ins for an internet
service provider.

        Incidence, prevalence, and duration: patient flow in a community-based clinic

N  (size of the community)

N0
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   (patients leaving)
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If a clinic opens at 8:00am, a patient arrives every 10 minutes (6/hour), and it takes 30 minutes for a
patient to be seen and treated, then the number of patients in the clinic will rise for the first 30
minutes and then remain constant at 3 patients until the clinic closes and the last 3 patients are
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treated.  If the rate at which patients arrive were to increase to 10/hour, then in the half-hour it
takes to treat the first patient 5 more will arrive, so the number of patients in the clinic will stabilize
at 5, instead of 3.  Similarly, lengthening the treatment time from 30 to 60 minutes would cause the
number in the clinic to increase for the first hour, for a total of 6 patients in the clinic at any time
until closing.

With the original assumptions, 6 patients arrive at the clinic every hour during 8:00am-10:00am, and
6 patients leave the clinic each hour during 8:30am-10:30am.  During 8:30am-10:00am the clinic is in
equilibrium, with 3 patients there at any given time.  This equilibrium number, N1, equals the arrival
rate (6/hour) times the average time a patient remains (0.5 hours):

N1 = arrival rate × D

where D is average duration of a clinic visit.

If the clinic is the only one in a community of size N (or is the approved source of care for N
people), then we can express the arrival rate as a function of the size of the community:

Arrival rate (patients/hour) = I × N0

where I is the incidence of visiting the clinic and N0 is the number of people available to go to the
clinic (N minus the N1 people already in the clinic, which assumes that people can return to the
clinic as soon as they leave or that they immediately leave the community and are replaced by other
people eligible to go to the clinic).  We can also express the number of patients in the clinic, N1, as a
function of the size of the community, using P as the population “prevalence” of clinic attendance.

N1 = P × N

Making use of these three equations, we can write:

N1 = arrival rate × D

= (I × N0) × D

P × N = (I × N0) × D

N0
P = ―― I × D

N

Prevalence odds = incidence × average duration

If the number of visitors to the clinic is small in relation to the size of the community, then
N0/N ≈ 1, and we have the approximation prevalence = incidence × average duration.
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Otherwise the relationship can be written as prevalence odds = incidence × average duration,
since:

N0 N – N1
P = ―― I × D = ―――― I × D

N N

P
P = (1 –  P) × I × D and ——— = I × D

(1 – P)

Odds are defined as the ratio of two probabilities, most often the ratio of a probability divided by its
inverse (probability for/probability against).  The prevalence of a condition is an estimate of the
probability that a randomly selected member of the population is a case [Pr(case)].  If the prevalence
is p, then the prevalence odds are p/(1-p).  So the prevalence odds, i.e., the odds that a randomly
selected person in the population has the disease (i.e., is a prevalent case) are:

prevalence odds = prevalence / (1 – prevalence)

= (N × prevalence) / (N – N × prevalence)

= (N × prevalence) / N0   =   (N/N0) × prevalence

Incidence, prevalence, and duration in a stationary population

The following diagram displays the above process as it might appear for cases of a disease occurring
in a population followed during an interval of time, in equilibrium with respect to disease incidence,
duration, and entrances and exits from the population.  An alternate derivation of the relation
prevalence odds = incidence × duration follows.  (See Rothman and Greenland, 1998 for more on
this topic.)
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Incidence and prevalence in a population of size N observed for a time interval Δt
c

c
c

c c
c c = new case

c C

N N0 S U S C E P T I B L E S ( P A R )

c C
c

c c
c c

c C

p p p p p p p p P p
p P R E V A L E N C E P O O L p P p = prevalent case

p p p p p p p p p p p P p P

Δt

c's are incident (new) cases

p's are prevalent (existing) cases

Δt indicates the time interval

↓ indicates exits from unaffected population or from prevalence pool

Size of the population = N = disease-free persons + existing cases = N0 + prevalence pool

The assumption that incidence and prevalence are constant means that:

New cases = Terminations

 (Incidence  ×  N0)  ×  Δt = (Prevalence  ×  N  ×  Termination rate)  ×  Δt
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N Incidence
Prevalence   × —— = —————————

N0 Termination rate

Since the termination rate is the rate at which existing cases leave the prevalence pool, this rate is the
reciprocal of the average duration of a case.  To see this, consider the termination rate for a single
case:

Terminations
Termination rate = ———————————

No. of cases × Δt

For a single case,
1 1

Termination rate = ————— = ——
1  × Δt Δt

Average duration (i.e., Δt)   =   1 / Termination rate

Thus, in the above relationship between incidence and prevalence, we can substitute Duration (D)
for 1 / Termination rate:

N
Prevalence × —— = Incidence × Duration

N0

So in a population that is in a steady state with respect to a given condition, the prevalence odds of
that condition equals the incidence times the average duration (the prevalence does too, if it is
sufficiently small).  Conversely, if we observe that the prevalence odds of a condition remains
constant (and can assume a stable population with no net migration of cases), then the incidence
must balance the loss of cases due to death or cure.  Since prevalence is often easier to ascertain than
is incidence, we can make use of this relationship to draw inferences about incidence.

Estimating incidence from prevalence data

This relation has been used as the basis for estimating HIV seroincidence from seroprevalence data,
using a seroassay procedure designed to identify recently-infected persons (Janssen et al., 1998).
This technique makes use of the fact that ELISA tests for HIV antibody have become considerably
more sensitive since they were first developed.  People who test HIV-positive with a current (highly
sensitive) HIV antibody test are then re-tested with a “detuned” version of an older, less-sensitive
test.  Since it takes time for the anti-HIV antibody titer to increase to the level that it can be detected
with the less sensitive test, there is a period of time (about four months) during which the less
sensitive test will be negative.  The discordant results of the two HIV antibody tests defines a short-
lived (average duration 129 days) “condition” whose prevalence can be used to estimate occurrence
of new HIV infections.  Solving the relation Prev odds = I × D yields I = Prev odds / D ≈ P/D for
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small prevalence.  So if the seroprevalence of recent infection in a stable population is 2%, the
incidence of new HIV infections is approximately 0.02/129 days = 0.057/year. = 5.7/100py.

However, the stable population assumption is often not met in practice, and the above model is also
grossly simplified in that it treats the entire population as a homogenous entity, ignoring the
influence of age (see Rothman and Greenland, 1998).  When we examine the relationship between
incidence and prevalence within a specific age-band, we need to consider the effect of entrances and
exits due to aging into or from the age band of interest.  For example, the U.S. armed forces have
conducted serologic testing for HIV antibody of all recruits, active duty military, and reserves since
the antibody test became available.  Within each age group, the seroprevalence of HIV antibody has
been approximately constant over a period of years.  If we could ignore the effect of age, then using
the relationship prevalence odds = incidence × average duration, we could conclude that HIV
incidence should equal the (small) proportion of the population who leave the prevalence pool each
year due to discharge or death.  However, another manner of exiting from the prevalence pool of a
given age group is to age out of it into the next one.  Since HIV seroprevalence increases with age
(up to about age 35 years), it can be inferred that infections (incident cases) are occurring more
rapidly than necessary to balance deaths and discharges among cases.  The reason is that each year,
some of the persons in each age group are replaced by persons from the next younger age group, a
group with lower seroprevalence.  If infections were not occurring at a rate sufficient to balance this
outflow of prevalent cases, then the prevalence in each age group would decrease over time, as the
lower prevalence groups move up in age (see David Sokol and John Brundage, Surveillance methods
for the AIDS epidemic, NYS J Medicine May 1988).

Furthermore a meaningful incidence measure still requires identification of a cohort or source
population.  Although the detuned serologic assay for recent HIV infection has been used to
estimate HIV “incidence” among clinic patients, the interpretation of those estimates is highly
problematic (Schoenbach, Poole, and Miller, 2001).
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Appendix on weighted averages

Because epidemiology studies populations, and populations contain various subgroups, weighted
averages figure prominently in epidemiology.  Nearly any population-based measure can be regarded
as a weighted average of the value of that measure across the subgroups that comprise the
population.  Weighted averages are used to standardize or adjust crude measures to make them more
comparable across populations with different subgroup proportions.  Both the concept and the
mathematics are fundamental.

A weighted average is like an ordinary mean except that the components being averaged can have
more or less influence (weight) on the resulting average.  For example, suppose we measure systolic
blood pressure on 10 occasions and obtain the following values (mmHg):  95, 100, 100, 105, 105,
105, 110, 110, 115, 120.  If we want the mean (average) systolic blood pressure, we simply sum the
individual measurements and divide by the number of readings:  1,065/10 = 106.5 mmHg.  Since
some of the readings occur more than once, we could achieve the same result by using a weighted
average:

Number of
readings Value Weighted sum

1 95 95

2 100 200

3 105 315

2 110 220

1 115 115

1 120 120

10 1,065

Average = 1,065 / 10 = 106.5 mmHg.

A small business might use a layout like this to compute the average price paid for some commodity
over some time period.  In that situation, the first column might show the number of sacks
purchased, the second column the price per sack, and the third column the total dollar amount.

With a little generalization (to permit the “number of readings” to be a fractional number), we have
the procedure for creating a weighted average.  Familiar examples are grade-point averages (course
grades weighted by credit hours), average cost per share of a stock purchased in multiple buys, and
average price per gallon for gasoline purchased on vacation.

Mathematically, a weighted average is a linear combination where the coefficients (pi) are
proportions whose sum is 1.0.  Several equivalent formulations are:
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w1a1+ w2a2+…+ wnan w1a1+ w2a2+…+ wnan
––––––––––––––––––––––––––––––––––––––– = –––––––––––––––––––––––––––––––––––––––

w1+ w2+…+ wn W

w1a1 w2a2 wnan wiai
= –––––––– + –––––––– +…+ –––– = ––––––

W W W
Σ (

wi

)

=  p1a1 + p2a2 + . . . + pnan  = Σ(piai)

where W = w1+ w2+…+ wn   and   p1 + p2 + . . . + pn = 1

For the gasoline price example, the wi represent the amount purchased at each stop and the ai
represent the price of each purchase.
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Appendix on exponents and logarithms

(Adapted from Defares JG and Sneddon IN.  An introduction to the mathematics of medicine and biology.
The Netherlands, North-Holland, 1960)

Some simple facts:

22 = 2 × 2 = 4

23 = 2 × 2 × 2 = 8

Square root of 4 = 2

Cube root of 8 = 2

Exponents:

bx means b raised to the xth power; x is referred to as an exponent.

If x is 2, then bx = b2 = b x b.  If x is 3, then bx = b3 = b × b × b.  From this we can reason that:

1) bm × bn must be equal to b(m+n)

(The product of a number raised to the m-th power multiplied by the same number raised to the n-
th power equals that number raised to the sum of the powers.)

2) bm/bn must be equal to b(m-n)

(The quotient of a number raised to the m-th power divided by the same number raised to the n-th
power equals that number raised to the difference of the powers (numerator power minus
denominator power.)

3) (bm)n must be equal to b(m × n)

(The m-th power of a number raised to the n-th power equals that number raised to the (m × n)-th
power.)

For exponents that are not positive integers, we define bx in order to preserve the above three rules.
So b0=1 and b-x = 1 / bx.
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When the base number (b in the above examples) is e, a transcendental number that is
approximately 2.7183, then we write ex or (for typographical convenience) exp(x).  e and Naperian
logarithms have special properties that recommend them for use in mathematics and statistics.

Logarithms:

If for a number b (greater than 1.0), it is possible to find a number x such that:

y = bx

then we say that x is the logarithm of y to the base b:

x = logby

Taking the logarithm is the inverse of exponentiation, so that if y=bx:

logb(y) = logb(bx) = x         and

bx = b(log(y)) = y

To preserve consistency with the rules for exponents, above, we see that:

1) logb(xy) = logbx + logby

(the logarithm of a product is the sum of the logs)

2) logb(x/y) = logbx - logby

(the logarithm of a quotient equals the logarithm of the numerator minus the logarithm of the
denominator), and

3) logb(xn) = n logbx

Logarithms are defined so that these rules generalize to the case of fractional and negative
exponents.  The log of a negative number, however, is undefined.

The base b must be a positive number greater than 1.0, and is usually 10 (for “common logarithms”)
or e (for “natural” or Naperian logarithms).  The latter are most often seen in mathematics, statistics,
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and epidemiology.  The notation ln(x) or simply log(x) is often used when Naperian logarithms are
understood.

Note that for base e (= 2.7183), exp(x) (a) must be greater than zero, (b) will equal 1 when x=0, and
(c) will increase very rapidly for large x.  In contrast, ln(x) (a) will be negative for x<1, (b) will equal
0 when x=1, and (c) will be positive for x>1.  So if x is a positive ratio whose null value is 1.0, ln(x)
will represent a transformation of x with the null value at 0 and other values distributed
symmetrically around it.  These properties of logarithms are useful for transforming variable
distributions and for the analysis of ratios.
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Measuring disease and exposure - Assignment

1. The graph below shows the trends in incidence and prevalence for chronic disease Q over a
50-year period. Which of the following interpretations is consistent with the graph below?
Circle as many as could logically be correct.

 A. The disease may be becoming more chronic with lower case-fatality rate;

 B. The disease may be becoming more rapidly fatal (i.e., it kills patients sooner than before);
 C. The disease may be becoming shorter in duration due to better medical treatment;

 D. The disease may be becoming more rare due to better preventive public health programs.

Incidence and prevalence of disease Q

Per
100,000

180 Point prevalence
160 on July 1st
140
120
100
80 Annual incidence
60
40
20
0 1930 1940 1950 1960 1970 1980

2. Fill in the blanks in the following diagram, using the terms "incidence", "prevalence", "case
fatality", "recovery", "prevention", "inmigration", "outmigration".
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3. For the following hypothetical data on viral upper respiratory infections(URI), calculate the
epidemiologic measures listed below.  Assume that:

•  each infection lasts 10 days and confers no immunity

•  infections begin at 12:01 A.M. of the date shown

•  there are no deaths from URI or other causes and no loss to follow-up

•  "thirty days has September, April, June, and November.  All the rest have thirty-one."

•  a person is not at risk of a new URI until he/she has recovered from an existing episode

Person Dates of onset of URI episodes
A (none)
B August 24, October 5
C September 12
D (none)
E (none)
F November 26
G September 2, November 29
H (none)

First draw a time-line chart of the illness episodes for all subjects.  Then calculate:

a. Point prevalence of URI on September 1: __________________

b. Point prevalence of URI on November 30: __________________

c. Person-days at risk (total) for the period September 1 through November 30,
inclusive:
      __________________

d. Average ID of URI for the period of September 1 through November 30, inclusive.

                                   __________________

Be sure to show units where applicable.

4. Regina Elandt-Johnson gives the following definitions of epidemiologic "rates":

Ratio:  the result of dividing one quantity by another. More specifically, the
numerator and denominator are two separate and distinct quantities, and may be
measured in the same or different units.  Examples:

Sex ratio = (No. of males) / (No. of females)
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Fetal death ratio = (no. of fetal deaths) / (No. of live births)

Proportion:  a ratio in which the numerator is included in the denominator, i.e.,
[p = a/(a + b)].  Example:

Proportion of males = (# males)/[(# males) + (# females)]

Proportions must have values between 0 and 1 (inclusive) and can be used to
estimate probabilities, or risks.

Rate:  a measure of change in one quantity per unit of another quantity on which the
first depends.  Three kinds are discussed:

dy
absolute instantaneous rate of change in y per unit time  = ———

dx
dy

——— represents the derivative of y with respect to x
dx

In calculus, the derivative is shown to the slope of the function relating Δy to Δx
["Δ" means "change"].  The derivative is defined as the limit of the change in y
divided by the change in x as the change in x becomes infinitessimally small.

Calculus is not required for this course.)
Δy

Absolute average rate of change in y per unit time  = ———
Δt

Δy
Relative average rate of change in y per unit time  = ———

y(Δt)

[Regina Elandt-Johnson.  Definition of rates: some remarks on their use and misuse.
Am J Epidemiol 1975; 102(4):267-271.]

For each of the following ratios, indicate whether it is a rate (R) or a proportion (P)
or neither (N).  If a rate, indicate whether it is absolute or relative.

a. ________________ 3 cases / 25 person-years

b. ________________  3 cases / 25 persons
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c. ________________ 6 fatalities / 24 acute MI admissions

d. ________________ 200 abortions / 1000 live births

e. ________________1,000 new cases of diarrhea / day in 500,000 people

5. In 1960, investigator A took a simple random sample of 1,050 adults from an urban
community of 100,000 (i.e., each adult had an equal, 1,050/100,000 chance of being chosen
for the sample).  After examining the entire study population of 1,050, she had detected 50
cases of disease Q, a chronic disease for which there is no recovery or cure.

In 1965 (5 years later), investigator A re-examined all of the survivors  from her original
study population and determined the cause of death in those who had died since the first
examination.  Of the 50 subjects in whom disease Q was detected in 1960, 40 had died prior
to being re-examined in 1965.  Of those who did not have disease Q in 1960, 100 subjects
developed it between 1960 and 1965 including 50 subjects who died prior to reexamination
(presumably due to disease Q).  Among the subjects who did not contract disease Q, 15%
had died between the 1960 and 1965 examinations.

a. Draw a flow diagram for the study.

b. Calculate estimates of the following measures:

 i. Point prevalence of disease Q among adults in the community at the initial
examination

 ii. 5-year cumulative incidence of disease Q (make no adjustment for deaths from
causes other than disease Q).  What is the impact on this measure of the deaths
among individuals who did not develop disease Q?

 iii. Average incidence density for disease Q in the cohort followed.  (Be sure to state
the units.)

 iv. The 5-year case fatality rate for disease Q (as a proportion of those diagnosed as
having disease at the initial examination--see (i) above).

 v. The prevalence of disease Q among subjects alive at the time of the re-examination
(i.e., 1965).

c. Most of the measures computed above are proportions.  What are the theoretical lower
and upper limits of this class of measures?

d. Which of the above measures is (are) not a proportion?
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e. The case fatality rate was originally devised to assess the virulence (severity) of an
infectious disease.  If another investigator reported a value for the case fatality rate for
disease Q, what assumption about the duration of the disease among cases at the
beginning of the study is involved in comparing the two case fatality rates?

f. Which of the above measures would you use to estimate the average risk of developing
disease Q?  State that risk estimate in terms of the language of probability.

6. Give a one-sentence definition, in terms that you might employ in an article for the educated
but non-professional public, of:

a. Cumulative incidence

b. Incidence density

c. Prevalence

7. What are the three basic constituents or components of the concept of incidence?

8. The following graph shows the results of a controlled clinical trial of two treatments of a
highly fatal cancer:

Per cent
alive
100 Treatment A
90
80
70
60
50 Treatment B
40
30
20
10
0 1 2 3 4 5 6 Year

a. Assuming that the apparent differences at years 4 and 5 are statistically significant, which
treatment was superior in prolonging life?

b. Why would survivorship analysis methods be preferable to the use of 5-year survival
ratios or similar measures for the analysis and interpretation of the results of this trial?
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Measuring disease and exposure - Assignment solutions

 1. "b” & “c” are correct; shorter duration can lower prevalence despite rising incidence.  “a” is
incorrect, as the prevalence would increase, not decrease, with increasing chronicity.  “d” is
incorrect, as prevention should reduce the incidence.

 2. 

 3. 

a. 0.125 (1 case with 8 persons at risk)

Cases present in a population at a specified time
Prevalence = –––––––––––––––––––––––––––––––––––––––––

Number of persons in that population at that time

b. 0.250 (2 cases with 8 persons at risk)

c. person days at risk = 689:

Total person days = 91 days (3 mos.) x 8 persons = 728.

There are 39 days within this 3-month period when individuals are not at risk because they
are already ill (B loses 12 days within the period of observation 9/1 - 11/30 inclusive, C loses 10
days, F loses 5 days, and G loses 12 days):  728 - 39 = 689 person-days

d. Incidence density:
Number of new cases 5

Average incidence density = –––––––––––––––––––– = –––
Population time at risk 689

=  0.0073 cases per person-day

Prevention 
 

Incidence 
Inmigration 

Prevalence 

Case fatality 
Recovery 
Outmigration 
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Specification of units for incidence density is essential, since the number has no meaning in
itself (for example, the incidence density could be expressed per person-week, per person-
month, etc., with a different numerical value for the incidence density in each case).  In
contrast, proportions have no units, though a scaling factor is often used in order to write
the number in a more readable fashion, e.g., 153 per 100,000 is a more easily read number
than 0.00053, but either form is correct and complete for prevalence or incidence
proportion.

 4. 

a. Rate (relative)

b. Proportion

c. Proportion

d. Neither - this is (only) a ratio

e. Rate (relative) - change in cases / change in time relative to population
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 5. a. Flow Diagram

50 Alive (Incident
cases)100

Develop
Q

50 Died (Incident
cases)

1,000
without

Q 135 Died,
without

Q
(Censored)

Population
of size

100,000

Random
sample of
size 1,050

765 Alive,
well

(Unaffected)

10 Alive,
cases

(Prevalent
cases)

50 with
Q

40 Died,
with

disease
(Deceased

cases)

f. (i) point prevalence at the initial examination:

      50/1050 = .048, or 48 cases per thousand

(ii) 5-year cumulative incidence:

Number of new cases
Cumulative incidence = ––––––––––––––––––

Population at risk

There were 100 new cases and 1000 disease-free persons at the start of the period.
Therefore:



_____________________________________________________________________________________________
EPID 168 Measuring disease and exposure - Assignment solutions - 126
rev. 9/3/1999

100
CI = ––––– = 0.10, or 100 per 1,000

1.000

However, 135 persons died of other causes than X and therefore were not actually “at risk”
of developing disease Q, at least not throughout the 5 years.  Omitting them gives:

100
CI = ––––– = 0.116, or 116 per 1,000

865

The former CI (0.10) probably underestimates the “true” CI, since it implicitly assumes that
none of the 135 persons who died of other causes would have developed disease Q had he
lived.  The latter CI may overestimate the “true” CI since, after all, the 135 who died were
available to get disease Q and be detected during part of the follow-up period.

A compromise solution is to estimate the CI by taking into account the follow-up time on
those subjects who died of other causes (or who withdrew from the study for other reasons).
One method is:

Q 100
CI = ––––––––– = –––––––––––––– = 0.107

(N – W/2) (1,000 – 135/2)

Where:  Q = new cases of disease Q

        N = initial cohort (disease free)

        W = withdrawals

This method assumes that:

•  subjects withdrew (died) evenly throughout the period (i.e., that they withdrew, on
the average, at the midpoint).

•  subjects were in fact at risk of disease (and detection of disease) prior to withdrawal -
e.g., if they had developed disease Q, it would have been noted at the time of their
death.

If the loss to follow-up is small, the results of each method will be about the same.  An
intensive search for a random sample of those originally lost to follow-up can be invaluable
in assessing bias.

(iii)  Average incidence density
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New cases Q
ID = ––––––––––––––––––– = –––––––––––––––––––

Population time at risk ½(N1 + N0)(Δt)

Where: Q  = new cases

N1 = size of initial cohort

N0 = number alive and well at follow-up

Δt = length of follow-up

So that:

100
ID = ––––––––––––––– = 0.023/year  = 23 cases per 1,000 py

½(1,000 + 765)(5)

The same result can be obtained from:

Q 100
ID = ––––––––––––––– = –––––––––––––––––––––––––

½(N1 + N0)(Δt) (1,000 –  ½[100] – ½[135])(5)

(iv)  5 yr case fatality rate:

Deaths from Q 40
5-year CFR = ––––––––––––––––––––– = ––– = 0.80, or 80%

Cases of Q at initial exam 50

(v)  Prevalence of disease at the reexamination (1965):

60
Prevalence = ––––– = 0.073  = 73 cases per 1,000

825

a. The lower and upper limits of proportions are 0 and 1, respectively.

b. Incidence density is an average rate, not a proportion.

c. The assumption is that the distribution of duration of the disease is similar between the two
case groups.  Information on age, sex, and other potentially relevant characteristics would
also be desirable.
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d. Cumulative incidence would be used to estimate risk.  In probability terms,
Pr(D|at risk for 5 years)=0.107, or an individual in the study population had a 10.7% chance
of developing disease Q in the next 5 years if he does not first die of another cause during
that period.

 6. Definitions:

a. Cumulative Incidence - the proportion of new cases that develop in a population at risk of
getting the disease, over a stated period of time.

b. Incidence Density - the rate at which new cases develop per unit time, relative to the size of
a population at risk of getting the disease.

c. Prevalence - the number of existing cases of a disease as a proportion of a defined
population at a specified point in time (or short period of time).

 7. The three basic components of incidence are:

a. the number of new cases

b. the population at risk

c. the period of observation or follow-up.

 8. 

a. Treatment A was superior in prolonging life.  Even though the proportion of patients dying
by year 6 was the same for each treatment, patients receiving treatment A tended to survive
longer (die later during the follow-up period).

b. The value of a survival ratio would depend upon the (arbitrary) choice of time period.  For
example, in the graph shown, the 3-year survival advantage for treatment A is very small, the
5-year advantage is quite large.  Survivorship analysis considers the time-to-death for patients
in the two groups, providing a fuller basis for comparison.  After all, by the end of a long
enough follow-up period, all subjects will be dead!  The aim of medical treatment (and health
promotion) is, among other things, that we should die later.
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6. Standardization of  rates and ratios* 

Concepts and basic methods for deriving measures that are comparable across 
populations that differ in age and other demographic variables. 

Overview 

Epidemiologists are always mindful of population diversity.  Virtually every large population is 
heterogeneous in regard to sociodemographic (e.g., age, gender, education, religion), geographic, 
genetic, occupational, dietary, medical history, and innumerable other personal attributes and 
environmental factors related to health.  A population can be viewed as a composite of diverse 
subgroups (ultimately, subgroups of size one, i.e., individuals, but epidemiologic measures break 
down at that point).  Any overall measure or statistic reflects the value of that measure for each of 
the subgroups comprising the population. 

An overall measure that does not take explicit account of the composition of the population is called 
crude.  Its value will be an average of the values for the individual subgroups, weighted by their 
relative sizes.  The larger the subgroup, the more influence it will have on the crude measure (i.e.,  
"democracy").  Thus, the death rate for a population is a weighted average of the death rates for its 
component subgroups.  Suppose we consider a population of size N as consisting of five age 
groups, or strata.  Each age stratum will have a specific number of people, say ni (i=1 to 5).  
During the following year, each stratum will experience some number of deaths, say di.  The total 
population size, N, is therefore Σni, the total number of deaths, D, is Σdi, and the crude mortality 
rate is D/N, which can also be written as a weighted average of the stratum-specific mortality 
rates, di/ni, as follows: 

 
D  Σdi  Σ ni (di/ni)   

––– = –––– = –––––––––– = Σ(ni/N)(di/ni) = Σwi(di/ni) 
N  N  N   

where wi are the weights (note that Σwi = Σ(ni/N) = (Σni)/N =Σni/Σni = 1). 

The crude rate is the simplest and most straightforward summary of the population experience.  But 
mortality is strongly related to age, so the stratum-specific mortality rates will differ greatly from one 
another.  The summary provided by the crude rate glosses over this heterogeneity of stratum-
specific mortality rates.   

 
______________________ 
 
* (An earlier version of the chapter was prepared by Timothy Wilcosky, Ph.D.) 
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This issue is particularly relevant when we compare rates across populations or time periods, 
because if the populations differ in composition, then at least some of what we observe may be 
attributable to these differences.  For example, suppose you and a friend each agree to bring 10 
pieces of fruit to a picnic.  You stop at a fruit stand and buy 8 mangoes ($1.00 apiece) and 2 apples 
($0.50 apiece).  Meanwhile your friend goes to the supermarket and buys 2 mangoes ($1.75 apiece) 
and 8 apples ($0.45 apiece).  Which is the more expensive purchase?  From one perspective, the first 
purchase is the more expensive, since $9.00 is certainly greater than $7.10.  But from another 
perspective, the second purchase is more expensive, since the supermarket charged a much higher 
price for the mangoes and only slightly less for the apples. 

Which of these perspectives you choose depends on the purpose of your question.  More often than 
not, the epidemiologist (and the serious shopper) would ask whether the prices were higher in the 
fruit stand or the store and by how much.  We can answer that question by simply comparing the 
price lists.  But what if you also bought oranges, melons, grapes, and bananas?  What if you bought 
two dozen varieties of fruit?  It would certainly be more convenient to have a summary measure that 
permitted an overall comparison.  The trouble with total cost ($9.00 versus $7.10) or average price 
($0.90/piece of fruit versus $0.71 per piece) is that the fruit stand average price gives more weight to 
the price of mangoes, because you bought more mangoes, whereas the supermarket average price 
gives more weight to the price of apples because your friend bought more apples.  We’re comparing 
apples to mangoes, instead of fruit stand to supermarket.  

Clearly what we need is a procedure that averages the prices in the same way for each vendor, so 
that both averages give the same proportionate weighting to mangoes.  The average prices will 
depend upon the weighting we use, but at least we will be comparing (proportionally speaking) 
apples with apples and mangoes with mangoes.  However, it’s also clear that at least in this example, 
the weights will determine which seller is favored by the comparison.  The fruit stand owner will 
prefer a higher weight for the price of mangoes, so that her prices will seem the better bargain.  But 
the supermarket owner will prefer a very low weight on the mangoes.  He might argue, in fact, that 
mangoes are a specialty item and not really worth considering in the comparison.  He might argue 
for assigning zero weight to the mangoes, so that his average price will be 0.45/piece (the summary 
is simply the price of the apples), which is less than the fruit stand charges for apples. 

Which set of weights is the right one to use?  People who don’t like mangoes might agree with the 
supermarket owner.  People who like mangoes – or fruit stands – would not.  For the most part, the 
choice of weights (a.k.a. the standard population) is based on convention, the intended and 
potential comparisons, and various other considerations.  There is often no absolute correct choice, 
and there can easily be different opinions about the best one.  But it helps to have a rationale for the 
choice other than that it happens to give you a result you like.  Finally, nothing you do about weights 
is going to change the fact that your purchase did cost more than your friend’s, so the crude 
summaries are not irrelevant. 

Adjustment and standardization 

The terms "adjustment" and "standardization" both refer to procedures for facilitating the 
comparison of summary measures across groups.  Such comparisons are often complicated by 
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differences between the groups in factors that influence the measures of interest but which are not 
the focus of attention.  Adjustment attempts to remove the effects of such "extraneous" factors that 
might prevent a "fair" comparison.  

"Adjustment", the more general term, encompasses both standardization and other procedures for 
removing the effects of factors that distort or confound a comparison.  Standardization refers to 
methods of adjustment based on weighted averages in which the weights are chosen to provide an 
"appropriate" basis for the comparison (i.e., a "standard"), generally the number of persons in 
various strata of one of the populations in the comparison, an aggregate of these populations, or 
some external relevant population.  Other kinds of adjustment, some of which also employ weighted 
averages, will be discussed in the chapter on Confounding.  

Most textbooks of epidemiology present the topic of rate standardization in relation to adjusting for 
age.  This tendency is not coincidental, since virtually all mortal or morbid events occur with 
different frequencies among groups of different ages.  But the same principles and procedures apply 
to subgroups defined by other variables.  The following example illustrates how these varying 
frequencies can affect a summary measure.  Table 1 indicates that in 1970, 5,022 out of the 562,887 
white women in Miami died, and that 285 of the 106,917 white Alaskan women died.  The 
respective overall (crude) death rates are 8.92 per 1,000 and 2.67 per 1,000.  Is life in Alaska more 
conducive to longevity than life in Florida?  

Although the crude rates suggest that the force of mortality is stronger in Miami than in Alaska, 
Table 1 reveals that for any given age the two populations have very similar mortality rates.  What 
then accounts for the difference in the crude death rates?  A look at the age distributions in Miami 
and Alaska provides the answer.  Compared to Alaska, Miami has a much greater proportion of 
women in older age groups, where mortality is high.  Since the data from larger strata dominate the 
crude death rate, the Miami death rate is heavily influenced by the high mortality in older ages.  In 
contrast, in Alaska the crude death rate reflects the low mortality rates among young women, who 
account for a much larger proportion of the Alaska population than they do of the Florida 
population.  

Two populations may have the same overall size and identical age-specific death rates, but different 
total numbers of deaths and different overall death rates, due to differences in their age 
distributions.  Standardization (and other adjustment procedures) seeks to provide numbers and 
comparisons that minimize the influence of age and/or other extraneous factors. 
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Table 1 
Population and Deaths by Age in 1970 for White Females in 

Miami, Alaska, and the U.S. 

  Miami   Alaska   U.S.  

Age Pop. Deaths Rate* Pop. Deaths Rate* Pop.+ Deaths+ Rate* 

——— ——— ——— ——— ——— ——— ——— ——— ——— ——
— 

< 15 114,350 136 1.19 37,164 59 1.59 23,961 32 1.34 

15-24 80,259 57 0.71 20,036 18 0.90 15,420 9 0.58 

25-44 133,440 208 1.56 32,693 37 1.13 21,353 30 1.40 

45-64 142,670 1,016 7.12 14,947 90 6.02 19,609 140 7.14 

65+ 92,168 3,605 39.11 2,077 81 39.00 10,685 529 49.51 

 ——— ———  ——— ———  ——— ———  

 562,887 5,022  106,917 285  91,028 740  

Crude 
death 
rate* 

  8.92   2.67   8.13 

 * Deaths per 1,000 population          + in thousands 

 

Standardization of rates by the direct method 

In the above example, the difference in crude death rates between Alaska and Miami results from 
differences in their respective age distributions rather than differential age-specific death rates.  It 
follows intuitively that if Miami had the same age distribution as Alaska, or vice-versa, their crude 
death rates would be similar to each other.  As a matter of fact, if Miami and Alaska had the same 
age distribution, regardless of what that distribution might be, their crude death rates would be 
similar, since their age-specific rates are similar. 

In direct standardization the stratum-specific rates of study populations are applied to the age 
distribution of a standard population.  (In the above example, each age group is a stratum.)  
Consequently, if Alaska happened to have the same age distribution of white females as the 1970 
U.S. white female population, and Miami also had this same age distribution, then the crude death 
rates for Alaska and Miami would be similar.  In other words, direct standardization applies the same 
set of weights to the age-specific rates of Alaska and Miami, and the summary (age-adjusted) death 
rate is therefore independent of differences in the age distribution of the two populations.  The 
directly age-standardized death rates are equivalent to the crude death rates which Miami and Alaska 
"would have experienced" if they had had the same age distribution as the 1970 U.S. white female 
population. 
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Computationally, direct standardization of rates is straightforward: 

   
∑ (stratum-specific rates  × standard weights) 

Directly standardized rate = —————————————————— 
  ∑ (standard weights) 

 

 
   (r1 N1  + r2 N2 + r3 N3 + … + rn Nn )  

Directly standardized rate = ———————————————  
   (N1 + N2 + N3 + … + Nn)  

 

 
  ∑(rk  × Nk)     Nk   Nk 

Rs = ————— =  ∑ (rk   × ——— ) =  ∑ (rk    × —— ) 
  Σ(Nk)   Σ(Nk)    N 
       
       

Rs = ∑ (rkWk)       

 where: 

rk = rate in k-th stratum of the study population 

Nk = number of persons in k-th stratum of the standard population 

N = total number of persons in the standard population (ΣNk) 

Wk = weight for each stratum (equal to Nk/N) 

∑ means summation over the k strata. 

This formula shows that, when the same standard is used, if two study populations have the same 
age-specific rates (i.e., for each k their Rk's are equal) then their directly standardized rates will be 
identical, independent of the age distributions in the study populations.  The standardized death rate 
for white Miami women using the 1970 U.S. population of white women as the standard is: 

 

  (1.19 x 23,961) + (0.71 x 15,420) + ... + (39.11 x 10,685) 
Directly standardized rate = ——————————————————————

  91,208 
   
 = 6.92 deaths/thousand 

The corresponding standardized rate for Alaska is: 
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(1.59 x 23,961) + (0.90 x 15,420) + ... + (39.00 x 10,685) 

Directly standardized rate = —————————————————————— 
  91,208 
   
 = 6.71 deaths/thousand 

(Results can be expressed as decimal fractions or scaled to aid in their intuitive meaningfulness, e.g., 
0.00134 = 1.34 per thousand = 134 per hundred thousand.) 

After adjusting for age, the difference in death rates between Alaska and Miami is nearly eliminated. 

Some points to consider 

There are several things to consider about the above formula and computation.  First, the directly 
standardized rate is a weighted average.  Since each Wk is the proportion that the k-th stratum is of 
the total standard population, the weights are simply the proportional age distribution in the 
standard population.  The crude death rate in a population, which represents the total number of 
deaths divided by the total number of persons, can be regarded as an average of the population's 
stratum-specific death rates (Rk) weighted by its own age distribution.   

Similarly, a directly standardized rate corresponds to the crude rate that would be observed in the 
standard population if the standard population had the same stratum-specific rates as does the study 
population.  (To put the foregoing in terms of the above data for Alaska, Miami, and the U.S. 
population, the crude death rate for Miami (8.92/1,000) can be expressed as a weighted average of 
the age-specific death rates (1.19, 0.71, etc. per 1,000) for Miami, where the weights are the 
population proportion in each age stratum (114,350/562,887, 80,259/562,887, etc.).  Similarly, the 
crude U.S. death rate (8.13/1,000) can be expressed as a weighted average of the U.S. age-specific 
death rates (1.34, 0.58, etc. per 1,000) with weights consisting of the age distribution in the U.S. 
population (23,961/91,028, 15,420/91,028, etc.).  Therefore, if the U.S. as a whole had experienced 
the death rates shown above for Alaska, then the crude 1970 U.S. death rate would be 6.71 
deaths/thousand, i.e., the directly standardized death rate for Alaska. 

[Aside:  A technical issue that Rothman and Greenland point out but which we will not worry about 
is that when the above rates are computed using person-years, rather than people, changes in the 
death rates can lead to changes in person-years.  Unless the death rates are the same across all age 
strata or the changes in person-years do not change the proportional age distribution, then 
hypothetical statements such as "if the U.S. as a whole had experienced the death rates shown above 
for Alaska" require the assumption that replacing the death rates would not alter the proportional 
age distribution.] 

Reasons for standardizing rates 

Two main motivations encourage the use of standardized rates.  First, summary indices from two or 
more populations are more easily compared than multiple strata of specific rates.  This becomes 
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especially important when comparing rates from several populations or when each population has a 
large number of strata.  Second, small numbers in some strata may lead to unstable specific rates.  
When sample populations are so small that their strata contain mostly unstable rates and zeroes, the 
direct standardization procedure may not be appropriate and an alternate procedure (see below) 
becomes desirable. 

Although standardized rates can summarize trends across strata, a considerable amount of 
information is lost.  For example, mortality differences between two populations may be much 
greater in older ages, or rates for one population compared to another may be lower in young ages 
and higher in older ages.  In the latter case, a single summary measure obscures valuable information 
and is probably unwise.  Furthermore, different standards could reverse the relative magnitude of 
the standardized rates depending on which age groups were weighted most heavily.  The trade-off 
between detailed information and useful summarization runs through epidemiologic data analysis 
methods. 

Simultaneous adjustment 

Rates can be standardized for two or more variables simultaneously.  Table 2 compares age and 
baseline diastolic blood pressure (DBP)-specific incidences of elevated blood pressure (DBP > 90 
mm Hg) in light and heavy subjects (relative weight greater and less than 1.25, respectively) among 
individuals with DBP previously below 90 mm Hg.  The combined population is used as the 
standard to adjust for age and baseline blood pressure differences in the two weight categories.  
Computations for simultaneous adjustments are essentially identical to those for the single case: 

 Standardized rate for low weight subjects 

=  [(0.14 x 80)+(0.31 x 59)+...+(0.11 x 36)] / 349  =  0.14 

 Standardized rate for heavier subjects 

=  [(0.30 x 80)+(0.30 x 59)+...+(0.59x 36)] / 349  =  0.36 

In this example, the directly standardized rates differ little from the crude rates. 
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Table 2 
Incidence of High Blood Pressure by Baseline Relative 

Weight, Blood Pressure, and Age in Evans Co., Ga. 

  Relative weight 
 Baseline ———————————————————————————————
 Diastolic Light Heavy Total 
 Blood ————————— ————————— ————————— 

Age Pressure No. Cases Rate No. Cases Rate No. Cases Rate 
——— ——— —— —— —— —— —— —— —— —— —— 

 Low 70 10 0.14 10 3 0.30 80 13 0.16 
25-34 Normal 49 15 0.31 10 3 0.30 59 18 0.31 

 Moderate 13 5 0.38 5 4 0.80 18 9 0.50 
           
 Low 67 3 0.04 5 2 0.40 72 5 0.07 

35-44 Normal 66 4 0.06 18 4 0.22 84 8 0.10 
 Moderate 19 2 0.11 17 10 0.59 36 12 0.33 
  —— —— —— —— —— —— —— —— —— 

Total  284 39 0.14 65 26 0.40 349 65 0.19 

Spreadsheets 

Those of you who are familiar with spreadsheet program (e.g., Lotus 123®, Quattro Pro®, 
Microsoft Excel®) will readily see the resemblance of the above layout to a spreadsheet.  Indeed, 
spreadsheets are a very convenient method for carrying out a modest number of standardizations. 
Spreadsheet neophytes will certainly want to learn this method, and even experienced spreadsheet 
users (who will no doubt want to try this on their own before reading further) may find that creating 
an age standardization worksheet helps them to learn and understand standardization methods 
better. 

To create the above table in a spreadsheet program, copy the layout, the columns and rows that 
contain the labels ("35-44", "Moderate", "Light", etc.) and fill in the cells in the first two columns 
labeled "No." and the two columns labeled "Cases" — but for simplicity of exposition below, do 
not set aside rows for blank space or horizontal rules or blank columns as separators.  If the age 
categories are placed in column A and the DBP categories in column B, then columns C, D, F, and 
G (leaving E for the first "Rate" column and "H" for the second) will contain the data for number 
of participants and number of cases.  I will assume that the first row of data (for ages 25-34 years, 
low diastolic blood pressure) is row 14 (allowing some blank rows for labels and documentation). 

To compute the total columns, insert the formula "=C14+F14" into cell I14 (this corresponds to the 
number 80 in the table).  Upon completing this operation you should see that number appear.  Then 
copy this formula to the rest of the cells in this column (I15-I19) and in the next one (J14-J19).  
Now, have the spreadsheet compute the row containing the totals for these columns, by using your 
spreadsheet's summation function to sum the cells in each column.  If no rows have been skipped, 
the summation function will go into cell C20 and will look something like "@SUM(C14..C19)" 
[Lotus 123®] or "=SUM(C14:C19)" [Excel®].  Once again you should see the correct total.  Then 
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copy this cell to the other columns to be totaled (D20, F20, G20, I20, J20).  (Note to spreadsheet 
neophytes: spreadsheet programs generally use "relative addressing" by default, so when you copy 
the formula the program generally adjusts the row and/or column numbers accordingly.  Sometimes 
that's not what you want to happen, but in this case it is.) 

Then fill in the columns labeled "Rate" by inserting a formula for the ratio of the appropriate 
"Cases" cell and "No." cell.  A simple method for doing this, though not the most elegant, is the 
following.  If the top row of data (25-34 years old, low) is row 14, the first "No." column is C, and 
the first "Cases" column is D, then insert the formula "=D14/C14" into cell E14 (no rocket science 
that!).  Copy this formula to the remaining cells in the column (E15-E19), and then copy this 
column to the other two columns labeled "Rate".  Your worksheet should now look the same as the 
table, and you are ready to compute the directly standardized rates. 

There are several equivalent ways to proceed.  Try this one and then see if you can figure out some 
others.  In the first "Rate" column (i.e., E), a few lines below the "Total" row (e.g., row 26), type in 
the formula "=E14*I14" (this goes in cell E26).  This formula multiples the rate for participants 
who are younger, have low DBP, and are in the lighter relative weight category (E14) by the total 
number of participants who are age25-34 years and have low DBP (I14).  Then copy E26 to cells 
E27-E31 and H16-H31. 

Each of the latter cells now shows what we might term the "expected number of cases that would 
occur in each age-DBP stratum of the total participant group if the total group experienced the 
incidence rates for the lighter-weight participants [for the values in column E] or for the heavier-
weight participants [for the values in column H]".  Thus, we have only to sum these expected 
numbers and divide by the total population size.  Copy one of the cells that contains a summation 
function (e.g., C20) to the cell (E32) just under the first new column and then copy it (from either 
C20 or E32) to H32.  If the relative addressing works properly, the summation functions should 
become "=SUM(E26:E31)" and "=SUM(H26:H31)" (or their equivalent in your spreadsheet 
program).  Finally, perhaps on the following row, insert the formulas "=E32/I19" in column E (i.e., 
in cell E33)and "=H32/I19" in column H.  You should see the directly standardized rates 0.14 and 
0.36, respectively. 

If you have faithfully followed the above instructions, you will probably think this is a lot of work to 
go through for a several-minute task with paper, pencil, and a calculator — even if you have not 
encountered any difficulties (of your own making or mine).  However, this spreadsheet can easily be 
modified to compute standardized rates for other data, so if you can find it when the need arises it 
may come in very handy.  For now, though, it's probably worthwhile using both calculator and 
spreadsheet in order to master the computations and concepts. 

Standardized ratios and differences 

Rates that have been standardized by the direct method, using the same standard population, may be 
compared in relative or absolute terms (i.e., as a ratio or as a difference).  For example, we can 
obtain a "Standardized Rate Ratio" ("SRR") by dividing the (directly) standardized rate for Miami by 
that of Alaska.  Using the values computed above: 
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  directly standardized rate for Miami  6.92   
SRR = ——————————————— = ——— = 1.03 

  directly standardized rate for Alaska  6.71   

Similarly, the difference of the two rates would be a "standardized rate difference" (SRD = 6.92–
6.71=0.21 [per 1,000 – the ratio has no need for the scaling factor, but the difference does).  Since 
the rates are virtually identical, the SRR is close to 1.0, and the SRD is close to zero, all give the same 
message:  the mortality experience in Alaska, Miami, and the total U.S. are all about the same when 
the differences due to age structure are eliminated. 

In addition, a directly standardized rate can be compared to the crude rate in the population from 
which the weights were taken (the "standard population").  The reason that this works is that, as 
noted above, the crude rate for a population can be expressed as a weighted average of the 
population's stratum-specific death rates (Rk) weighted by its own age distribution.  Therefore the 
crude rate and the directly standardized rates are all weighted averages based on the same set of 
weights (the proportional age distribution in the standard population).  So the following SRR is 
legitimate: 

  directly standardized rate for Alaska  6.92   
SRR = ——————————————— = ——— = 0.852 

  directly standardized rate for total U.S.  8.13   

 

Standardized ratios and differences are also weighted averages [optional] 
It may or may not be of interest to know that the standardized ratios and differences obtained by 
taking the ratios and differences of directly-standardized rates are also weighted averages.  For 
example, the SRR can be written as: 

 
  ∑ (rkWk)  ∑ (rk/r'k)( r'k Wk)  ∑[(RRk)( r'k Wk)] 

SRR = ———— = —————— = ——————— 
  ∑ (r'jWj)  ∑ (r'jWj)  ∑ (r'jWj) 
       j          j             j 

 
     ( r'k Wk)   
  =  ∑ (RRk) ——— = ∑ (RRkW'k) 
    k  ∑ (r'jWj)

]
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where the RRk are the stratum-specific rate ratios and the expression in parenthesis is the stratum-
specific weight, W'k for the SRR. 

Nonuniformity of stratum-specific rates 

Before computing and reporting standardized measures, we should ask the question that applies to 
any summary measure:  does the summary conceal important heterogeneity.  If one population has 
higher rates in some strata but lower rates in others, and stratum sizes are large enough for these 
differences to be worth paying attention to, then a comparison of standardized rates for the two 
populations could conceal an important feature of the data.  In such a situation, it is important to 
report the nonuniformity of the stratum-specific rate comparisons and to consider whether 
computing standardized rates and ratios serves any purpose. 

Sparse data 

Even though standardized rates can be computed, they are not always meaningful.  Use of the same 
set of weights to average the stratum-specific rates guarantees comparability, but for the 
comparisons to be meaningful there must also be large enough numbers in all important strata 
("important" means those constituting substantial weight in the standardization procedure).  
Otherwise the stratum-specific rate estimates will be too unstable (i.e., imprecise), and weighting 
them may only amplify that instability.  For example, a rate of 0.10 based on two cases becomes only 
half as large, 0.05, if two more cases are found.  Although the difference between these two rates is 
small, if they happened to fall in a stratum for which the standard population had a particularly large 
proportion, then this small difference would be magnified (relative to the other rates) in the 
standardized rate.  There are various rules of thumb for what constitutes "large enough", such as at 
least 10 or 20 events (e.g., deaths, cases) and a denominator of at least 100, though a specific 
situation might call for substantially larger numbers. 

Indirect standardization 

When stratum-specific numbers are small, as is often the case in such populations as a single 
industrial plant or a small city, stratum-specific rate estimates are too susceptible to being heavily 
influenced by random variability for the direct standardization method to be satisfactory.  Instead, 
an "indirect" standardization procedure is often used and a "standardized mortality ratio" ("SMR") 
computed.  (The standard mortality difference, computed as the indirectly standardized rate minus 
the crude rate from the standard population, is also theoretically of interest).  

Indirect standardization avoids the problem of imprecise estimates of stratum-specific rates in a 
study population by taking stratum-specific rates from a standard population of sufficient size and 
relevance.  These rates are then averaged using as weights the stratum sizes of the study population.  
Thus, the procedure is the mirror-image of direct standardization.  In direct standardization, the study 
population provides the rates and the standard population provides the weights.  In indirect 
standardization, the standard population provides the rates and the study population provides the 
weights.  (For this reason Ollie Miettinen employs the terms "externally standardized" and 
"internally standardized", respectively, for what we are calling direct standardization and indirect 
standardization.) 
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  Study population Standard population 
  ———————— ———————— 
 Directly-standardized rate Rates Weights 
 Indirectly-standardized rate Weights Rates 

We have seen that directly-standardized rates (computed using the same standard population) can be 
readily compared to each other and to the standard population, because all are based on the set of 
same weights (those from the standard population).  However, comparison of indirectly-standardized 
rates can be problematic, because each study population's standardized rate is based on its own set 
of weights.  In fact, the only comparison that is always permissible is the comparison between the 
study population and the standard population, since these indirect rates are both based on weights 
from the study population. 

Directly-standardized rates are based on one set of weights; 
indirectly-standardized rates are based on multiple sets of weights 

  
Study pop. A Study pop. B 

Standard 
population 

  —————— —————— —————— 
 Directly-standardized rate Rates-A Rates-B Weights 
 Indirectly-standardized rate Weights-A Weights-B Rates 

As the above table illustrates, the directly-standardized rates for the three populations are based on 
the same set of weights (the age distribution of the standard population), but the indirectly-
standardized rate for each study population is based on its own age distribution.  The resulting lack 
of comparability of indirectly standardized rates (and of SMR's) is often overlooked or ignored, and 
as long as the study populations have similar age distributions then there is not necessarily a practical 
problem.  However, if the age distributions differ importantly across the study populations, then 
comparison of the indirectly-standardized rates could be no better than comparison of the crude 
rates themselves.  Of course, all of these points hold for standardization by other variables; age is 
used here simply as an example. 

Carrying out indirect standardization 

Indirect standardization can be thought of as taking the observed number of deaths or events in the 
study population and comparing that number to an "expected" number of deaths, i.e., the number 
of deaths that would be expected in the study population if its mortality experience (its stratum-
specific rates) were the same as for the standard population.  The ratio of observed to expected 
deaths is termed the Standardized Mortality Ratio (or Standardized Morbidity Ratio if disease, rather 
than death, is the outcome), abbreviated SMR, and it, rather than standardized rates, is the usual 
product of the indirect standardization procedure. 

The expected number of deaths is obtained as follows: 
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 Expected 
number    
of deaths 

 
=   ∑ ( 

 
[Stratum-specific rates from 

 the standard population] 

 

×
 

[stratum sizes from 
the study population] )

     
  =   ∑ (Rknk)    

 
and the observed number of deaths is ∑dk 

    

      Observed deaths ∑dk 
so that SMR =   ———————— =   —————— 

      Expected deaths ∑ (Rknk) 

where  dk = number of deaths in the k-th stratum of the study population ("observed deaths") 

 nk = size of the k-th stratum of the study population 

 Rk = death rate in the k-th stratum of the standard population 

The number of observed deaths can also be expressed as the sum of stratum-specific death rates 
multiplied by stratum sizes: 

 Observed 
number    
of deaths 

 
=   ∑ ( 

 
[Stratum-specific rates from 

 the study population] 

 

×
 

[stratum sizes from 
the study population] )

        

  =   ∑ (rknk)     

where: rk = death rate in the k-th stratum,  

Thus, the SMR can be readily expressed as a ratio of two weighted averages of stratum-specific 
death rates, where the weights are the proportionate stratum sizes of the study population: 

      Observed deaths ∑ (rknk) ∑ (rkwk)
 SMR =   ———————— =   ———— =   ———— 
      Expected deaths ∑ (Rknk) ∑ (Rkwk) 

where nt is the total size of the study population and wk gives the proportionate stratum sizes, 
computed as nk/n. 

The SMR indicates the relative excess or decrement in the actual mortality experience in the study 
population with respect to what might have been expect had it experienced the force of mortality in 
the standard (or reference) population.  [The denominator of the SMR is not precisely the "expected 
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mortality" when the stratum sizes are in person-years (see Rothman and Greenland, 1998:234, but 
for our purposes it is close enough.] 

Comparison of SMR's 

As noted above, the comparison of SMR's (or, equivalently, indirectly-standardized rates) from 
different study populations is complicated by the fact that the weights used in obtaining the 
indirectly standardized rates are the stratum sizes of the individual study populations rather than of a 
(common) standard population.  Technically, therefore, one cannot compare SMR's unless the 
distribution of the standardization variable (e.g., age) is identical across the study populations, in 
which case standardization is unnecessary since the crude death rates could have been compared 
directly.  Even if two populations have identical stratum-specific rates and therefore their directly 
standardized rates are identical, their indirectly standardized rates can be quite different (see example 
below).  Remember, however, that the usual reason for using indirect standardization is that the 
stratum-specific rate estimates are very imprecise, making directly standardized rates problematic. 

Strictly speaking, SMR's can be validly compared across populations with different age distributions 
in only one special case—the situation where the stratum-specific rates in each population are uniform, 
i.e., they do not vary by age.  In this case the weights or age distribution is irrelevant: the average of a 
set of identical rates will always be the same regardless of the set of weights that are used.  If the 
stratum-specific rates or ratios are reasonably uniform—and if they are widely disparate the 
usefulness of a single average is somewhat questionable—then a comparison of indirectly 
standardized rates may be reasonable though admittedly technically improper.  If the rates are 
uniform, however, then the weighting will make little difference so there may be no need to 
standardize at all. 

The following example provides a numerical illustration of the problem of comparing SMR's: 

Table 3 
Death rates by age in two occupations and a standard population 

 Occupation A Occupation B Standard population 
Age Persons Deaths Rate Persons Deaths Rate Persons Deaths Rate 

40-49 1,000   2 0.002 5,000 10 0.002 30,000   30 0.001 
50-59 5,000 20 0.004 1,000   4 0.004 40,000 120 0.003 
Total 6,000 22  6,000 14  70,000 150  
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 22 14 
SMR ―――――――――――――――― ―――――――――――――――― 

 (0.001)(1,000)+((0.003)(5,000) (0.001)(5,000)+(0.003)(1,000) 
   
 1.38 1.75 

Though both occupations have exactly the same stratum-specific rates, their SMR's differ, due to the 
substantially different age distributions for the two occupations.  However, the directly standardized 
rates for both occupations are, reassuringly, the same: 

 Directly standardized rate for A  =  (0.002 x 30,000 + 0.004 x 40,000) / 70,000  =  0.0031 

 Directly standardized rate for B  =  (0.002 x 30,000 + 0.004 x 40,000) / 70,000  =  0.0031 

Similarly, the SRR for each occupation relative to the standard population is 0.0031/0.0021 = 1.48, 
indicating a 48% higher age-standardized rate of death in each occupational population compared to 
the standard population.  However, the apparent equivalence of the directly standardized rates is 
misleading.  With so few deaths in the younger age stratum in Occupation A and in the older age 
stratum in Occupation B, the rate estimates are very unstable.  In other words, we cannot really 
estimate some of the rates, so direct standardization is a dubious procedure.  Given the substantial 
uncertainty about what the stratum-specific rates really are, the only conclusion we can be confident 
of is that both occupations have elevated mortality rates compared to the standard, or reference 
population.  Without assumptions or additional information, we have no evidence from 
standardization to conclude that one of the occupations is more hazardous (or is not more 
hazardous) than the other. 

Indirectly Standardized Rates (optional topic) 

Though not commonly seen, an indirectly standardized rate can be obtained from an SMR as 
follows: 

   
 Indirectly-standardized rate =  SMR   × 
   ( 

Crude death rate in 
the standard 
Population ) 

The logic for this relationship is that the SMR gives a standardized comparison of the mortality 
experience in a study population compared to that in the standard population.  So, for example, if 
the study population has twice the mortality rate of the standard population, the standardized rate 
for the study population should be twice the observed (crude) death rate in the standard population. 

An alternate (and algebraically equivalent) strategy is to multiply the crude death rate from the study 
population by a "standardizing factor" consisting of the ratio of the crude rate in the standard 
population to an "index death rate".  This "index death rate" is the death rate that would be expected 
in the study (index) population, due to its age distribution, if in each stratum the corresponding 
death rate from the standard population applied, i.e., the expected number of deaths divided by the 
study population size. 
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  Crude death rate   
Indirectly-standardized rate =   in the study × Standardizing factor 

  Population   

 

  Crude death rate  Crude death rate in the standard population 
 =   in the study × ——————————————————
  population  Index death rate 

where the index death rate is: 

    
Stratum sizes from study population 

 =   ∑ × ——————————————————
  

( 

 
Stratum-specific  

rates in the  
standard population  Total size of study population 

) 

Algebraically, this may be written: 

    R Crude death rate in the standard population
Indirectly-standardized rate =   r × ————— —————————————————

    ∑ (Rknk)/n 
[ Index death rate ]

and may be reformulated: 

  d   
Indirectly-standardized rate =  —————— × R 

  ∑ (Rknk)   

 

     
Indirectly-standardized rate =  SMR × R

     

where: 

R = crude death rate in the standard population 

Rki = death rate in the k-th stratum of the standard population 

 r = crude death rate in study population 

 nk = size of the k-th stratum of the study population 

 n = size of the study population 

 d = total deaths in the study population 

Example: 
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If we use the U.S. rates (from table 1) as a standard, the indirectly standardized death rate for Miami 
is: 

  5,022  
Indirectly standardized = ———————————————————————— ×  8.13 

rate  (1.34* × 114,350) + (0.58* × 80,259) + … + (49.51* × 92,168)  
    
 = 6.84 deaths/thousand  

 *(Per 1,000 population) 

For Alaska, the indirect standardized rate is: 

  285  
Indirectly standardized = ———————————————————————— ×  8.13 

rate  (1.34* × 37,164) + (0.58* × 20,036) +…+ (49.51* × 2,077)  
    
 = 7.32 deaths/thousand  

 *(Per 1,000 population) 

The indirectly standardized rate can be viewed as the study population's crude death rate 
standardized for the relative "a priori mortality proneness" of the study population versus the 
standard population. 

(Returning to basics here) 

Table 4 
Crude and Age-Standardized* 1970 Death Rates Per 1000 for White Females 

in Alaska, Miami, and the U.S. 

 Alaska Miami U.S. 
    

Crude 2.67 8.92 8.13 
Direct 6.71 6.92 - 

Indirect 7.23 6.84 - 

   *Standard population is 1970 U.S. white females 

Table 4 summarizes the results and indicates that the type of standardization makes a modest 
difference in this example; the directly standardized rates for Miami and Alaska are closer than their 
indirect counterparts.   

Notice that the age-specific rates from Alaska and Miami do not enter the indirect standardization 
computations at all.  The information which they contain enters indirectly (hence the procedure 
name), since the observed number of deaths is partly determined by the age-specific rates. But the 
observed number of deaths is also determined by the stratum sizes.  
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Choice of Standard Population 

Standardized measures describe a hypothetical state of affairs, which is a function of the standard 
population chosen.  For direct age-standardization, the total U.S. population from the previous 
census is especially common.  Since rates standardized to the same external standard are comparable, 
the selection of a commonly used standard has advantages when comparing rates across different 
studies.  Sometimes investigators compute directly standardized rates based upon one of their own 
study populations as the standard or by combining two or more study populations to create a 
standard.  But rates standardized to a specific study population are not as readily compared to rates 
from other studies. 

When a study involves a comparison with a "control" population, the choice of a standard should 
reflect the study goals.  For example, an examination of county mortality variation within a state 
might compare county mortality to the state as a whole.  A clean industry may be a good standard 
for an industrial population exposed to suspected occupational health hazards.  Since indirectly 
standardized measures require knowledge of stratum-specific rates in the standard, data availability 
constrains the choice. 

The choice of a standard population is not always obvious, and there may not be a "best" choice.  
For example, in comparing syphilis rates across counties in North Carolina, Thomas et al. (1995) 
decided to standardize the rates by age and sex to reduce the influence of different age-sex 
distributions in different counties.  One obvious choice for a set of weights was the age-sex 
distribution of North Carolina as a whole.  However, another possible choice was to use the age-sex 
distribution for the U.S. as a whole, so that other investigators could more readily compare syphilis 
rates in their states to the rates presented in the article.  Was there a "right" answer?  In this case the 
choice between the two standards could be regarded as a choice between greater "relevance" and 
broader comparability.  The net result makes little difference, however, since the age-sex distribution 
of North Carolina and the entire U.S. are very similar.  In other situations, however, the choice of 
standards can indeed change the message conveyed by the results.   

Just as the growth of knowledge leads to revisions to disease classification systems, thereby 
complicating comparisons across revisions, changes in the age distribution over decades creates the 
dilemma of switch to a new standard population to reflect the present reality versus retaining the 
existing standard to preserve comparability across time.  For this reason mortality rates in the United 
States have been standardized to the 1940 population distribution almost to the end of the 20th 
century. Other standards (1970, 1980) were also in use, however, complicating comparisons of 
mortality statistics.  During the 1990's, the U.S. National Center for Health Statistics (NCHS/CDC) 
coordinated an effort among federal and state agencies to adopt the year 2000 projected U.S. 
population for standardization of mortality statistics.  In August 1998 all U.S. Department of Health 
and Human Services (DHHS) agencies were directed to use the 2000 Standard Population for age 
adjusting mortality rates beginning no later than data year 1999 (Schoenborn et al., 2000).   

Since the age distribution in 2000 is shifted to the right (older ages) compared to the 1940 
population, mortality rates standardized to the 2000 population will be higher than if they were 
standardized to the 1940 census because they will assign more weight to older age strata, where 
mortality rates are high.  In the same way, comparisons (e.g., ratios) of standardized rates will reflect 
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the situation among older age groups more than in the past.  To be sure, the switch will make 
comparisons to past data problematic, though NCHS will recompute age-standardized mortality 
rates for past years based on the 2000 population standard. 

The opposite result will occur when at some point it is decided that in a global society all countries 
should standardized their rates to the World population, to facilitate comparison across countries.  
Since the large majority of the world's population live in developing countries and is much younger 
than the population of the U.S. and other developed countries, standardization using a world 
standard will yield lower standardized rates for most causes of death.  As illustrated by the fruit 
stand example in the beginning of this chapter, different standards can give different, but correct, 
results.  Comparisons, the usual goal of examining rates, may be less affected then the rates 
themselves, as long as the patterns (e.g., rise in mortality rate with age) are the same in the 
populations being compared.  When that is not the case, then the question of whether it is 
meaningful to compare summary measures at all becomes more important than the question of 
which weights to use. 

Key concepts 

y Populations are heterogeneous – they contain disparate subgroups.  So any overall measure is a 
summary of values for constituent subgroups.  The underlying reality is the set of rates for 
(ideally homogenous) subgroups. 

y The observed ("crude") rate is in fact a weighted average of subgroup-"specific" rates, weighted 
by the size of the subgroups. 

y Comparability of weighted averages depends on similarity of weights. 

y "Standardized" (and other kinds of adjusted) measures are also weighted averages, with weights 
chosen to improve comparability. 

y Crude rates are "real", standardized rates are hypothetical. 

y The "direct" method (weights taken from an external standard population) gives greater 
comparability but requires more data. 

y The "indirect" method (weights taken from the internal study population) requires fewer data 
but provides less comparability. 

y Choice of weights can affect both rates, comparisons of rates, and comparability to other 
populations, so the implications of using different possible standard populations should be 
considered. 

y Any summary conceals information; if there is substantial heterogeneity, the usefulness of a 
summary is open to question.   
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Appendix on Standardized Mortality Ratios 

(courtesy of Raymond Greenberg, M.D.,Ph.D. 

 

I.   DEFINITION.  The Standardized Mortality Ratio (SMR) is a measure of mortality in a study 
population, relative to mortality in a reference population.  The SMR answers the following 
question:  "How does the number of observed deaths compare with the expected number of deaths, 
if our study group had the age-specific mortality rates of the reference population during these study 
years?" 

 

II.   CALCULATION.  In principle, any reference population yielding sufficiently precise rates can 
be used to obtain the expected death number, but it is customary to use the general population.  The 
SMR is given by the following expression: 

    
    Observed deaths in study population 
 SMR = ——————————————— 
   Expected deaths in study population 

 

The SMR is usually scaled up by multiplying it by 100.  An SMR over 100 indicates that more deaths 
were observed than expected (i.e., the study population had a relatively poor outcome).  An SMR 
less than 100 means that fewer deaths were observed than expected (i.e., the study population had a 
relatively favorable outcome).  Obviously, the value of the SMR will depend on the choice of the 
reference population used for the comparison mortality rates.  If the reference population is healthy, 
they will have low mortality rates and thereby increase the SMR.  Conversely, if the reference 
population is unhealthy, they will have high mortality rates and thereby decrease the SMR.  It is 
therefore crucial to choose an appropriate reference population or at least to know in which 
direction the reference population differs from an appropriate one. 

 

III.   HEALTHY WORKER EFFECT.  The SMR is frequently used to examine mortality in an 
industrial plant or industry.  However, when workers are compared to the general population, it is 
common to find lower mortality rates in the workers (SMR less than 100).  The reason is thought to 
be that the general population includes people who are too sick to work.  The elevated mortality in 
such people raises the mortality rate of the general population, so that mortality in the general 
worker population is lower.  This phenomenon is called the healthy worker effect.  The healthy 
worker effect is an important consideration primarily for mortality from diseases, such as 
cardiovascular disease, where an extended period of physical limitation or disability frequently 
precedes death and thus affects entrance into and remaining in the workforce. 
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IV.   SAMPLE CALCULATION:  Suppose you are studying male textile workers between the ages 
of 20 and 39 years between the years 1960 and 1979. 

      
 a.  Observed deaths   Period  
  Age 1960-1969 1970-1979 Total 
  20-29 1 2 3 
  30-39 2 3 5 
  Total   8 

 

 b.  Person-years   Period  
      of exposure Age 1960-1969 1970-1979 Total 
  20-29 1,000 500 1,500 
  30-39 500 1,000 1,500 

 

 c.  Mortality rates   Period  
      from reference Age 1960-1969 1970-1979  
      population 20-29 1/1,000py 2/1,000py  
  30-39 2/1,000py 4/1,000py  

 

 d.  Expected deaths   Period   
 (b x c) Age 1960-1969 1970-1979 Total  
  20-29 1 1 2  
  30-39 1 4 5  
  Total   7  

 

   Observed Deaths in Study Population   8    
 SMR = ——————————————— x   100 = —— x  100 = 114
   Expected Deaths in Study Population   7    

or a 14% elevation in mortality. 

 

V.   CAUTIONS IN USE OF SMR: 

a. An SMR is an indirect standardization procedure (standard rates applied to study population) 
and therefore two SMR's cannot be compared, unless their respective populations have the 
same age distribution (in which case, why standardize).  [If the age distributions are not 
markedly different or the relationships in mortality rates between the populations are similar 
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across age strata, then the damage is not great.  The latter possibility can only rarely be 
checked, of course, since SMR's are typically computed in situations where there are too few 
deaths in each stratum to calculate meaningful stratum-specific rates.] 

b. SMR's do not readily translate into life-expectancy (though recent work provides an 
approximation). 

c. As length of follow-up increases, an SMR based on cumulative mortality tends toward 100. 

(See Gaffey WR:  A critique of the standardized mortality ratio.  J Occup Med 18:157-160, 1976 
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Standardization of  rates and ratios - Assignment

1. From the data in the table below, compute for each sex separately (for Rateboro) and for the
United States (both sexes) the following measures.  Write your answers (rounded to 4 decimal
places) in the table; show all work for (c) and (d).

a. crude death rates

b. age-specific death rates

c. directly-standardized death rates for Rateboro males and females (separately) using the U.S.
population as a standard.

d. indirectly standardized death rates as in (c).

Population and Deaths in 1980 in Rateboro
Adults by Age and Sex and U.S. Total

(hypothetical data)

Rateboro United States
 Males Females Both Sexes

Age Pop. Deaths Rate Pop. Deaths Rate Pop* Deaths* Rate
18-34 900 6 800 1 60,000 90
35-59 800 3 800 5 45,000 270
60-74 300 15 500 10 20,000 600
75 + 200 22 500 38 15,000 1500
Total 2200 46 2600 54 140,000 2460

(*In thousands.  Population and deaths for Rateboro are actual figures.)

Direct standardized rate:

Indirect standardized rate:

2. Based on the results for question 1.:

a. Do males or females have a more favorable mortality experience in Rateboro?  Cite the rates
or other figures on which you have based your decision.

b. How do you account for the similarity in the crude death rates for Rateboro males and
females?

c. Briefly discuss the reasons for and against (i) rate adjustment, and (ii) direct versus indirect
methods--in these data.

___________________

* Thanks to Barbara Richardson, Ph.D. for the first version of this question.
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d. How would you feel about the conclusion, by an experienced epidemiologist, that "the
Rateboro data are generally consistent with the typical finding of a more favorable mortality
experience of U.S. females; the anomolous result for the 35-59 year-old group, with the high
death rate among females (more than 50% greater than the rate for males) is evidence that
the Rateboro environment is more suitable for males in the age range 35-59 than for
females."

3. The following extract from "Breast cancer in women after repeated fluoroscopic examinations
of the chest" (John D. Boice, Jr., and Richard R. Monson, J Natl Cancer Inst 59:823-832, 1977)
describes their adjustment procedure:

"...Expected breast cancer cases were determined with the use of age-calendar year
specific incidence rates of Connecticut (refs), a neighboring State whose cancer registry
has been in existence since 1935.  The years at which a woman was at risk for breast
cancer development (i.e., the years after sanitarium admission or fluoroscopy exposure)
were computed separately for each 5-year age group, each 5-year period since start of
observation, and each quinquennium from 1930 to 1970 through 1974 and for the six
month period from January 1975 through June 1975.  Multiplication of the age-calendar
year specific WY [women-years] at risk by the corresponding Connecticut incidence rates
determined the number of expected breast cancers."

a. What method of adjustment is being used, direct or indirect?

b. The following tables show hypothetical data from a follow-up study like that done by Boice
and Monson.  Why is it not possible to calculate from the information below the number of
breast cancer cases expected for the period 1950-1969 with the method used by Boice and
Monson (as described above)?  (Note: this is a "sticky" question.  Do not try to calculate or
derive numbers.)

Distribution of Women-Years (WY) among exposed subjects
Period

Age 1950-54 1955-59 1960-64 1965-69
30-34 1900 -- -- --
35-39 1800 1700 -- --
40-44 1700 1600 1500 --
45-49 1600 1500 1400 1300

Average breast cancer incidence rates from the
Connecticut Cancer Registry (1950-1969), by age (rate per 1000 WY)

Age (years) Rate
30-34 .2
35-39 .4
40-44 .8
45-49 1.2

c. What advantage does this adjustment procedure have over simple age adjustment?
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4. Tuberculosis (TB) has been called the "captain of all men of death" because of its ability to
decimate populations.  Improvements in the physical conditions of life in the present century,
especially nutrition, housing, and the work environment, greatly reduced this scourge even
before the advent of effective chemotherapy for the mycobacterium.  The discovery of isoniazid
and its effectiveness in reducing infectiousness led to the application of public health measures
for tracing and treating active cases, thereby effectively controlling TB in the United States and
other developed countries.  Indeed, U.S. public health policy has set the elimination of TB by
the year 2010 as a goal.

However, TB incidence in U.S. minority populations has never been reduced to the same extent
as the overall U.S. incidence, and the ratio of TB risk in nonwhites to whites has grown steadily
from about 3 in the mid-1950s to over 5 in the mid-1980s.  In 1986, however, the long-term
decline in TB was reversed, with an estimated 9,226 cases in 1985-87 beyond those projected
from the 1981-84 trend.  The 25-44 year age group had the largest 1985-87 increase, made up of
a 17% increase among non-Hispanic blacks and 27% among Hispanics.  The HIV epidemic has
been implicated in the upswing in tuberculosis; poverty, homeless, and immigration of persons
from higher TB areas may also have a role.  [Source: Reider HL, Cauthen GM, et al.
Tuberculosis in the United States.  JAMA 1989 (July 21); 262(3):385-389.]

In this question, you are asked to interpret data from three North Carolina counties.  The
following tables show the number of TB cases during the period January 1, 1986 to December
31, 1990, the mean population during that time period, and the corresponding U.S. TB rates.

Cases of tuberculosis in three N.C. counties
during January 1, 1986 - December 31, 1990

County
White
males

White
females

Nonwhite
males

Nonwhite
females

Johnston 11 8 43 13
Orange 5 3 3 4
Wilson 6 10 51 27

Source:  NC TB Control Branch

Mean population sizes of three N.C. counties
during January 1, 1986 - December 31, 1990

County
White
males

White
females

Nonwhite
males

Nonwhite
females

Johnston 31,721 33,955 6,910 8,078
Orange 34,542 37,649 7,510 8,753
Wilson 19,844 22,259 10,692 12,788

Source:  (Log Into North Carolina [LINC] database)
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Mean annual incidence of tuberculosis,
United States, January 1, 1986 to December 31, 1990

White
males

White
females

Nonwhite
males

Nonwhite
females

Cases per
100,000 7.4 3.6 39.2 19.8

Source:  Centers of Disease Control, Tuberculosis in the United States

Your interpretation should compare the counties to each other and to the U.S.  Is there a
greater-than-expected TB incidence in any of the counties?  Is an increase confined to particular
race-sex-groups?

Suggestions:

a. Compute the race-sex-specific TB rates for each county and overall.

b. Compute an SMR comparing each county to the national TB rates.

5. .This question is optional.  If you like it, do it; if you don't like it, forget it!  Show that:

a. if age-specific rates for group A are all equal and age-specific rates for group B are all equal
(but not equal to those in group A, i.e., rai = ra and rbi = rb for all i), then:

Directly standardized rate for A Crude rate for A
―――――――――――――――――― = ――――――――――

Directly standardized rate for B Crude rate for B

Under what conditions will this ratio equal the ratio of indirect standardized rates?

c. if age-specific rates in groups A and B are not all equal, but for each stratum

 rai
––––   = K [Where K is the same for all strata ]
 rbi

then SMR (for A using B as the standard) = K

d. If the proportional age distributions in two populations are identical, then direct adjustment,
indirect adjustment, and crude rates are all comparable between the two populations.

6. (Optional)  Solve problem #1 using a computer spreadsheet.
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Standardization of  Rates and Ratios - Assignment solutions

1. a & b

Population and Deaths in 1980 in Rateboro Adults by Age and Sex and U.S. Total
(hypothetical data)

Rateboro United States
 Males Females Both Sexes

Age Pop. Deaths Rate Pop. Deaths Rate Pop* Deaths* Rate
18-34 900 6 .0067 800 1 .0013 60,000 90 .0015
35-59 800 3 .0038 800 5 .0063 45,000 270 .0060
60-74 300 15 .0500 500 10 .0200 20,000 600 .0300
75 + 200 22 .1100 500 38 .0760 15,000 1500 .1000
Total 2200 46 .0209 2600 54 .0208 140,000 2460 .0176

(*In thousands.  Population and deaths for Rateboro are actual figures.)

Calculations:

c. Directly standardized death rates for Rateboro males and females (separately) using the U.S.
population (both sexes) as a standard.

Σ(rtNt)
Directly standardized rate = –––––––

Nt

Male rate  = [(.0067 × 60,000) + (.0038 × 45,000) + (.05 × 20,000) + (.11 × 15,000)]
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

140,000

= 0.0230, or 23 deaths per thousand

Female rate  = [(.0013 × 60,000) + (.0063 × 45,000) + (.02 × 20,000) + (.076 × 15,000)]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

140,000

= 0.0136, or 13.6 deaths per thousand
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d.  dt
Indirectly standardized rates: = –––––– Rt

Σ(Rini)

46
Male rate  = –––––––––––––––––––––––––––––––––––––––––––––––– (.0176)

[(0.0015 × 900) + (0.006 × 800) + (0.03 × 300) + (0.1 × 200)]

= 0.0230, or 23 deaths per thousand

[the similarity to the directly-standardized rate is coincidental.]

54
Female rate  = –––––––––––––––––––––––––––––––––––––––––––––––– (.0176)

[(0.0015 × 800) + (0.006 × 800) + (0.03 × 500) + (0.1 × 500)]

= 0.0134, or 13.4 deaths per thousand

[the similarity to the directly-standardized rate is coincidental.]

2. 

a. Females have a more favorable mortality experience.  Although the crude death rates for
males and females are very close (20.9/1000 vs. 20.8/1000), when age-standardized (direct
or indirect) rates are compared, the lower death rates for women are clear.

 i. direct: 23 deaths/1000 (men) vs. 13.6 deaths/1000 (women)
 ii. indirect: 23 death/1000 (men) vs. 13.4 deaths/1000 (women)

b. The similarity in the crude death rates is a function of the respective age distributions of
males and females in Rateboro.  A greater proportion of women are found in the older age
groups, where the morality rates are higher.  The crude death rate gives more weight to these
larger strata.

c.  i. Reasons for rate adjustment are:

•  adjustment procedures attempt to permit valid comparisons by minimizing the effect of
extraneous variables (e.g., age) that are differientially distributed across the populations of
interest;

•  summary indices from two or more populations are more easily compared than multiple
strata with specific rates; and

•  small numbers in some strata may lead to unstable rates.

ii. Disadvantages of adjustment are:
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•  information is lost when summary measures are used (opposing trends in subgroups may
be masked);

•  the absolute and relative magnitudes of the standardized rates will depend on the standard
used (i.e., the age groups weighted most heavily); and

•  standardized rates are fictitious – they do not estimate any "true" parameter.

ii. Direct vs. indirect methods: indirect methods of adjustment are used when the numbers
of deaths in the individual strata are too small to yield meaningful rates.  The major
disadvantage of indirectly standardized rates is that they can properly be compared only
to the crude rate in the standard population (that is, it is technically incorrect to compare
the indirectly standardized rates for males to the indirectly standardized rates for females
as was shown in 2.a.2 above).  Conversely, the major advantage of using direct adjustment
is that the standardized rates are comparable to one another if they were based on the
same standard weights.  However, in several of the strata the numbers of observed deaths
are small (e.g., 1,3 , 5 and 6), so the estimates of the rates for those strata are imprecise
(likely to be heavily influenced by random error) and therefore weighting them in a direct
adjustment procedure is hazardous.

d. Agree with the first part (consistency of Rateboro experience and U.S.) but question the
second part (Rateboro environment more suitable for males age 35-59) since the rates cited
are based on only 3 male and 5 female deaths and are therefore too imprecise to warrant
such a conclusion.

3. 

a. Indirect adjustment was used, as age-calendar-year-specific rates from a standard population
(Connecticut) were applied to the age-calendar-year distribution (of women-years) in the
study population.  Here is a detailed explanation:

For the indirect standardization or adjustment procedure, "standard rates" were obtained
from the Connecticut population.  These rates were both age-specific and calendar-year
specific, to control for changes in incidence over time.  Thus, a table of standard rates like
the following would have been used:

Breast cancer incidence (per 100,000 Connecticut women per year)
(hypothetical data)

Period
Age 1935-39 1940-44 1945-49 1950-54 1955-59 etc.

30-34 20 22 26 28 30
35-39 30 33 35 38 40
40-44 50 54 57 59 62
45-49 70 72 75 78 81

Source: Connecticut Cancer Registry (1950-1969)
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The second ingredient for an standardized rate is the weight.  The weight could be
population or population-time (person-years, or in this case, women-years).  Boice and
Monson tell us that they computed women-years within 5-year age groups and 5-year
calendar time intervals (quinquennia) (which is why the above table is constructed as it is).
Boice and Monson also divided the follow-up period for each woman into 5- (their lucky
number!?) year intervals since the start of observation (sanitarium admission or fluoroscopy
exposure) for the women.  Dividing up the follow-up period is not part of the adjustment
procedure, but enables the investigators to analyze the results for different lengths of
follow-up after exposure.  Thus the investigators can allow for latency periods in cancer
development.

Suppose that the distribution of women-years for all women followed between 11 and 15
years after admission or exposure was:

Distribution of Women-Years (WY) among exposed subjects
between 11 and 15 years (inclusive) following admission or exposure

(hypothetical data)

Period
Age 1935-39 1940-44 1945-49 1950-54 1955-59 etc.

30-34 1900 1800 -- -- --
35-39 1800 1700 1600 -- --
40-44 1700 1600 1500 1400 --
45-49 1600 1500 1400 1300 1200

Source: U.S. Census

With the rates and the weights, the next step is:  "Multiplication of the age-calendar year
specific WY [women-years] at risk by the corresponding Connecticut incidence rates
determined the number of expected breast cancers."

So the expected number of breast cancer cases would be:

0.00020 × 1900 +
0.00022 × 1800 +
0.00030 × 1800 +
0.00033 × 1700 +
0.00035 × 1600 +
0.00050 × 1700 +
0.00054 × 1600 +
0.00057 × 1500 +
0.00059 × 1400 +

etc.
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This expected number of breast cancer cases (expected if the women in the study had the
same age- and calendar-year-specific breast cancer incidence as women in Connecticut)
would be compared to the number of breast cancer cases actually observed.

b. It is not possible to calculate by the method used by Boice and Monson, since their method
requires age-calendar-year specific incidence rates whereas the rates given in the question are
not specific for calendar year.

c. The advantage of this more complex adjustment procedure is that it controls for secular
changes in breast cancer incidence.

4. a. Race-sex-specific and overall TB rates for the three counties:

Incidence of tuberculosis, per 100,000, in three N.C. counties
during January 1, 1986 - December 31, 1990

County
White
males

White
females

Nonwhite
males

Nonwhite
females Overall

Johnston 7.0 4.7 124.5 32.2 18.6
Orange 2.9 1.6 8.0 9.1 3.4
Wilson 6.0 9.0 95.4 42.2 28.7

E.g., mean annual TB incidence for nonwhite females in Johnston county =
13 / (8,078 × 5) = 32.2 per 100,000.  The 5 in the denominator is needed to obtain
the annual incidence, since the numerator contains cases accumulated during 5 years.

Overall annual TB incidence in Johnston county =

75 / (80,664 × 5) = 93 / 5 = 18.6 per 100,000

b. SMR's:

SMRs for tuberculosis in three N.C. counties
during January 1, 1986 - December 31, 1990

County Expected Observed / Expected SMR
Johnston 11.7 + 6.1 + 13.5 + 8 = 39.3 75 / 39.3 1.8
Orange 12.7 + 6.8 + 14.8 + 8.7 = 43 15 / 43 0.35
Wilson 7.34 + 4 + 21 + 12.7 = 45 94 / 45 2.1

E.g., overall SMR for Johnston County:

Expected (over 5 years) based on national rates  =
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Group US rate
/100,000

County
pop. 5 years Expected

cases in 5 yrs

WM 0.000074 × 31,721 × 5 = 11.74 +
WF 0.000036 × 33,955 × 5 = 6.11 +
NM 0.000392 × 6,910 × 5 = 13.54 +
NF 0.000198 × 8,078 × 5 = 8.00 +

39.39

SMR = Observed/Expected = 75 / 39.39 ≈ 1.9

Interpretation:  Both Johnston and Wilson Counties have higher TB incidence than the U.S.
average.  The greater TB incidence in these counties is apparently due to the higher rates in
nonwhites of both sexes than in the U.S. as a whole.  In Johnston County there are 56 cases
in nonwhites vs. 21.5 expected; in Wilson County there are 78 cases in nonwhites vs. 33.7
expected.  There is also a slight increased incidence in whites in Wilson County:  16 white
cases observed vs. 11 expected.  Note that the incidence of TB in Johnston County is nearly
18 times as great in nonwhite males compared to white males.

In this case comparison of the SMR's between Johnston and Orange counties is not
problematic, since the race-sex population distributions (i.e., the "weights") are similar for
the two counties.  The population distribution in Wilson County is different, however, so
comparing its SMR to the others is indeed problematic.

5. a. Intuitively, we know this assertion to be true, since:

 i. a directly standardized rate is a weighted average of stratum-specific rates;

 ii. the crude rate is a weighted average of stratum-specific rates, weighted in this case by
the stratum sizes of the study population;

 iii. a weighted average of identical rates will be equal to the value of those rates, no matter
what weights are used.

Using the notation from the Standardization chapter of the Evolving Text, with subscript "a"
or "b" referring to group A or B, respectively, we have the directly-standardized rate for
group A (from the formula under "Standardization of rates by the direct method" and using
the information in the problem):

∑(rai Ni) ∑(ra Ni)
Directly standardized rate for A = ———— = ————

Nt Nt

ra ∑NI ra Nt
= ———— = ——— = ra

Nt Nt
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∑ rai nai ra ∑nai
Crude rate for A = ———— = ——— = ra

nt nt

So the directly standardized rate equals the crude rate (equals the stratum-specific rates).
The same can be shown, in a identical manner, for B.  Therefore the ratio of directly-
standardized rates equals the ratio of crude rates.

Moral:  if there is no variation in your stratum-specific rates, you don't need to adjust--the
crude is fine.

c. This question asks about the situation in which there is a constant rate ratio between groups
A and B within each age stratum.  Since the SMR is calculated using the rates in the standard
population (in this case, rbi) for the denominator (the "expected" deaths), that denominator
will be 1/K times the observed deaths, since the rates from the standard population are 1/K
times the rates observed in the study population.

Using the formulas on pages 4 and 8:

Observed deaths ∑ (rainai) ∑ (rainai)
SMR = ——————— = ————— = ———————

raiExpected deaths ∑ (rbinai) ∑ (
K

) nai

∑ (rainai)
= ——————— = K

1
— ∑ (rainai)
K

This exercise illustrates the underlying rationale for the SMR, i.e., in a situation in which there
are too few data to make meaningful judgments about specific rates, we assume that each is a
constant multiple of the specific rates in a standard population and then estimate that
constant multiple with the SMR.  The assumption of a constant multiple may not hold in
reality, but it may be reasonably correct with study group we are examining.  In any case it is
the best we can do given the limited amount of data.

d. Intuitively, if two populations are alike in terms of a particular variable, then that variable
cannot be responsible for observed differences between them.

Directly standardized rates are comparable, regardless of age distributions, because the
specific rates in each population are weighted by the same external standard.
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Crude rates are comparable because the crude rate for each group may be thought of as a
weighted average of the group's specific rates, with weighting by the proportional size of the
strata:

deaths ∑ (rainai) nai
ra = ––––––– = ––––––––– = ––––

nat nat

∑( rai

nat

)

deaths ∑ (rbnb) nbi
rb = ––––––– = ––––––––– = ––––

nbt nbt

∑(
rbi nbt

)

To say that both groups have the same proportional age distribution is to say that for any
age stratum (i.e., stratum "i"),

nai ni
rb = –––– = –––– = pi

na nbt

So ra=Σ[raipi], rb=Σ[rbipi], and the two sets of specific rates are averaged using the same
weights, pi.

Indirectly standardized rates:

From the formula at the top of page 4,

Rt rtRt
Indirectly standardized rate = rt × ————— = —————

∑ (Rini)/nt nI∑(Ri
nt

)

  Rt
= rt  ————

   ∑ (Ripi)

Since Rt and Ri come from the standard population and pi is the same for groups A and B
(though it may vary from stratum to stratum) by the conditions of the problem, the
indirectly standardized rates for A and B are each equal to their crude rates times a the same
constant.  So a comparison of indirectly standardized rates in this case is the same as a
comparison of their crude rates, which was shown above to be valid.
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6. An Excel® spreadsheet for this problem can be found on the EPID 168 web site at
www.sph.unc.edu\courses\epid168\public\Standardization.xls.
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7. Relating risk factors to health outcomes 

Quantifying relationships between two factors or one factor and the occurrence, 
presence, severity, or course of disease 

The “Big Picture” 

At this point in the course, it will be good to take stock of where we are and where we are going.  
After a brief overview of population and health, we have thoughtfully considered the phenomenon 
of disease in relation to how epidemiologists study disease.  Under that topic we examined issues of 
definition, classification, and natural history.  We then turned to the question of how to measure 
disease frequency and extent in populations.  We examined some general issues in numeracy and 
descriptive statistics, and then took up the fundamental epidemiologic measures of prevalence and 
incidence, with the latter approached as a proportion or as a rate.  From there we took up the topic 
of standardization, which facilitates comparisons between prevalence and incidence across 
populations with different demographic composition, and we saw how these various measures and 
concepts are used in descriptive epidemiology and surveillance. 

For the next section of the course we will be concerned with how to investigate associations 
between health outcomes and potential risk factors.  That task involves questions of study design, 
measures of association, validity, inference and interpretation.  The topics of study design and 
measures of association are so intertwined that whichever one we begin with, it always seems that 
we should have begun with the other!  Analytic studies provide the data for estimating measures of 
association and impact, but measures of association and impact motivate the design of the studies. 

However, the basic epidemiologic approach to relating risk factors to health outcomes is more 
general than the specifics of either topic.  Consider a population in which a disease or some other 
condition occurs throughout the population but more often in persons with characteristic A.  We 
are likely to be interested in how the existence (prevalence) or occurrence (incidence) of the disease 
among people with characteristic A compares with that for the population as a whole and for people 
with some other characteristic B (which could simply be the absence of A).  To make this 
comparison we: 

a. Measure the frequency - prevalence, CI, ID - of the disease or condition in each group (and 
perhaps in the entire population); 

b. Compare the frequencies (fairly! - e.g., after standardization if necessary)) 

c. Quantify the comparison with a measure of association 

d. Quantify the potential impact of the characteristic on the condition, if we are willing to posit 
a causal relationship. 

We have already discussed measures of frequency and extent.  Now we turn to measures of 
association and impact. 
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Measuring the strength of a relationship 

The question that summarized the preceding topic could be stated as “How much of a factor is 
there?” or “How often does a disease (or other phenomenon) occur?”.  However, much of 
epidemiology is concerned with relationships among factors, particularly with the effect of an 
“exposure” on “a disease”.  Therefore the present topic addresses the question “How strong is the 
relationship between two factors?” or “How strong is the relationship between a study factor and an 
outcome?”  A relationship may be “strong” without being “causal”, and vice versa.  Nevertheless, 
two factors that are strongly associated are more likely to be causally related. 

There are a number of ways in which the strength of the relationship between two variables can be 
assessed.  We can, for example, assess the extent to which a change in one variable is accompanied 
by a change in the other variable or, equivalently, the extent to which the distribution of one variable 
differs according to the value of the other variable.  For this assessment, epidemiologists use a 
measure of association*. 

A second perspective is the extent to which the level of one of the factors might account for the 
value of the second factor, as in the question of how much of a disease is attributable to a factor that 
influences its occurrence.  Epidemiologists use measures of impact to address this question. 

Most of the measures we will cover in this topic apply to relationships between a factor that is 
dichotomous (binary, having two possible values) and a measure of frequency or extent, in 
particular, a rate, risk, or odds.  Such measures are the most commonly used in epidemiology.  We 
will also touch on measures that are used in other situations. 

Measures of association 

A measure of association provides an index of how strongly two factors under study vary in concert.  
The more tightly they are so linked, the more evidence that they are causally related to each other 
(though not necessarily that one causes the other, since they might both be caused by a third factor). 

Association - two factors are associated when the distribution of one is different for some value of the 
other.  To say that two factors are associated means, essentially, that knowing the value of one 
variable implies a different distribution of the other.  Consider the following two (hypothetical) 
tables: 

                                                 
* Although this term and “measure of effect” have frequently been used interchangeably (e.g., in this text), Rothman and 
Greenland (2000:58-59) draw the following distinction: associations involve comparisons between groups or 
populations; effects involve comparisons of the same population [hypothetically] observed in two different conditions; 
measures of association are typically used to estimate measures of effect. 
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CHD and oral contraceptives in 
women age 35 years or more 

 Breast cancer (BC) and oral 
contraceptives 

 OC No OC Total   OC No OC Total 

CHD 30 20 50  Cancer 15 35 50 
Non-case 30 70 100  Non-case 30 70 100 
Total 60 90 150  Total 45 105 150 

 

Consider first the table on the left (CHD and OC).  The overall proportion of OC users is 60/150 = 
0.40, but that among CHD cases is 30/50 = 0.60 while that among noncases is 30/100 = 0.30.  The 
distribution of values of OC use (“users”, “nonusers”) is therefore different for different CHD 
values (“case”, “noncase”).  Similarly, the distribution of values of CHD is different for different 
values of OC (30/60 of OC users have CHD; 20/90 of non-users of OC have CHD). 

If asked to estimate the proportion of OC users in a sample of 40 women selected at random from 
the table on the left, would we want to know how many in the sample had CHD and how many did 
not?  Indeed we would.   

We know that the proportion of OC users must be no lower than 0.30 (if the sample consists 
entirely of noncases) and no greater than 0.60 (if the sample consists entirely of cases).  In the 
absence of knowing the proportion of cases, our best estimate would be the overall proportion in 
the population, 0.40.  But is we knew the proportion of cases in the sample, we could move our 
estimate up (if more than one-third were cases) or down (if fewer than one-third were cases).  [Now, 
verify that to estimate the proportion of CHD cases in a random sample, we would want to know 
the proportion of OC users.  What is the best estimate of the proportion with CHD if the sample 
consists of 22 OC users and 18 nonusers? – The answer is at the end of this chapter.] 

Thus, in the data in the left-hand table, there is an association between OC use and CHD.  In 
contrast, in the table on the right (BC and OC), the distribution of OC use is the same for the cases, 
the noncases, and the entire group.  Therefore, the data in the right-hand table show no association 
between breast cancer and use of OC's. 

Correlation and Agreement 

Association is a general term that encompasses many types of relationships.  Other terms are used 
to indicate specific types of association.  Two important ones are: 

Correlation is a type of association in which the relationship is monotonic, i.e., it goes in one 
direction - the more of one factor, the more of the other (positive or direct correlation), OR the 
more of one factor, the less of the other (negative or inverse correlation).  Linear correlation 
(measured by the Pearson product-moment correlation coefficient) assesses the extent to which the 
relationship can be summarized by a straight line.  Nonparametric correlation coefficients, such as 
the Spearman rank correlation coefficient, assess the extent to which the two factors are correlated 
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but without regard to the size of the change in one that accompanies a change in the other, simply 
the direction. 

Agreement is a type of correlation in which the two factors (generally two measures of the same 
phenomenon) are not only directly correlated with each other but have the same actual values.  For 
example, two sphygmomanometers should give the same readings when used on the same person 
on the same occasion, not merely readings that are correlated.  Two measurements of a stable 
phenomenon should agree with each other, not merely correlate.  If one of the measures is known 
to be highly accurate and the other is being assessed, then we can assess validity of the latter, rather 
than merely agreement between the two. 

ASIDE 

Some sociological commentary 

Since the factors studied by epidemiologists are often the occurrence of disease and the 
presence of exposure, the primary epidemiologic measures are proportions and rates of 
disease across different exposure groups.  Indeed, because these measures are so familiar to 
epidemiologists and clinicians, even when the disease (e.g., blood pressure) and/or exposure 
are not represented by dichotomous (two-category) variables, it is common convert them 
into proportions or rates for at least some analyses.  We will therefore spend most of our 
time on measures of association and impact involving rates and proportions.  Bear in mind, 
though, that phenomena (e.g., physiologic measurements, nutrient intake, environmental 
exposures) that are capable of being measured as quantities are often more properly analyzed 
without dichotomizing. 

The preference for rates and proportions is one reason for the different approaches to 
statistical analysis used by epidemiologists and social scientists who also study data on 
populations.  But there are other differences in approach that presumably have a different 
basis, perhaps epidemiologists' focus on biological relationships. 

One potential source of confusion – even conflict! – is the difference in the way that 
epidemiologists on the one hand and social scientists and biostatisticians look at associations.  
Epidemiologists tend to regard the strength of an association as a separate matter from the 
quantity of numerical evidence that the association would not easily arise by chance (i.e., its 
“statistical significance”).  Other professions, however, often look first to the statistical 
significance of an association before considering any other characteristic.  Thus, a 
biostatistician or psychologist might complete dismiss an association that an epidemiologist 
might characterize as “strong though potentially due to chance”.  Conversely, a psychologist 
or biostatistician may characterize as “highly significant” an association that an 
epidemiologist might dismiss as too weak to be biologically meaningful.  As we will see later, 
various measures of association used in statistics (e.g., chi-squared statistics, correlation 
coefficients) are in a different category than the measures of association we will discuss now. 

END OF ASIDE 
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Some basic measures 

Before diving in to our discussion of how to measure associations, we may wish to begin with some 
basics.  Suppose that an epidemiologist is asked to investigate the possible hazard from an 
inadequate air filtration system in a large school building in a poor urban neighborhood.  The 
particular concern involves children with asthma, 400 of whom attend the school (school A).  The 
epidemiologist is informed that on a particular day, 12 children suffered an asthmatic attack, whereas 
at a very similar nearby school (school B) with 500 asthmatic children, only 5 suffered an asthmatic 
attack on the same day. 

The epidemiologist first arranges the data in a 2 × 2 table: 

Cumulative incidence of asthmatic attack during one school day 

Had an asthma attack School A School B Total 

Yes 12 5 17 
No 388 495 883 

Total 400 500 900 

The first step is to compute the incidence in each school: 

 1-day cumulative incidence in school A:  12 cases / 400 children at risk  =  0.03 or 3% 

 1-day cumulative incidence in school B:   5 cases / 500 children at risk  =  0.01 or 1% 

School A does in fact have a higher incidence of asthma attacks on the study day. 

In order to assess the strength of the association between school and asthma incidence, the next step 
is to compute a measure of strength of association.  The most common measure computed in this 
situation is the ratio of the two cumulative incidences (the “cumulative incidence ratio”, CIR, also 
called the “risk ratio”).  The CIR is simply 0.03/0.01 = 3.0, which is often interpreted as indicating a 
“moderately strong” association.  The epidemiologist cumulative incidence difference (CID) might 
also compute the difference between the CI's (a “cumulative incidence difference”, CID), and report 
that having inadequate air filtration was associated with a two percentage point greater asthma 
incidence during the 7-hour school day.  Armed with this basic example, let us examine the concepts 
that underlie these measures. 

Absolute versus relative effects 

When we have incidence rates or proportions from two different populations (e.g., PC-users and 
Mac-users), it is easy to tell which rate is larger.  But quantifying how much larger raises the question 
of how to compare the two rates.  A basic question is whether or not the amount by which the 
larger rate exceeds the smaller one should be relative to the size of one of the rates. 
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If you ask a 10-year old how much older she is than her 5-year old brother, she will probably answer 
“5 years”.  But if she is mathematically-inclined, she may say that she is “twice his age” or “100% 
older”.  Both statements accurately quantify the amount by which she is older, yet they have 
different “flavors”.  Do we have a reason to prefer one or the other? 

We might be inclined to prefer the answer “5 years”.  “Might”, because the choice of a measure 
depends on our purpose, and we have not specified an objective.  But two reasons come to mind  
why we might prefer the absolute difference (5 years) to the relative difference (100% older) or ratio 
(twice his age). 

For one, “5 years” will remain accurate indefinitely, whereas “twice” (or “100% more”) are accurate 
only this year.  In that sense “5 years” provides a better summary of the relation between the 
children’s respective ages.  For another, human growth and aging, at least from a societal point of 
view and perhaps from a biological point of view as well, are processes which are marked by 
absolute increases, not relative ones.  For example, we generally think of school entrance and 
graduation, puberty, eligibility for a drivers' license, presbyopia, and retirement in terms of specific 
age ranges, not proportional increases.  We say “in 15 years you will probably need bifocals”, rather 
than “when your age is 50% greater”.  In contrast, when adjusting a recipe for a larger or smaller 
number of guests, we multiply or divide the amounts of each ingredient by a common factor, rather 
than subtract a common amount from each one.  For scaling a recipe, we are interested in 
proportionate (relative) increases. 

Similarly, when we quantify the comparison of two incidences (or two prevalences), we can take the 
absolute difference (incidence difference) or the relative difference (excess risk).  Which one, 
absolute or relative, is of greater interest to us in quantifying the comparison of two measures of 
occurrence or extent?  This question has inspired no small amount of debate in the early days of 
modern epidemiology (ca. 1955) and, as so often happens, a case can be made for both approaches.  
The choice depends on our objective, our concept of the phenomena, and the availability of data. 

One problem with using the absolute difference (variously called “risk difference”, “rate difference”, 
“cumulative incidence difference”, “incidence density difference”, “attributable risk”, according to 
fashion, the group of epidemiologists with which the epidemiologist wishes to identify him/herself, 
the decade in which she/he learned epidemiology, or whether the comparison involves incidence 
rates, incidence proportions, prevalences, or mortality rates) as a measure of strength of association 
is that if the incidences themselves are small, as will always be the case for a rare disease, then the 
difference must also be small.  For example, if the annual mortality rate for a rare disease such as 
esophageal cancer is 60/100,000 in persons with low vitamin C intake and 20/100,000 in persons 
with high vitamin C intake, the difference is only 40/100,000.  In contrast, the difference for an 
association involving a more common disease, such as vitamin E and CHD, might be 1,200/100,000 
for low vitamin E intake and 800/100,000 for high vitamin E intake = 400/100,000, an order of 
magnitude greater. 

The much greater size of the second difference indicates that if these two vitamins are causal factors 
many more lives could be saved from increasing vitamin E intake than from increasing vitamin C 
intake.  Vitamin E appears to have a greater public health impact.  But is it logical to conclude from 
the greater difference for vitamin E that its association with CHD is stronger than vitamin C’s with 
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esophageal cancer?  First, if we did draw that conclusion it would imply that nearly any association 
involving a common disease must be stronger than all associations involving very rare diseases.  
Second, since the actual incidence of most conditions varies by all sorts of factors (age, gender, 
economic resources, smoking, alcohol intake, physical activity, diet, genetics, cofactors), the absolute 
difference is very likely to vary, possibly greatly, across populations (however, the relative difference 
may also vary). 

In contrast, expressing the incidence differences relative to the size of the actual incidences produces 
measures of association that appear to be comparable.  Thus we can compute a relative difference in 
incidence of esophageal cancer mortality in relation to vitamin C as (I1 – I0)/I0 = (0.00060 –
0.00020)/0.00020 = 2.0 and a relative difference for CHD mortality in relation to vitamin E as (I1 –
 I0)/I0 = (0.01200 – 0.00800 / 0.00800) = 0.50.  On this basis, the association involving vitamin C is 
substantially greater than that involving vitamin E.  This relative difference measure is often called 
the excess risk (or “excess rate”, since the data are rates, not proportions).  If we add 1.0 to the 
excess risk or rate, we obtain an even simpler relative measure, I1/I0, which is variously termed 
relative risk, risk ratio, rate ratio, cumulative incidence ratio, incidence density ratio, or, for 
prevalences, prevalence ratio. 

Relative versus Absolute Measures of Association  

Here are two real-life examples that contrast relative and absolute measures of association.  The first 
is based on data from a follow-up study by Mann et al. (presented in a seminar at UNC-CH by Bruce 
Stadel): 

Incidence of myocardial infarction (MI) in oral contraceptive (OC) users per 100,000 
women-years, by age and smoking 

 
Age (years) 

 
Cigarettes/day

Oral 
contraceptive 

users 

 
Non-users 

 
RR** 

 
AR***

30-39 0-14 6 2 3 4 
 15 + 30 11 3 19 

40-44 0-14 47 12 4 35 
 15 + 246 61 4 185 

 Notes: 

  * RR=relative risk (rate ratio) 

 ** AR=attributable risk (rate difference, absolute difference) 
 

In this table, the incidence of MI is clearly greater for OC users, since in each age-smoking stratum 
the OC users have a higher incidence (ID) than do the nonusers.  Moreover, the ratio of the two 
incidences (the RR) is nearly constant across strata, a desirable property for a summary measure, 
whereas the rate difference (AR) varies widely.  According to Breslow and Day, the rate ratio tends 
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to be more stable across strata, supporting its desirability as a measure of association.  Not all 
quantitative epidemiologists agree with this assertion. 

The second example comes from a follow-up study of lung cancer and coronary artery disease in 
relation to cigarette smoking: 

Mortality rates per 100,000 person-years from lung cancer and  
coronary artery disease for smokers and nonsmokers of cigarettes 

 Smokers Nonsmokers Ratio Difference 

Cancer of the lung    48.3    4.5 10.8  44 

Coronary artery disease 294.7 169.5   1.7 125 

Source:  1964 Surgeon General's Report on Smoking and Health, page 110, quoted in Joseph Fleiss, 
Statistical methods for rates and proportions, 2nd edition, page 91 

The rate ratio for the relation between smoking and lung cancer mortality is much larger than that 
between smoking and coronary artery disease mortality, but the rate difference is much larger for 
coronary artery disease mortality.  These figures are usually interpreted to mean that lung cancer 
mortality is more closely associated with cigarette smoking than is coronary artery disease mortality; 
elimination of cigarette smoking would lead to a proportionate reduction in lung cancer mortality 
greater than the proportionate reduction in coronary artery disease mortality.  However, the 
reduction in the number of deaths from lung cancer would be smaller in magnitude than the 
reduction in deaths from coronary artery disease.  These issues will be explored in detail in the 
section Measures of Impact, later in this chapter. 

Concept of relative risk 

Nevertheless, for the most part we use relative risk as the basic measure of strength of association 
between a characteristic and the development of a condition. 

The concept of relative risk is operationalized by : 

a. Cumulative incidence ratio (CIR), also called risk ratio 

b. Incidence density ratio (IDR), also called rate ratio 

c. Odds ratio (OR), which estimates CIR and IDR under certain circumstances. 



_____________________________________________________________________________________________ 
www.epidemiolog.net, © Victor J. Schoenbach 2000  7. Relating risk factors to health - 169 
rev. 4/26/2002, 6/23/2003, 3/6/2004 

General formula: 

 Incidence in “exposed” I1 
Incidence ratio = ————————————— = ——— 

 Incidence in “unexposed” I0 

You may recall from the chapter on standardization that the SMR can be thought of as a ratio of 
“observed” to “expected” mortality rates.  In fact, the concept of observed and expected can be 
brought in here as well.  When we contrast the incidence rates in exposed and unexposed groups, we 
are typically using the unexposed incidence as a barometer of what incidence we might find in the 
exposed group if exposure had no effect.  In that sense, the incidence in the unexposed constitutes 
an “expected”, while the incidence in the exposed group constitutes an “observed”. 

The concept of relative risk can also be applied in situations where incidence estimates are 
unavailable or not even of greatest interest.  For example, a direct estimate of the incidence ratio can 
be obtained in a case-control study with incident (newly-occurring) cases if the controls are selected 
in a suitable manner (as explained in the chapter on Analytic Study Designs).  In situations where we 
want to estimate incidence ratios but only prevalence data are available, the prevalence ratio (PR) or 
prevalence odds ratio (POR) may provide a solution.  The reason is the relation among prevalence, 
incidence, and duration, presented in the chapter on Measuring Disease and Exposure (in a 
stationary population, prevalence odds = incidence × average duration, or for a rare outcome, 
prevalence ≈ incidence × average duration).  A key question is whether duration is the same in all 
groups being compared, since if it is not then the comparison of prevalences will provide a distorted 
picture of a comparison of incidences. 

The PR may also be a logical choice for quantifying associations between exposures and conditions 
whose duration is as or more important than their incidence. For example, a large proportion of a 
population experience emotions or conditions such as anxiety, fatigue, or unhappiness from time to 
time. Since point prevalence will count mostly people in whom the condition persists, prevalence 
may be as or more useful than incidence as a measure of frequency in such cases. (The PR is also the 
straightforward choice for simple descriptive statements, such as “smoking was twice as common 
among persons with less than a high school education”.)  

Interpretation of relative risk 

Example:  Incidence ratio of 2.0 means that: 

y “The incidence in the exposed population is twice that in the unexposed population” 

y “The exposure is associated with a 100% increase in incidence.” 

y “The exposure is associated with a two-fold greater incidence.” (although commonly 
encountered, this rendition should probably be avoided since “two-fold greater” might also be 
interpreted as 200% greater, which corresponds to an incidence ratio of 3.0) 

Descriptive adjectives for magnitude of association (as commonly used) 
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1.0 
No association 

(null value) 
1.1-1.3 Weak 
1.4-1.7 Modest 
1.8-3.0 Moderate 

3-8 Strong 

For inverse associations (incidence ratio is less than 1.0), take the reciprocal and look in above table, 
e.g., reciprocal of 0.5 is 2.0, which corresponds to a “moderate” association. 

Two-by-two tables 

The most basic data layout in epidemiology is the two-by-two table: 

 
  Exposure   

Disease Yes No Total  

Yes a b m1 (a + b) 

No c d m2 (c + d) 

Total n1 n0 n  

 (a + c) (b + d)   

One major epidemiologic controversy is whether the disease should be shown in the rows, as above, 
or in the columns.  Kleinbaum, Kupper, and Morgenstern use the above format.  Hennekens and 
Buring place the disease categories in the columns and the exposure in the rows.  Some authors use 
one presentation for cohort studies and the other for case-control studies.  As you can see, 
epidemiology is not yet really a discipline (or not yet disciplined). 

The above form of the 2 × 2 table is used to present data from a study (e.g., cohort, cross-sectional, 
case-control) with count data.  When the study uses person-years data (e.g., to estimate incidence 
density), then the “no disease” column is removed and person-time totals (PY1, PY0) occupy the 
right-hand marginal: 

  Exposure  

Disease Yes No Total 

Yes a b m1 
Person-time PY1 PY0 PY 

Armed with our tables (whatever their orientation), we will now define the three major relative risk 
measures, about which there is much less controversy: 
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1. Cumulative incidence ratio (CIR) 

2. Incidence density ratio (IDR) 

3. Odds ratio (OR) 

Cumulative incidence ratio (also called “risk ratio” or “relative risk”) 

The cumulative incidence ratio (CIR) addresses the question “by how many times does the risk in 
exposed persons exceed that for unexposed persons?”  If the CIR is 3, we can say that exposed 
persons have 3 times the risk of unexposed persons.  We can also say that the average exposed 
individual has three times the risk of disease as the average unexposed individual.  This is often just 
what we want to know.  The mathematical definition is: 

  
Cumulative incidence in “exposed” 

  
CI1 

Cumulative incidence ratio = ——————————————— = —— 
 Cumulative incidence in “unexposed”  CI0 

Since the CIR is based on estimates of CI or risk, the CIR can be estimated directly only from a 
cohort study.  It is, however, possible to estimate it indirectly in other situations. 

Incidence density ratio (also called “rate ratio”) 

The incidence density ratio (IDR) addresses the question “how many times does the rate of disease 
in exposed persons exceed that in unexposed persons?”.  If the IDR is 3 we can say the the rate in 
the exposed is 3 times that in the unexposed.  There is not an obvious interpretation at the 
individual level, but the IDR is of prime importance for studies of dynamic populations and lengthy 
cohorts.  The mathematical definition is: 

  
Incidence density in “exposed” 

  
ID1 

Incidence density ratio = —————————————— = —— 
 Incidence density in “unexposed”  ID0 

The IDR is used in situations where the outcome is the length of time until an event (e.g., death) 
occurs and is mathematically equivalent to the hazard ratio of survivorship analysis.  The IDR can be 
estimated directly in a follow-up study (of a fixed cohort or a dynamic population). 

(Risk) odds ratio 

The odds ratio (OR) is a ratio of “odds”, which are transformations of risks or probabilities. 

 odds = p/(1-p), where p = probability 

The OR addresses the question “how many times greater is the odds of disease for exposed persons 
than for unexposed persons?”   Since odds have a different scale of measurement than risk, the 
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answer to this question can sometimes differ from the answer to the corresponding question about 
risk.  Often, however, we are concerned with rare diseases, for which risk and odds are very close 
and CIR’s and OR’s (and IDR’s) are very close.  Since the OR can be defined in terms of odds of 
disease among exposed or odds of exposure among cases, there are two mathematical formulations: 

 
 Odds in “exposed” 

Odds ratio = ———————————— 
 Odds in “unexposed” 

The odds is simply an algebraic transformation of probability, so any probability (which must, of 
course, be less than 1.0) can be expressed as “odds”.  The probability that something may happen, 
especially something bad, is often referred to as a “risk”.  Odds derived from a risk are termed, 
appropriately, risk odds, so that a ratio of two risk odds is a risk odds ratio, or ROR.   

(Exposure) odds ratio 

A prevalence is commonly referred to as an estimate of probability (e.g., of exposure). A justification 
for this usage is that if we were to select an individual at random from the group, the probability that 
that individual would have a certain characteristic is estimated by the prevalence in the group.  Odds 
that correspond to the probability of exposure are called “exposure odds”, so their ratio is an 
exposure odds ratio, or EOR. Although conceptually distinct, for a two-by-two table these two 
odds ratios are algebraically identical, as we shall see. Thus, our ability to estimate an (exposure) 
odds ratio in a situation where we do not know disease incidence is a powerful tool for examining 
associations involving disease incidence even where we do not have incidence data, as was first 
presented in a classic paper by Jerome Cornfield (see the chapter on Analytic Study Designs for 
elaboration). 

  Risk odds in “exposed” odds1 CI1 / (1-CI1) 
ORr   =   Risk odds ratio = —————————————— = ——— = ———————

  Risk odds in “unexposed” odds0 CI0 / (1-CI0) 
 

 Exposure odds in “cases”  odds1 
ORe   =   Exposure odds ratio = ——————————————— = ———— 

 Exposure in “noncases”  odds0 

Relation of the odds ratio to the risk ratio 

When incidences are small (i.e., the outcome under study is rare in the population), the odds ratio 
closely approximates both the risk ratio and the incidence density ratio.  The conventional guideline 
for classifying a disease as “rare” is an incidence below 10%. A good way to assess the extent of 
divergence of the odds ratio and risk ratio is to examine a spreadsheet with sample incidences and 
computed relative risks and odds ratios (e.g., the guideline suggested by Zhang and Yu [1998] of 
incidence below 10% and risk ratio below 2.5 allows the odds ratio to be only 20% greater than the 
risk ratio). 



_____________________________________________________________________________________________ 
www.epidemiolog.net, © Victor J. Schoenbach 2000  7. Relating risk factors to health - 173 
rev. 4/26/2002, 6/23/2003, 3/6/2004 

If one feels that the OR exaggerates the strength of association objectionably, it is a simple matter to 
derive a corresponding risk ratio estimate if one has additional information – overall exposure 
prevalence, overall disease incidence, disease incidence in the exposed, or disease incidence in the 
unexposed (Hogue, Gaylor, and Schulz, 1983).  The simplest conversion is available if one knows 
the incidence in the unexposed group, e.g.: 

 OR 
RR = ———————————— 
 (1 – CI0) + (CI0 × OR) 

where CI0 is the incidence in the unexposed group [Zhang and Yu (1998), adapted to the notation 
used here].  A prevalence odds ratio can be converted into a prevalence ratio by substituting 
prevalence in the unexposed in place of CI0 in the above formula.  The divergence between the OR 
and the IDR will generally be less than that between the OR and the CIR.  The reason is that all 
three measures of incidence (ID, CI, odds) have the identical numerator (new cases), but as 
incidence increases the denominators of ID and odds decrease, whereas the denominator for CI 
does not change.  

Ratios of proportions versus ratios of odds 

In case-control studies without additional information, the OR is often the only measure of 
association that can be estimated.  Also, when the outcome is rare, all three measures of relative risk 
– the OR, CIR, and IDR – have approximately the same value.  In other situations (i.e., cohort or 
cross-sectional data with non-rare outcomes), the appropriateness of the OR as a epidemiologic 
measure of association has been the subject of considerable debate.   

Proponents of the OR point to several desirable mathematical properties it has compared to the risk 
ratio, including the fact that the strength of association is not affected by reversing the definition of 
the outcome (Walter, 2000).  For example, in a smoking cessation trial, the OR for success will be 
the reciprocal of the odds ratio for failure; the “risk” ratio (CIR) for success, however, will be very 
different from the CIR for failure.  Also, the prevalence odds ratio (POR) can in principle be used to 
estimate the the incidence rate ratio from cross-sectional data, assuming that disease duration is 
unrelated to exposure and that the incidences and durations in exposed and unexposed groups have 
been constant long enough to achieve a steady state condition.  Moreover the popularity of multiple 
logistic regression, which estimates the OR controlling for multiple variables (see chapter on Data 
Analysis and Interpretation), has been a strong motivation for many investigators to estimate odds 
ratios even in cohort studies where incidence can be estimated directly.   

As software tools for estimating the CIR and the PR have become available (e.g., SAS PROC 
GENMOD), however, the use of the odds ratio in cohort and cross-sectional studies is becoming 
less accepted, especially for non-rare outcomes (Thompson, Myers, and Kriebel, 1997).  Its value in 
cross-sectional data is somewhat undercut by the difficulty of accepting that the stationary 
population (steady-state) assumption holds.  
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Critics have termed the OR “incomprehensible” (Lee, 1994:201) and as lacking “intelligibility” (Lee 
and Chia, 1994).  Indeed, after a controversy erupted about news reports of a study by Kevin 
Schulman (Schulman et al., 1999), the editors of the New England Journal of Medicine apologized for 
having allowed he use of the OR in the study’s abstract (New Engl J Med 1999;341:287).  One follow-
up report in Brillscontent.com quoted one of the study’s authors (Jesse Berlin, professor of 
biostatistics at the University of Pennsylvania School of Medicine) as saying “Unless you're a 
professional statistician, you're not likely to have the slightest clue what an odds ratio means.  The 
truth is, it’s confusing for a lot of people, including physicians.”   

In the Schulman et al. study, primary care physicians attending professional meetings viewed 
videotaped interviews of hypothetical patients (portrayed by actors) and received additional medical 
data, and then indicated whether or not they would refer the patient for cardiac catheterization.  A 
central finding was that the physicians recommended catheterization for 84.7% of the presentations 
when the actor was an African American compared to 90.6% of the presentations when the actor 
was a European American.  The finding was presented as an OR of 0.6, which was then reported by 
the news media as indicating that black patients were “40 percent less likely” to be referred as were 
white patients (see Table 2 in Schwartz et al., 1999 for a summary of news reports).   

Schwartz et al. (1999) explained that because the outcome was so common, the actual risk ratio (0.93, 
indicating a weak association) was greatly overstated by the OR, which contributed to the media’s 
overstatement of the association.  However,  the risk ratio for not being referred is also 0.6 
(0.09/0.15), indicating that white patients were only 60% as likely not to be referred as were black 
patients or that black patients were 60% more likely not to be referred as were white patients (RR of 
1.6 = 1/0.6).  So whether the impression given by the news media was exaggerated or not is 
debatable, at least with respect to the OR (see Schwartz et al. for other limitations in the study). 

Greenland (1987) asserts that the OR’s relevance for epidemiology derives solely from its ability to 
estimate of the rate ratio (IDR) or cumulative incidence ratio (CIR).  His objection to the OR as a 
measure of effect lies in the lack of a simple correspondence between the odds for a population and 
the odds for an individual.  Whereas “incidence proportion” (i.e., CI) is equivalent to a simple 
average of the risk for each individual in the population and incidence density (ID) is equivalent to a 
simple average of the “hazard” for each individual in the population, incidence odds is not 
equivalent to a simple average of the disease odds for each individual in the population (Greenland, 
1987).  Thus, the OR is not a ratio of averages interpretable at the individual level.  It turns out that 
this property (“noncollapsibility”) of the OR can make its use misleading when one attempts to 
examine an association with control for other factors (see chapter on Data Analysis and 
Interpretation). 

Although one can take refuge in the assertion that “qualitative judgments based on interpretating 
odds ratios as though they were relative risks are unlikely to be seriously in error” (Davies, Crombie, 
and Tavakoli, 1998:991), it is safer to avoid the OR when incidence or prevalence ratios can be 
estimated. 
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Two typically unstated assumptions 

Stable exposure status 

The above discussion assumes that the population being studied is reasonably stable in respect to 
exposure status.  When this is not the case it may be necessary to change individuals' exposure status 
during the observation period, assigning their follow-up to one or another exposure group, if the 
exposure effect is believed not to persist.  For example, a subject may exercise, stop, and begin 
again.  If the effect of exercise is believed to terminate shortly after exercise is stopped and to begin 
again shortly after resumption of exercise, then follow-up time (person-time) can be accumulated in 
the appropriate exercise category for each part of the follow-up period of an incidence density 
measure.  (An alternative approach is to place such “switchers” in a category of their own.) 

Absence of “contagion” 

The above discussion also assumes that exposure and outcome are independent, i.e., one person's 
disease does not affect another person's risk.  This assumption is violated, of course, for contagious 
diseases, such as sexually transmitted infections, and for arthropod-borne pathogens, e.g. malaria, 
where humans serve as a reservoir.  Here, the spread of disease increases the exposure of unaffected 
individuals so that their risk increases.  These so-called “dependent happenings” can result in 
distortion, or at least marked variability over time, in the above measures of association (see, for 
example, Koopman JS et al., 1991).  Dependent happenings are by no means confined to 
communicable diseases, inasmuch as personal and community behaviors are frequently affected by 
what other people and communities are doing.  Some examples are smoking cessation, dietary 
change, suicide attempts, driving behavior, road safety regulations, and intensity of disease detection 
and reporting. 

More on risk and relative risk 

The excess risk gives the proportionate increase in incidence (an analogous measure can be 
constructed using incidence density or odds).  It is a slight modification of the CIR and useful in a 
variety of circumstances including measures of relative impact, to be discussed shortly.  The 
algebraic definition is: 

   CI1  CI1 - CI0 
    Excess risk = CIR – 1 = —— –  1 = ———— 

  CI0  CI0 

For diseases with an extended risk period, as duration of follow-up increases, risk and CI become 
larger.  Being cumulative and predicated on the population remaining at risk, CI is an increasing 
function whose limit is 1.0 – if we remain at risk forever, then eventually we will all become cases.  
As CI1 and CI0 both increase towards their limit of 1.0, then the CIR also approaches 1.0.  
Therefore the value of the CIR can change as the duration of follow-up lengthens.  It is also possible 
for the IDR to change with duration of follow-up, but that is a function of the natural history of the 
disease rather than the the IDR's mathematical properties. 
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When the CI is low, due to a rare disease and/or short follow-up period: 

 CI  ≈  ID × T   (where T = follow-up time) 

 OR  ≈  IDR  ≈  CIR   

because if CI is ≈ ID × T, then CI1 = ID1  ×  T and ID0 = ID0  ×  T, so: 

   
ID1  ×  T 

 
ID1 

 

CIR ≈ ————— = —— = IDR 
  ID0  ×  T ID0  

As follow-up time becomes shorter, then CI becomes smaller, eventually reaching 0.  But as the CI 
becomes smaller its value becomes increasingly the same as ID × T.  For this reason, the limit of the 
CIR as the follow-time becomes vanishingly short (T → 0) is the IDR.  For this reason the IDR is 
sometimes referred to as the “instantaneous CIR”.  

In a steady-state (constant size and age distribution, constant incidence density, prevalence, and 
duration of disease) dynamic population: 

 Prevalence odds  =  Incidence  ×  Duration (see previous chapter) 

From this we can see that the prevalence odds ratio (POR) estimates the IDR if duration is 
unrelated to exposure, because: 

  odds1 ID1  ×  T ID1   
POR = ——— = ————— = —— = IDR 

  odds0 ID0  ×  T ID0   

 where T here is duration in exposed and unexposed cases. 
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Estimating relative risk (via the odds ratio) from data from a case-control 
study 
1. Construct (2x2, four-fold) table 

  Exposure   
Disease Yes No Total  

Yes a b m1 (a + b) 

No c d m2 (c + d) 

Total n1 n0 n  

 (a + c) (b + d)   

 

2. Odds of Exposure in cases 

  Proportion of cases who are exposed  a / (a + b) a 
Odds = ———————————————— = ————— = — 

  Proportion of cases who are unexposed  b / (a + b) b 
                                     

3. Odds of exposure in controls 

         Proportion of controls who are exposed c / (c + d)  c 
Odds = ———————————————— = ————— = — 

  Proportion of controls who are unexposed d / (c + d)  d 
 

4. Exposure odds ratio (ORe) 

  Odds of exposure in cases a / b  ad 
ORe = ———————————— = ——— = —— 
  Odds of exposure in controls c / d  bc 

 

If the data had come from a cross-sectional or cohort study, we could instead have estimated the 
risk odds ratio (ORr), as the odds of disease in exposed persons divided by odds of disease in 
unexposed persons.  Algebraically, the exposure and disease odds ratios are identical. 

Note that the odds ratio can be computed from proportions or percentages as readily as from the 
actual numbers, since in computing the odds ratio the first step (see above) is to convert the 
numbers into proportions and then to convert the proportions into odds. 
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Difference measures 

Measures based on the difference between two proportions or rates are the other principal form of 
comparison for rates and proportions. They are often used as measures of impact, as we will discuss 
in the next section.  The formulas and terms for differences of cumulative incidences (or risks) and 
incidence rates are: 

   CID  =  CI1  -  CI0  (“Cumulative incidence difference”, 

also known as the “Risk difference” or “Attributable risk”) 

   IDD  =  ID1  -  ID0  (“Incidence density difference”, 

also known as the “Rate difference”) 

These difference measures, of course, can be derived directly only from a cohort or follow-up study.  
If we lack information on the size of the population at risk, as in a case-control study with no 
additional information, we have no way to estimate either CI or ID, so we cannot estimate risk or 
rate differences.  In a cross-sectional study, we cannot estimate incidence at all, though by analogy 
with CID and IDD we can estimate the prevalence difference, P1 - P0. 

Examples of computations 

Follow-up of a fixed cohort 

Baseline 5-year follow-up Outcomes 

      
      

Affected (n=80) 

      
   

Exposed 
(n=400)    

      
     

Unaffected (n=320) 

      
      

Total 
population 
(n=1,000) 

     
      

Affected (n=60) 

      
   

Unexposed 
(n-600)    

      
      

Unaffected (n=540) 

(Assume no losses to follow-up, including deaths from other causes.) 
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The above data are often summarized into a 2 × 2 table: 

5 - year incidence of disease 

  Exposure  

Disease Yes No Total 

Yes 80 60 140 
No 320 540 860 

Total 400 600 1000 

Note on terminology:  The four numbers (80, 60, 320, 540) in the interior of the table are referred to 
as the “cells”; the row and column totals (140, 860, 400, 600) are referred to as the “marginals”.  The 
cells are often referred to as “a”, “b”, “c”, and “d” in zig-zag fashion beginning with the upper left 
cell.  

CI (crude) = 140 / 1000 = .14 (i.e., the overall 5-year cumulative incidence was 14/100)  

CI1 = 80 / 400 = .20, CI0 = 60 / 600 = .10 

CIR = CI1 / CI0 = .20 / .10 = 2.0 (the exposure was associated with a doubling of risk) 

CID = CI1 - CI0  = .20 - .10 = .10 (see below for interpretation) 

Excess risk = CIR - 1 = 1.0 (i.e., the exposure was associated with a 100% increase in risk) 

 
  CI1 / (1 - CI1) 0.20 / 0.80 0.25   

ORr = ——————— = ————— = —— = 2.25
  CI0 / (1 - CI0) 0.10 / 0.90 0.11   

Note that the OR is more extreme than the CIR. 

Average incidence density measures could be computed from the above table by making the 
assumption that cases occurred evenly throughout the period, or equivalently, that all cases occurred 
at the midpoint of the follow-up period, 2.5 years: 
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  cases  140 140  
ID = ————— = ————————— = ————— = 0.030 cases/py 
  person-years  (860)(5) + (140)(2.5) 4300 + 350  

 (Total person-years at risk comprises 860 persons followed for 5 years and 140 persons followed 
for 2.5 years – once the disease occurred, that subject was deemed no longer at risk.  If that situation 
were not the case, then person-years would be computed differently.) 

ID1 = 80 / [(320)(5) + (80)(2.5)] = 80 / 1800 = 0.044 cases / person-year 

ID0 = 60 / [(540)(5) + (60)(2.5)] = 60 / 2850 = 0.021 cases / person-year 

IDR = 0.044 / 0.021 = 2.095 = 2.1 (compare to CIR of 2.0) 

IDD = 0.044 - 0.021 = .023 cases / person-yr OR 23 cases / 1000 person-yrs 

Note that each ID is very close to the corresponding CI divided by the number of years (5).  When 
the incidence is low, the CI approximately equals ID × (time interval). 

Measures of association – non-dichotomous exposure 

Ratio measures of association are suited to dichotomous (i.e., two-category) measures, such as 
presence of disease (yes or no) or exposure (yes or no).  If the exposure has multiple categories (for 
example, different types of industrial solvents or several levels of exposure), a ratio measure of effect 
can be computed for each type or level compared to the unexposed group (if there is no unexposed 
group, then one exposure or level can be selected as a reference category).  Consider, for example, 
the classic study by Wynder and Graham (1950) on lung cancer and cigarette smoking.  In this case, 
“None (less than 1 per day)” is selected as the reference category, and the odds ratio is computed for 
each higher level of smoking relative to the reference level. 

Cigarette smoking histories of 605 male lung cancer patients and 780 controls 

Amount of cigarette smoking for 20+ 
years.*  (percent distribution)      

Lung cancer 
patients 

 
Controls 

 
OR 

 [N=605]  [N=780]  
None (less than 1 per day) 1.3 14.6 1.0** 
Light (1-9 per day)  2.3 11.5 2.2 
Moderately heavy (10-15 per day) 10.1 19.0 6.0 
Heavy (16-20 per day) 35.2 35.6 11.1 
Excessive (21-34 per day) 30.9 11.5 30.2 
Chain (35+ per day) 20.3  7.6 30.0 

 
 * includes pipe and cigar smokers, with a conversion formula. 

 ** reference category. 
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The odds ratios (OR) are obtained by forming a 2x2 table for each exposure level relative to the 
reference level.  For example, for “Heavy (16-20 per day)” compared to “None”: 

  
Lung cancer 

 
Control 

Heavy 35.2 35.6 
None 1.3 14.6 

 
  35.2 × 14.6   
OR = —————— = 11.1 
  35.6 × 1.3   

 (As stated earlier, the OR calculation can be done just as easily from percentages as from the actual 
numbers of cases and controls, since the first step is to derive proportions from the numbers.  The 
fact that these percentages are age-adjusted actually means that the ORs are age-adjusted as well.) 

The odds ratios reveal quite the existence of a marked dose-response relationship. 

Measures of association – non-dichotomous disease 

When the disease or outcome variable is not dichotomous (e.g., body mass index) but the exposure 
is, the outcome variable can be categorized (e.g., “above or below 30% greater than ideal weight”) to 
enable computation of ratio measures of association.  Alternatively, a summary statistic (e.g., mean 
body mass) can be computed for each category of the exposure, but then we have no measure that 
can be interpreted as relative risk. 

When both disease and exposure have multiple ordered categories (e.g., injury severity rating with 
several levels (an ordinal variable), parity (a count variable), or blood pressure (a continuous 
measure), categorization can be imposed to obtain a ratio measure of effect.  Alternatively, the 
relationship between outcome and exposure can be plotted, and the slope used as a measure of the 
strength of the relationship (e.g., a 2 mmHg increase in diastolic blood pressure for every 14 grams 
of alcohol consumed is stronger than a 1 mmHg increase for every 14 grams).  Linear regression 
coefficients are used to estimate the slope of the relationship and provide a satisfactory index of 
strength of association for continuous variables, though one that cannot readily be compared to 
measures of relative risk.  We will return to regression coefficients later in the course. 

Correlation coefficients are often used as measures of association between ordinal or continuous 
variables, but as explained below, these are not regarded as epidemiologic measures of strength of 
association. 

Other measures of association 
“When I use a word, it means precisely what I want it to, neither more nor less” (Lewis 
Carroll, Alice in Wonderland) 
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As mentioned earlier, a point of confusion for the learner is the difference between what 
epidemiologists mean by a measure of association and what is measured by various statistics that are 
also referred to as measures of association.  To clarify this unsatisfactory state of affairs, we will 
discuss two measures that are widely used in both epidemiology and other disciplines, but which 
epidemiologists regard as very different from the measures of association we have discussed above. 

Chi-square for association 

A nearly ubiquitous statistic in epidemiology is the chi-square for association.  The chi-square and its 
associated p-value address the question of the degree to which an association observed in a sample is 
likely to reflect an association in the population from which the sample was obtained, rather than 
simply have arisen due to sampling variability.  The p-value estimates the probability that variability 
of random sampling can result in two variables being associated in a sample even if they are entirely 
independent in the population.  Although there is obviously a connection between the question 
addressed by the chi-square and the question addressed by the relative risk, the two questions are by 
no means interchangeable.  For example, consider the table at the very beginning of this chapter. 

CHD and oral contraceptives (OC) in women age 35 years or more 

  __  
 OC OC Total 

CHD 30 20 50 
___    

CHD 30 70 100 

Total 60 90 150 
 

Regarding these data as having come from a hypothetical case-control study, we select the odds ratio 
(OR) as the appropriate measure of strength of association.  Since CHD is a rare disease, the OR 
will estimate the CIR as well as the IDR.  The OR for the above table is: 

  
30 × 70 

 

OR = ————— = 3.5
 20 × 30  

i.e., the observed association suggests that the risk of CHD in women 35 years or older who use OC 
is 3.5 times that of similarly aged women who do not use OC. 

The chi-squared statistic for this table will yield a p-value that approximates the probability that a 
table with an OR of 3.5 or stronger will arise from a random draw of 50 women (who will be called 
“cases”) from a population of 60 OC users and 90 nonusers.  That chi-squared statistic is 12.4, 
which corresponds to a very small probability – much lower then 0.0001, or 1 in a thousand draws 
(the computation will be covered in a later part of the course).  Suppose instead that the study that 
yielded the above table had been only one-fifth as large.  Keeping the same proportion in each of 
the four cells, we would then have this table: 
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CHD and oral contraceptives (OC)in women age 35 years or more 

  __  
 OC OC Total 

CHD 6 4 10 
___    

CHD 6 14 20 

Total 12 18 30 

The odds ratio for this table is still 3.5, but the chi-squared statistic is now only 2.42, which 
corresponds to a p-value of 0.12.  The greater p-value results from the fact that it is much easier to 
obtain an association with OR of 3.5 or greater by randomly drawing 10 “cases” from a room with 
12 OC users and 18 nonusers than by randomly drawing 50 “cases” from a room with 60 OC users 
and 90 nonusers. 

Since the OR remains identical but the chi-squared statistic and its p-value change dramatically, 
clearly the epidemiologic measure of association and the chi-square are measuring different features 
of the data.  The chi-squared statistic is used to evaluate the degree of numerical evidence that the 
observed association was not a chance finding.  The epidemiologic measure of association is used to 
quantify the strength of association as evidence of a causal relationship. 

Correlation coefficients 

Correlation coefficients are measures of linear or monotonic associations, but again not in the same 
sense as measures of relative risk.  The linear correlation coefficient (Pearson or product-moment 
correlation, usually abbreviated “r”) measures the degree to which the association between two 
variables is linear.  An r of zero means that the two variables are not at all linearly related (they may 
nevertheless be associated in some other fashion, e.g., a U-shaped relationship).  An r of +1 or -1 
means that every pair of observations of the two variables corresponds to a point on a straight line 
drawn on ordinary graph paper.  However, knowing whether or not the relationship is linear tells us 
nothing about the steepness of the line, e.g., how much increase in blood pressure results from a 5% 
increase in body mass.  Other correlation coefficients (e.g., Spearman) measure the degree to which 
a relationship is monotonic (i.e., the two variables covary, without regard to whether the pairs of 
observations correspond to a straight line or a curve). 

Epidemiologists think of the relationships between variables as indications of mechanistic processes, 
so for an epidemiologist, strength of association means how large a change in risk or some other 
outcome results from a given absolute or relative change in an exposure.  If the assumption is 
correct, the strength should not depend upon the range of exposures measured or other aspects of 
the distribution.  In contrast, r is affected by the range and distribution of the two variables and 
therefore has no epidemiologic interpretation (Rothman, p.303).  Standardized regression 
coefficients are also not recommended for epidemiologic analysis for similar reasons (see Greenland, 
Schlesselman, and Criqui, 1986). 
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Correlation coefficients between dichotomous variables — Correlation coefficients can be 
particularly problematic when used to quantify the relationship between two dichotomous (binary) 
factors, especially when one or both of them are rare.  The reason is that correlation coefficients 
between binary variables cannot attain the theoretical minimum (-1) and maximum (+1) values 
except in the special case when the both factors are present half of the time and absent half of the 
time (Peduzzi, Peter N., Katherine M. Detre, Yick-Kwong Chan.  Upper and lower bounds for 
correlations in 2 × 2 tables–revisited. J Chron Dis 1983;36:491-496).  If one or both factors are rare, 
even if the two variables are very strongly related, the correlation coefficient may be restricted to a 
modest value.  In such a case an apparently small correlation coefficient (e.g., 0.15) may actually be 
large in comparison with the maximum value obtainable for given marginal proportions. 

For example, the correlation coefficient between smoking and lung cancer cannot be large when the 
proportion of lung cancer cases is small but that of smokers is large, as shown in the following 
example (Peduzzi PN, Detre KM, Chan YK.  Upper and lower bounds for correlations in 2 × 2 
tables–revisited. J Chron Dis 1983;36:491-496) based on data from Allegheny County, PA: 

    
 Smoker Nonsmoker Total 
Lung cancer 20 2 22 
No lung cancer 14,550 9,576 24,126 
Total 14,570 9,578 24,148 
    
Lung cancer incidence   0.001 
Smoking prevalence   0.60 
Odds ratio   6.6 
 Correlation 

coefficient (r) 
 
R-square (R2) 

 

Based on above data 0.019 0.00036  
If all cases were smokers  0.024 0.00058  
If no cases were smokers -0.037 0.00157  

Here, the correlation coefficient (r) is a meagre 0.019, with a corresponding R2 (“proportion of 
variance explained”) of 0.000356.  Even if all 22 lung cancer cases were smokers, the correlation 
coefficient would rise only to 0.024 (with R2 = 0.0006), and if no lung cancer cases smoked r falls 
only to -0.037.  In contrast, the OR is 6.6, indicating a strong relationship (the RR and IDR are 
essentially the same, since the outcome is so rare).  Therefore the correlation coefficient and 
proportion of variance explained are not readily applicable to relationships between dichotomous 
variables, especially when the row or column totals are very different. 
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Measures of Impact 

Concept 

Relative risk measures compare the risk (or rate) in an exposed group to that in an unexposed group 
in a manner that assesses the strength of association between the exposure and outcome for the 
purpose of evaluating whether the association is a causal one, as we will see in the chapter on Causal 
Inference.  But when we have decided (or assumed) that the exposure causes the outcome, we often 
wish to assess the individual and/or public health importance of a relationship, i.e., 

y How much of a disease can be attributed to a causative factor? 

y What is the potential benefit from intervening to modify the factor? 

The answers to these questions enter into public health policy-making and, in principle, individual 
decision-making, since they indicate the amount or proportion of the burden of a disease that can be 
prevented by eliminating the presumed causal factor (e.g., pollution control) or by carrying out a 
preventive intervention (e.g., fortification of foods).  Examples of the kind of questions that prompt 
the use of measures of impact are: 

1. Now that I am 35 years old, my CHD risk from taking oral contraceptives is twice as great as 
when I was 25.  But how much more risk do I have due to taking the pill? 

2. In HIV-discordant couples in which a condom is not used and one partner has a bacterial 
sexually transmitted disease, how much of the risk of heterosexual transmission of HIV is due to 
presence of the sexually transmitted disease and therefore might be eliminated through STD 
control measures? 

3. How many cases of asthma are due to ambient sulfur dioxide? 

4. What proportion of motor vehicular deaths can be prevented by mandatory seat belt use. 

5. What proportion of perinatal HIV transmission has been prevented through the use of prenatal, 
intrapartum, and neonatal zidovudine? 

To answer these questions we employ attributable fractions, which are measures of impact or 
attributable risk..  The concept of attributable is of central importance for public health, since it 
addresses the question of “so what?”.  Although some students find the topic of attributable risk a 
source of confusion, at least some of their confusion is attributable (!) as much to the terminology as 
to the basic concept.  There are, however, a number of subtleties and legitimate sources of 
confusion related to attributable risk.  To introduce the concept we make the simplifying 
assumptions that the exposure in question has either adverse or beneficial effects but not both, that 
the exposed and unexposed groups are identical except for the exposure, and that either no person 
is susceptible to getting the outcome from both the exposure and some other causal factor (i.e., a 
person who will experience the outcome due to some other causal factor will not experience it due 
to the exposure, and vice-versa).  We also begin by focusing on risks and proportions, rather than on 
rates. 
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One more prefatory note:  at the risk of provoking a reaction of “Duh!”, I will note that questions 
of attributable risk arise only in situations where more than one factor can cause the outcome under 
consideration.  When the outcome has only a single causal factor (typically, where the outcome is 
defined in terms of the etiologic agent, as with infectious diseases) all of the cases must be 
attributable to that factor.  Eliminating the factor would avoid all risk.  If a necessary cause (“C”) 
requires a co-factor or susceptibility factor (“S”) for the effect to occur, then all of the cases are 
attributable both to “C” and to “S”.  This last point also illustrates that attributable fractions do not 
sum to 1.0, even though they are often expressed as percentages.  

Perspectives 

There are a variety of different measures of impact, and at least twice that many names for them. 
(For example, the term “attributable risk” is sometimes used to refer to the risk difference, 
sometimes to the population attribute risk proportion described below, and sometimes to the class 
of measures of impact. See Rothman and Greenland for various usages, with citations)  One reason 
for the multiplicity of measures is simply to have a measure for each of the various ways to ask a 
question about impact.  That is, the question can be asked in absolute (“How much” risk) or relative 
(“What proportion” of risk) terms.  It can be asked with reference specifically to persons exposed to 
the factor or with reference to the whole population.  Also, the factor being considered may cause or 
prevent the outcome.  Various combinations of these alternatives call for different measures.  The 
justification for having more names than measures (and for using the same name for different 
measures) is unclear. 

Absolute perspective 

The absolute perspective for attributable risk is expressed by the questions, “How much of the 
risk is attributable to the factor?” and “How many cases might be avoided if the factor were 
absent?”  The answer is obtained by estimating the risk difference or the difference in the number 
of cases for exposed and unexposed persons.  The risk difference, for example, provides an estimate 
of the amount of risk in exposed persons that is “attributable” to the factor (assuming causality).  
If we are interested in the amount of risk in that is attributable to the exposure in the total 
population (assuming causality), we multiply the risk difference by the exposure prevalence in the 
population.  If we are interested in the actual number of cases that are attributable, i.e., that could 
have been avoided by complete elimination of the exposure (before any irreversible effects have 
occurred), we can multiply the risk difference by the population size. 

Relative perspective 

The relative perspective for attributable risk is expressed by the question, “What proportion of 
the risk is attributable to the factor?” and “What proportion of the cases of the disease might be 
avoided if the factor were absent?”.  Here, we need to express the amount of risk attributable to the 
factor relative to the total risk in exposed persons or in the total population.  The measure for the 
exposed population is sometimes referred to as the “attributable risk proportion” (ARP) or the 
“excess fraction” (see Rothman and Greenland).  The measure for the entire population is 
sometimes referred to as “population attributable risk proportion” (PARP). 
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Attributable risk proportion 

The ARP is directly related to the strength of the association between the exposure and the disease – 
if the exposure doubles the risk, then half of the risk is attributable to the exposure; if the exposure 
triples the risk, then two-thirds of the risk is attributable to the exposure; if the exposure multiples 
the risk fourfold, then the ARP is three-fourths, etc. 

Population attributable risk proportion 

The PARP reflects not only the strength of association but also the prevalence of the exposure in 
the population.  Obviously an exposure can do more damage (have more impact) if it is experienced 
by many people, rather than only a few.  The PARP adds this consideration to the ARP.  Note that 
many older texts and articles refer to the PARP simply as “attributable risk”. 

The following diagram displays the basis for the various measures of attributable risk.  The basic 
idea is, simply, that if we observe incidence I1 in an exposed population and a lower incidence I0 in a 
comparable unexposed population, and we make the assumption that the exposure is causing the 
higher incidence in the exposed population, then it is logical to suppose that the difference, I1–I0, is 
the amount of incidence that is due to the exposure.  Then, depending on the way in which we are 
asking the question, this “attributable incidence” is expressed as an absolute difference or as a 
relative difference, and in relation to exposed persons only or to the entire population. 

Diagrammatic representation of attributable risk  
in a population 

Incidence     
     

I1   I1  = Incidence 
    in exposed 
     
  (I1 – I0) n1 (I1 – I0) =  Incidence 
    difference 

I0     
   I0  = Incidence 
 I0n0 I0n1  in unexposed 
     
 n0 n1   
 (Unexposed population) (Exposed population)   
     
 P1  =  Proportion exposed   

In the above diagram: 
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n0 and n1 represent, respectively, the numbers unexposed and exposed persons, or the amounts 
of unexposed and exposed population-time; n = n0 + n1 

P0 and P1 represent, respectively, the proportions of unexposed and exposed persons or 
population time (i.e., P1 = n1/n) 

I0 is the incidence proportion (cumulative incidence) of disease in unexposed persons, so I0n0 is 
the expected number of cases among unexposed persons, i.e., the area of the unshaded 
rectangle. 

I1n1 is, similarly, the expected number of cases among exposed persons, i.e., the combined area 
of the two shaded rectangles. 

(I1–I0) is the incidence difference or attributable risk.  It gives the amount of incidence 
“attributable” to exposure, i.e., the amount of incidence in exposed persons over and above 
the incidence they would be expected to have had (I0) in the absence of exposure. 

(I1–I0)n1 is the expected number of cases among exposed persons beyond those expected from 
their background incidence (I0), i.e., attributable cases (the area of the cross-hatched 
rectangle).  Attributable cases are simply the attributable risk multiplied by the number of 
exposed persons. 

RR is the relative risk (risk ratio, CIR), I1/I0 

The attributable risk proportion in exposed persons [ARP] is the proportion of exposed cases that is 
“attributable” to the exposure.  This proportion is: 

 
  “Attributable cases” (I1 – I0)n1 I1 – I0 RR – 1 

ARP = ————————— = ———— = ——— = ——— 
  All exposed cases I1n1 I1 RR 

(the RR's are obtained by dividing numerator and denominator by I0). 

Similarly, the population attributable risk proportion [PARP], the proportion of all cases that is 
attributable to exposure, is: 

   
“Attributable cases” 

 
(I1 – I0)n1 

 
I1n1 – I0n1 

 
P1(RR–1) 

PARP = ————————— = ————— = ————— = ——————
  All cases I1n1 + I0n0 I1n1 + I0n0 1 + P1 (RR–1) 

The right-hand formula (see the assignment solution for its derivation) displays the relationship of 
the PARP to exposure prevalence and “excess risk” (RR-1).  The denominator cannot be less than 1, 
so if the numerator is very small (e.g., very low exposure prevalence and/or weak association), then 
the PARP will also be very small.  Conversely, for a very prevalent exposure (e.g., P1=0.80) and very 
strong association (e.g., RR=9), then the numerator [0.80 × (9-1)] will be large (6.4).  The 
denominator will be close to this value, since the 1 will have little influence.  Thus, the PARP will 
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show that a large proportion (i.e., close to 1.0) of the cases are attributable.  As the prevalence rises, 
the PARP comes closer to the ARP (when P1=1, as it does in the exposed population, the PARP 
formula reduces to that for the ARP). 

The joint influence of strength of association and prevalence of exposure on the PARP may be 
easier to see in the following algebraic reformulation: 

 1 
PARP = ———————— 

 1 + 1/[P1(RR–1)] 

Definitions and formulas 

Attributable risk [absolute]:  the amount of the risk in the exposed group that is related to their 
exposure.  Attributable risk is estimated by the cumulative incidence difference or incidence density 
difference: 

    AR  =  I1 – I0 

Population attributable risk [absolute]:  the amount of risk in the population (i.e., in exposed and 
unexposed persons taken together) that is related to exposure.  Population attributable risk is equal 
to the attributable risk multiplied by the prevalence of the exposure: 

   PAR  =  AR × P1  =  (I1 – I0)P1  =  I  –  I0 

[This measure is not often used, but is helpful here to complete the pattern.  “I” without a subscript 
refers to the total, or crude incidence.  The equivalence of the middle and right-hand terms in the 
above expression can be seen by substituting (I1P1 + I0P0) for I and (I0P0 + I0P1) for I0.] 

Attributable risk proportion (or percent) [ARP]:  the proportion (percent) of the risk in the 
exposed group that is related to their exposure. 

   
I1  –  I0 

 
RR – 1 

 
AR 

ARP = ——— = ———— = —— 
  I1 RR I1 

 

Population attributable risk proportion (or percent) [PARP]:  the proportion (percent) of the risk 
in the population that is related to the exposure. 

   
P1 (RR – 1) 

 
I – I0 

 
PAR 

PARP = ——————— = ——— = ——— 
  1 + P1 (RR – 1) I I 
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 (Derivations are shown in the assignment solutions) 

Case-control studies 

The absolute measures (AR and PAR) require estimates of incidence, so they cannot be estimated 
from the results of a case-control study without additional information on incidence.  If the disease 
is rare, the ARP and PARP can be estimated from a case-control study by using the OR as an 
estimate of the RR.  The ARP is then simply (OR – 1)/OR.  A formula for the PARP can be derived 
using Bayes Theorem and algebra (see below): 

   
PE|D (RR – 1) 

 

PARP = ——————— = (PE|D) × ARP 
  RR  

where PE|D is the proportion of cases who are exposed.  Since the right-hand formula does not 
require knowledge of the exposure prevalence in the population nor the actual disease incidence, this 
formula can be estimated from a case-control study which gives an estimate of RR or IDR. 

Preventive fraction 

When I1 < I0 (e.g., for a vaccine, use of protective equipment, or pollution control devices), a 
“preventive” fraction is needed.  Since a protective exposure (assuming causality) reduces the risk of 
the outcome, we cannot think in terms of “attributable cases” since the “cases” have not occurred!  
Instead, we define a preventive fraction as a proportion of “potential cases” that were prevented, 
i.e., that did not occur because of the protective exposure.  For vaccines, this proportion is referred 
to as vaccine efficacy or effectiveness. 

As with attributable risk, there are two variants, one for those exposed to the preventive 
intervention and one for the population as a whole (both are based on the “relative” perspective; the 
absolute perspective does not appear to be used).  The following diagram, similar to that for 
attributable fractions, will be used. 
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Diagrammatic representation of preventive fraction 
in a population 

Incidence     
     
     

I0   I0  = Incidence 
    in exposed 
     
 (I0 – I1) n0    
     

I1   I1  = Incidence 
    in  
 I1n0 I1n1  unexposed 
     
 n0 n1   
 (Unexposed population) (Exposed population)   
     
 P1  =  Proportion exposed   

 

Where n1, n0, I1, I0 are as before and (I0 - I1)n1 denotes the “prevented cases”, i.e., the number of 
potential cases that would have occurred if the exposure were not associated with lower incidence 
(recall that I0 is greater than I1) or had not been present.  I1n1 are the cases that occurred in spite of 
the intervention. 

Therefore, the preventive fraction in the exposed (PF1) quantifies the prevented cases as a 
proportion of all potential cases in exposed persons.  The preventive fraction in the population (PF) 
expresses the prevented cases as a proportion of all potential cases in the entire population.  In each 
case, the “prevented cases” are cases that would have occurred but for the preventive exposure; the 
“potential cases” are prevented cases plus actual cases. 

From the diagram: 

Preventive fraction in exposed 

 (PF1 -  for those exposed to the preventive measure) 
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  “Prevented potential cases” (I0 – I1) n1 (I0 – I1)   

PF1 = ——————————— = ————— = ——— = 1 – RR 
  All potential exposed cases I0n1 I0   

(since I1 < I0, RR < 1.0). 

Preventive fraction in the population (PF) 
 

  “Prevented potential cases” (I0 - I1) n1 (I0 - I1) P1   
PF = ——————————— = ————— = ————— = P1 PF1 
  All potential cases I0 n I0   

(recall that n1/n is the proportion exposed, P1). 

The preventive fraction represents the proportion (or percent) of the potential burden of disease 
which is prevented by the protective factor.  The following formula displays this aspect clearly: 
 

  (I0 – I1) n1  (I0n1 – I1n1) + (– I0n0 + I0n0)  (I0n1 + I0n0) (I1n1 + I0n0)  I0 – I
PF = ———— = ——————————— = ————— – ————— = ——
  I0 n  I0 n  I0 n I0 n  I0 

I0 is the risk in people unexposed to the preventive measure.  If no one received its benefits, then 
the risk in the entire population would also be I0.  The actual overall risk, I, represents an average of 
the risks for those exposed to the preventive measure and those not exposed, weighted by their 
respective sizes (I1n1 + I0n0).  So I0–I is the difference between the risk that could have been observed 
and the risk that was observed, which difference is assumed to be attributable to effectiveness of the 
preventive measure and its dissemination.  The last formula expresses this difference as a proportion 
of the risk in the absence of the preventive measure. 

In all of these measures, of course, the assumption is made, at least for purposes of discussion, that 
the relationship is causal, and in some cases, that removing the cause (or introducing the preventive 
factor) is fully and immediately effective.  In any specific example, of course, the latter assumption 
can be varied. 

Unified approach to attributable risk and preventive fraction 

Although there are many subtleties, the basic idea of attributable risk and preventive fraction is 
simple.  That simplicity is overshadowed by the array of formulas.  The following conceptualization 
brings out the underlying simplicity and may be the easiest way to derive formulas when needed. 

The basic objective is to quantify the impact of an exposure or preventive measure in terms of the 
burden of a disease.  Large impacts come from: 
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1. high frequency of disease 

2. powerful risk or preventive factor 

3. large proportion of people exposed to the factor 

One aspect that complicates the formulas is the fact that incidence in people exposed to a risk factor 
is greater than in the unexposed, but incidence in people exposed to a preventive factor is lower 
than in the unexposed.  We can side-step this difference by thinking in terms of the higher incidence 
and the lower incidence. 

The diagram on the following page represents a population at risk in which people can be classified 
into two exposure groups, one with lower incidence (e.g., physically active) and the other with higher 
incidence (e.g., sedentary).  The width of each tall rectangle indicates the number of people in the 
corresponding exposure group.  Physical activity and sedentary lifestyle make a good example, 
because they will work as well for the risk factor (attributable risk) perspective and the preventive 
factor (preventive fraction) perspective.  Let us use IL and IH to represent the lower and higher 
incidence, and NL and NH to represent the number of people or amount of population time in the 
lower (physically active) and higher incidence (sedentary) categories, respectively. 

In this diagram, rectangle A [ NH (IH – IL) ] represents the attributable cases.  These are the cases 
that would not have occurred were it not for the risk factor (or for the absence of the preventive 
factor).  Rectangle P [ NL (IH – IL) ] represents the prevented cases.  These cases are only potential, 
since they have not occurred.  They are the cases that would have occurred had the preventive factor  
(physically activity) not been present (or if the risk factor – sedentary lifestyle – were to spread to the 
lower incidence group).  Rectangle B [ NL IL + NH IL ] represents the unavoidable (background) 
cases.  They occur despite the presence of the preventive factor and absence of the risk factor.  The 
total number of cases is represented by the sum of the rectangles for the two exposure groups 
[ NL IL + NH IH ].  If I is the overall (crude) incidence, then the total number of cases can also be 
written as [ (NL + NH) I ].  The total of potential cases (i.e., those observed plus those prevented) 
corresponds to [ (NL + NH) IH ], the result of subjecting the entire population to the higher 
incidence. 
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Diagrammatic representation attributable and prevented cases 
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With this diagram and notation we can express both attributable and preventive fractions in a more 
parallel manner.  The population attributable risk (PARP) is simply A/(A + B) and the prevented 
fraction (PF) is simply P/(A + B + P).  We can therefore write the formulas we derived earlier as: 

 
   

“Attributable cases” A NH (IH – IL) 
 

PH (IH – IL) 
PARP = ———————— = ———— = —————— = ————— 

  All cases All cases NL IL + NH IH  I 

 

The last step made use of the facts that NH/(NL + NH) is the prevalence of the exposure and that 
the overall incidence I equals the total cases divided by the total population.  Since the attributable 
risk proportion (ARP) concerns only the exposed group, PH = 1 and ARP = (IH – IL)/IH, which 
also equals (RR – 1)/RR. 

Similarly, the prevented fraction is: 

   
“Prevented cases” P NL (IH – IL) 

 
PL (IH – IL) 

PF = ——————— = —————— = —————— = ————— 
  All potential cases  (NL + NH) IH  (NL + NH) IH   IH 

 

If we divide numerator and denominator by IH, we obtain PL (1 – RR).  The prevented fraction in 
those exposed to the preventive intervention concerns only the lower incidence group, so PL = 1 
and PF1 = (1 – RR). 

With this notation we can see the essential equivalence between the PARP and the PF.  They both 
involve the incidence difference times the number of people in the “exposed” group.  They both are 
expressed as a proportion of all cases, except that for the PF we need to include the potential cases 
in the denominator – otherwise it would not be a proportion. 

PARP in a case-control study 

Case-control studies, as will be discussed in the following chapter, do not provide an estimate of 
incidence unless additional information is available.  Nevertheless, we can use incidence ratios (RR) 
instead of incidences, and then we can use the OR to estimate the RR.  If the control group is 
population-based, it may provide a direct estimate of exposure prevalence.  If not, we can modify 
the formula and use the prevalence of exposure in the cases.  This prevalence is simply the exposed 
cases (NHIH) divided by all cases (NLIL+NHIH), which is very similar to the PARP formula. 
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The result, (NHIH)/(NLIL+NHIH), is very similar to the PARP formula.  The only difference is in 
the numerators: NHIH versus NH (IH – IL).  We can get from the exposure prevalence expression to 
the PARP by multiplying the former by (IH – IL)/IH or, equivalently, by (RR – 1)/RR, which we can 
estimate by (OR – 1)/OR if the disease is rare.  So we can estimate PARP for a rare disease from a 
case-control study that can measure neither incidences nor exposure prevalence by using OR to 
estimate RR in: 

  
NH (IH – IL) PH|D (RR – 1)  

PARP = —————— = ——————— = PH|D (ARP) 
  NL IL + NH IH RR  

This diagram and these formulas are worth becoming very familiar with, since doing so will help to 
develop an in-depth understanding of incidence, prevalence, relative risk, impact, and weighted 
averages and also to derive any of the basic attributable risk or preventive fraction formulas.  Picture 
how the diagram will change as the prevalence of the exposure increases or decreases.  How will the 
wavy line (the overall incidence, I) move as the other variables change?  How is it related to IL, IH, 
NL, NH?  (This is definitely a key relationship to know).  What happens when everyone is exposed?  
When no one is exposed?  What is the prevalence of exposure in cases?  How will it change as 
incidence and/or overall exposure prevalence change?  

Interpreting attributable fractions 

Although the basic concept of attributable risk is intuitively meaningful, it turns out that it has many 
subtleties and nuances.  Appreciation of the subtleties has come only relatively recently, so that 
much of what has been written (even by yours truly) and some of what is still being written 
(hopefully not by yours truly) is not completely accurate.  The confusion is aggravated by the 
multitude of terms that have been introduced, with usages that differ from one author to another.  
In addition to multiple terms for the same concept (a common problem in epidemiology), there are 
also instances where a single term is applied to different concepts.  Therefore, if you find yourself 
being confused by something you are reading in this area, always consider the possibility that what 
you are reading may be confused as well. 

The complications arise when we try to interpret attributable fractions (e.g., ARP, PARP) in etiologic 
(causal) terms, which is of course what we were interested in at the outset.  Consider the following 
two questions, which figure prominently in product liability litigation, where courts have held that 
recovery requires a finding that the plaintiff's disease was “more likely than not” a consequence of 
exposure to the product (e.g., asbestos, prescription drugs, silicone breast implants, tobacco). 

y Among nonsmokers exposed to X, what proportion of Y were caused by X? 

y What is the probability that person Z's case of Y resulted from X? 

What distinguishes these two questions from the illustrative ones at the beginning of the section is 
the use of causal terminology (“caused by”, “resulted from”) instead of the more general (and 
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vaguer) “attributed to”.  Incidence and measures derived from incidence show only over, or net 
effects, not the causal processes that produce them.  For example, even though a sedentary lifestyle 
increases the risk of coronary heart disease, physical exercise can acutely increase the risk of a 
cardiac event.  When we compare the rate of cardiac events in a sedentary group to the rate in a 
group of people who get regular exercise, the difference in incidence rates measures the increased 
rate of cardiac events associated with a sedentary llifestyle.  But if some of the incidence of cardiac 
events in exercisers actually results from exercising, then the difference in incidence between the two 
groups measures the net harm from a sedentary lifestyle, rather than the total effect.  By comparing 
the incidence rates we are letting the cardiac events in the exercisers offset some of the events in the 
sedentary group, with the relative size of benefit and harm depending upon the kinds of people (e.g., 
genetic characteristics or distributions of other exposures) who are exercise and do not exercise.  In 
general, epidemiologic data will not reveal what contributes to the net incidence difference. 

Similarly, if the action of one causal factor can preempt the opportunity for another factor to cause 
the disease (because the disease has already occurred), then there is no way to know from 
epidemiologic data which factor caused the disease in a person or population exposed to both causal 
factors.  For this reason, it is problematic to interpret attributable risk measures as etiologic 
fractions, although many writers have used the terminology interchangeable.  According to 
Greenland (1999: 1167), the “key fallacy in much of the literature and testimony regarding the 
probability of causation is the use of the following generally incorrect equations:  Etiologic Fraction 
= Rate Fraction and Probability of Causation = Rate Fraction . . .”, where the etiologic fraction (EF) 
is “the fraction of these individuals for whom exposure was a contributory cause of the disease”  
(Greenland, 1999: 1166) and the rate fraction (RF) is the incidence rate difference divided by the 
incidence rate in the exposed (analogous to the ARP, except derived from incidence rates rather 
than incidence proportions) (p1167).  In algebraic terms, EF=(A1+A2)/AT, where A1 are exposed 
persons who would have developed the disease at some point but whose disease was accelerated due 
to the exposure, A2 are exposed persons whose disease would never have occurred without the 
exposure, and AT is A1+A2 plus exposed persons who develop the disease completely 
independently of exposure.  The EF estimates the probability of causation, since (A1+A2)/AT is 
the probability that a person randomly selected from AT had his/her disease accelerated by (A1) or 
completely caused by (A2) the exposure.  The proportion A2/AT is the excess fraction, since it 
gives the proportion of the total caseload that would not have occurred without the exposure 
(Greenland, 1999), regardless of time to occurrence.  (Greenland observes that the failure to 
distinguish the excess fraction from the etiologic fraction is a “major problem in most of the 
literature”, and regards the term “attributable risk” as particularly misleading even though it 
“dominates the American literature”, both in biostatistics and epidemiology [p.1168].) 
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________________________________ 

Answer to question at beginning of the chapter about the association between CHD and OC: 

The proportion of CHD cases in the sample of 40 must be somewhere between 30/60 = 0.5 
(the proportion of cases among OC users) and 20/90 = 0.2222 (the proportion among 
nonusers).  If the sample consists of 22 users and 18 nonusers, then the best estimate of the 
sample proportion of CHD cases is: 

Proportion  22 18    
with = ––– ––– 0.5(0.55)+0.2222(0.45) = 0.375
CHD  

0.5 ( 
40 

) + 0.2222 (
40 

) =
   

Therefore, the best estimate of the overall proportion with CHD is approximately 0.375 or 
15 women in the sample of 40. 
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Summary 

There are three categories of measures: Frequency/extent, association, impact 

(1)  Measures of frequency or extent (especially prevalence and incidence) 

In epidemiology, incidence is the occurrence of any new health-related event (e.g., disease, death, 
recovery).  Incidence is quantified as a: 

 PROPORTION:  the proportion of a population who experience the event; also called 
“RISK”, since it estimates the average risk per person for the period.  [Risk] ODDS are simply a 
transformation of risk [risk/(1-risk)]. 

 RATE:  the number of health events per person per unit time; corresponds to the average 
risk per person per unit time. 

  
 

MEASURE 

 
EPIDEMIOLOGIC 

ESTIMATOR 

 
 

UNITS 

 
 

LIMITS 

 Risk Cumulative Incidence (CI) Dimensionless 0 to 1 
 Rate Incidence Density  (ID) l/time 0 to “infinity” 
 Oddsr CI / (1-CI) Dimensionless 0 to “infinity” 

CI (a proportion) is used to estimate an individual's risk of developing a disease.  ID (a rate) is used 
to estimate the force intensity of occurrences.   Risk and rate are related, since the greater the 
intensity of occurrences in a population, the greater the risk of an event to any member of the 
population.  When CI is small (i.e., because of a low the intensity of disease or a short time interval), 
ID is approximately equal to CI divided by the number of years of followup.  When CI is not small, 
the relationship is more mathematically complex. 

Application 

The choice of an incidence measure (either CI or ID) depends upon: 

a.  OBJECTIVES OF THE STUDY 

CI provides a direct estimate of an individual's risk, as may be useful for making clinical and/or 
personal decisions; 

ID is often preferred for assessment of the population impact of a health event or for testing 
etiologic hypotheses. 
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b.  PRACTICAL CONSIDERATIONS 
CI may be preferred: 
y if the health event has a restricted risk period 

y if it is difficult to ascertain time of change in health status 

y for ease of comprehension. 

ID may be preferred: 

y if the health event has an extended risk period 

y if lengths of follow-up vary 

y if there is a large loss to follow-up 

y if the health event can recur (e.g., bone fractures). 

A ratio of two risk estimates is a “risk ratio” (RR).  A ratio of two rate estimates is a “rate ratio” 
(RR).  A ratio of two odds is an “odds ratio” (OR).  All these measures are sometimes referred to as 
“relative risk” (RR), though strictly speaking only the first pertains to risk. 

(2)  Measures of association 

 e.g. Ratios of proportions (CIR), ratios of rates (IDR), ratios of odds (ORr and ORe) 

 

  a / (a + c)  CI in exposed  
CIR = ————— = ——————— = “risk ratio”, “relative risk” 
  b / (b + d)  CI in unexposed  

 where a=exposed cases, b=unexposed cases, c=exposed noncases, d=etc. 

 In probability terms, CIR = Pr(D|E) / Pr(D|E) 

How do we interpret the CIR? 

a. If CIR = 1, then no association between exposure and disease. 

b. If CIR > 1 then exposure appears to be associated with increased risk of disease, i.e., 
exposure may be harmful. 

c. If CIR < 1 then exposure appears to be associated with decreased risk of disease, i.e., 
exposure may be protective. 

(CIR's less than 1.0 can be awkward to think about, so it many cases it is helpful to reverse the 
disease or exposure category to obtain the reciprocal of the CIR.  A CIR of 0.4 then becomes a CIR 
of 2.5) 
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CIR can be directly estimated if the exposure status is known before the occurrence of disease, as in 
a prospective followup study or a retrospective cohort study. 

When a disease is rare, the ORr approximates the CIR – a useful thing to know because logistic 
regression models may be employed to estimate odds ratios: 

  Odds of disease in exposed  
ORr = ———————————— = CIR 
  Odds of disease in unexposed  

The OR (whether the “risk OR” or “exposure OR”) is easy to calculate as the cross-product ratio:  
(a × d) / (b × c). 

The risk and exposure OR's are calculated identically from a 2 × 2 table, but that doesn't mean they 
are equivalent “epidemiologically”.  Remember that the numbers in the 2 × 2 table are only an 
abstraction from the actual study experience and must be used with the design in mind (i.e., a case-
control design is not equivalent to a longitudinal design).  In a cohort study, we typically compute a 
CIR or an average IDR.  In a follow-up study without a fixed cohort, we typically compute an IDR.  
In a case-control study we typically compute an OR.  In a cross-sectional study, we typically 
compute a prevalence ratio or a prevalence OR.  If one of the cumulative incidences is known, the 
OR estimate (e.g., from a logistic regression model – see chapter on Data Analysis and 
Interpretation) can be converted to a risk ratio estimate by the following formula (Zhang and Yu, 
1998; notation changed to match that used in this chapter): 

 OR 
RR = ———————————— 
 (1 – CI0) + (CI0 × OR) 

A prevalence ratio can be estimated from a prevalence odds ratio in the same manner, if the 
prevalence in the unexposed is known.  

3)  Measures of impact 

“How much” of a disease can be attributed to an exposure can be considered as: 

y an amount of the risk or incidence in the exposed (CID) or in the total population (usually 
presented as a number of cases) 

y a proportion of the risk or incidence in the exposed (ARP) or in the total population (PARP). 

 The contributors to impact measures are: 

1. Strength of association – affects all measures of impact. 

2. Level of background incidence – affects only amount of incidence (CID, IDD) 

3. Population prevalence of the exposure – affects only impact in the population (e.g., PARP).
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Appendix — Relating risk factors to health outcomes 

WARNING:  this chapter has recently been converted to MS Word, so some algebraic errors may 
have been introduced. 

Estimating exposure-specific incidence and attributable risk from a case-
control when the crude incidence is known 

This procedure makes use of the fact that the crude incidence can be expressed as a weighted 
average of exposure-specific incidences: 

 I = P1I1 + P0I0 

where: 

I = crude incidence 

I1 = incidence in exposed population 

I0 = incidence in unexposed population 

P1 = proportion of the population that is exposed 

P0 = proportion of the population that is unexposed 

Since the RR (relative risk, CIR, IDR) = I1/I0, it is possible to substitute RR × I0 for I1 in the above 
expression: 

 I  =  P1  ×  RR  ×  I0  +  P0I0 

Similarly, since P1 + P0 = 1, we can substitute for 1 - P1 for P0: 

 I  =  P1  ×  RR  ×  I0  +  (1 – P1) ×  I0 

Solving for I0 yields: 

 I I 
I0 = ———————— = —————— 
 P1  ×  RR + (1 – P1) 1 + P1 (RR – 1) 

Since for a rare disease we can estimate RR by using OR, the final formula is: 
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 I 
I0 = ——————— 
 1 + P1 (OR – 1) 

This formula can be used for a case-control study where: 

1. The control group has been selected in such a way that the proportion exposed estimates P1 in 
the population; 

2. There is information available to estimate the crude incidence of the disease; 

3. The disease is sufficiently rare (e.g., incidence less than 10% by the end of follow-up) so that the 
OR estimates the RR fairly well. 

Once we have estimated I0, we estimate I1 by multiplying by the OR.  From I1 and I0 we can 
estimate attributable risk. 

Demonstration that OR estimates CIR when CI's are small 

For this demonstration and the following one, a different notation will simplify the presentation.  
We will use D and E for disease and exposure, so that we can upper case for presence and lower 
case for absence.  Thus, subscript E will refer to the presence of exposure, subscript e will refer to 
the absence of exposure.  Similarly, subscript D refers to cases, subscript d to noncases.  P stands 
for probability, which can also be interpreted as prevalence (when applied to exposure) or risk (when 
applied to disease).  The vertical bar means “given” or “conditional on”.  Thus: 

PE = Probability of being exposed (i.e., prevalence of exposure) 

Pe = Probability of being unexposed (1 - PE) 

PD = Probability of disease (risk) 

Pd = Probability of nondisease (1 - PD) 

PE|D = Probability of exposure conditional on disease (i.e., prevalence of exposure in cases) 

Pe|D = Probability of nonexposure conditional on disease (i.e., 1 - PE|D) 

PE|d = Probability of exposure conditional on non-disease (i.e., prevalence of exposure in 
noncases) 

Pe|d = Probability of nonexposure conditional on non-disease (i.e., 1 - PE|d ) 

PD|E = Probability of disease (risk) conditional on exposure (i.e., risk of disease in the exposed) 

Pd|E = Probability of nondisease conditional on exposure (i.e., 1 - PD|E) 

PD|e = Probability of disease conditional on non-exposure (i.e., risk of disease in the unexposed) 

Pd|e = Probability of nondisease conditional on non-exposure (i.e., 1 - PD|e) 
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By definition, oddsr  =  risk / (1 - risk).  The risk odds ratio (ORr) is the ratio of odds for exposed 
persons to odds for unexposed persons.  In probability notation: 

  PD|E /(1 - PD|E)  PD|E (1 - PD|e)  (1 - PD|e) 
ORr = ————————— = ———— × —————— = RR × —————— 

  PD|e /(1 - PD|e)  PD|e (1 - PD|E)  (1 - PD|E) 

since PD|E / PD|e = RR.  When a disease is rare, PD|E and PD|e are both small, so ORr ≈ RR.  
Using CI to estimate risk and CIR to estimate RR, we have ORr ≈ CIR when CI is small in both 
exposed and unexposed groups.  To illustrate, make up some 2 × 2 tables to reflect various disease 
risks and CIR's, and compute the OR's.  You can verify that the OR is always farther from 1.0 than 
the CIR but when the incidence is below about 10%, the OR deviates little from the CIR.  The OR 
can also be expressed as ORr = CIR + (ORr - )PD|E (when OR > 1; see Hogue, Gaylor, and 
Schultz, 1983), which demonstrates that the absolute difference between OR and CIR is related to 
the size of the OR and the disease risk in exposed persons. 

Estimating PARP from a case-control study without additional information 

In a case control study where the OR estimates the CIR, we can use the OR and the proportion of 
exposure in cases to estimate the PARP. 

Begin with the formula presented earlier: 

 P1 (RR – 1) 
PARP = —————————— 

 1 + P1 (RR – 1) 

Translating to the new notation (PE for P1): 

 PE (RR – 1) 
PARP = —————————— 

 1 + PE (RR – 1) 

Removing the parentheses in the denominator and substituting (PD|E/PD|e) for RR in the 
denominator (only): 

 
  PE (RR – 1) PE (RR – 1) PE (RR – 1) 

PARP = —————————— = ————————— = —————————————— 
  1 + PE (RR – 1) 1 + PE RR – PE 1 + PE (PD|E / PD|e ) – PE

 

Multiplying numerator and denominator by PD|e: 
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  PD|e  PE (RR – 1) PD|e  PE (RR – 1) 
PARP = —————————————— = ———————————— 

  PD|e (1 + PE (PD|E / PD|e ) – PE) PD|e + PE PD|E  – PD|e PE 

Substituting (1-Pe) for the second PE in the denominator (only) and re-arranging terms: 

 

  PD|e  PE (RR – 1) PD|e  PE (RR – 1) 
PARP = ————————————— = —————————————— 

  PD|e  +  PE PD|E  –  PD|e (1-Pe) PD|e  +  PE PD|E  – PD|e + Pe PD|e

Removing + PD|e and –PD|e from the denominator, we then have PEPD|E + PePD|e. 

Since this is a weighted average of risk in the exposed (weighted by the probability of exposure) plus 
risk in the unexposed (weighted by the probability of nonexposure), the denominator simplifies to 
PD (this was presented a couple of pages earlier as:  I = P1I1 + P0I0).   Therefore we have: 
 

  PD|e  PE (RR – 1) PD|e  PE (RR – 1) PE PD|e (RR – 1) 
PARP = ————————— = ———————— = ———————— 

  PE PD|E  +  Pe PD|e PD PD 

From Bayes Theorem it can be shown that: 

PE PE|D 
—— = —— 
PD PD|E 

so that the preceding formula can be written: 

 
  PE|D PD|e (RR-1) PE|D (RR – 1) PE|D (RR – 1) 

PARP = ———————— = ——————— = ——————
  PD|E PD|E / PD|e RR 

which can also be written as PE|D ARP. 

In a case-control study, we know PE|D, the probability (proportion) of exposure among cases and 
use the OR to estimate the RR (assuming that the disease is rare). 
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Relating risk factors to health - Assignment

1. Give a one-sentence definition, in terms that you might employ in an article for the educated but
non-professional public, of:

a. Cumulative incidence ratio

b. Incidence density ratio

c. Odds ratio

2. The following data come from a study conducted at Group Health Cooperative of Puget Sound
(Orleans CT, Schoenbach VJ, Wagner EH, Quade D, Salmon MA, Pearson DC, et al.  Self-help
quit smoking interventions.  J Cons Clin Psychol 1991:59:439-448).  Smokers wanting to quit were
enrolled into a self-help, quit-smoking trial and were randomized into one of four groups
(M=quitting manual, MS=M plus social support brochure, MST=MS + telephone counseling
calls, and C[control]=annotated guide to existing quitting resources).  Interventions were then
mailed to participants, and abstinence from tobacco use (not even a puff for the past 7 days and
no use of other tobacco in the past month) was measured by mailed questionnaire and/or
telephone interview at approximately 8-, 16-, and 24-months after recruitment.  The 16-month
follow-up obtained smoking status information for 1877 participants; salivary cotinine was
measured on a geographically-selected sample of self-reported abstainers.

__________________________________________________________________

GHFCA3C:  Free & Clear (Schoenbach/Orleans) - Live data
Quit rates (SFQUIT7) by randomization group(s)
2nd follow-up respondents           16:17 Wednesday, July 26, 1989
All subjects

TABLE OF SFQUIT7 BY RGP
SFQUIT7(Quit 7 days at FU2)     RGP(Randomization Group)

            Frequency  |
            Percent    |
            Row Pct    |
            Col Pct    |C       |M       |MS      |MST     |  Total
            -----------+--------+--------+--------+--------+
            0:Quit     |     84 |     71 |     67 |    109 |    331
                       |   4.48 |   3.78 |   3.57 |   5.81 |  17.63
                       |  25.38 |  21.45 |  20.24 |  32.93 |
                       |  18.06 |  15.20 |  14.23 |  23.00 |
            -----------+--------+--------+--------+--------+
            1:Smoking  |    381 |    396 |    404 |    365 |   1546
                       |  20.30 |  21.10 |  21.52 |  19.45 |  82.37
                       |  24.64 |  25.61 |  26.13 |  23.61 |
                       |  81.94 |  84.80 |  85.77 |  77.00 |
            -----------+--------+--------+--------+--------+
            Total           465      467      471      474     1877
                          24.77    24.88    25.09    25.25   100.00
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a. Quit rates were measured as the proportion abstinent at the time of follow-up.  What was
the overall quit rate for the 1877 smokers?

b. Is this "quit rate" a cumulative incidence-type measure or an incidence density-type measure?
Briefly explain the basis for your answer.

c. Give one or more reasons for which type of incidence measure (i.e., a cumulative incidence
type or an incidence density type) is preferable given the study design.

d. Briefly describe the 16-month results of the study.

e. The MS and MST conditions received identical interventions except that the MST condition
included the availability of a toll-free telephone "Quitline" and four counselor-initiated
telephone calls during the first year of follow-up.  Compare the quit rates for the MS and
MST groups, and compute a CIR and an OR.  Compare your calculations of the CIR and
OR and briefly indicate the reason for the difference in them and which measure is
preferred.

f. Compute and interpret an appropriate measure of impact of the telephone component.

3. Hepatocellular adenoma (HCA), a rare type of benign though potentially fatal liver tumor, is
associated with long term oral contraceptive (OC) use, especially in older women.  A case-
comparison study showed that the effect of duration of OC use on the risk of developing HCA
is marked:

Duration Rate ratio
1 or less   1*
4 years 9

4-7 years 120
8+ years 500
* Reference level (includes none)

(Source:  Armed Forces Institute of Pathology and Center for Disease Control.  Increased
risk of hepatocellular adenoma in women with long term use of oral contraceptive.
Morbidity and Mortality Weekly Report 26 (36):293-294, September 9, 1977, cited in Oral
Contraceptives, Population Reports Series A, Number 5, January 1979.)

Assuming that the incidence density (ID) of HCA for one year or less use of OC is 0.06/100,000
per year (i.e., 6 per 10,000,000 women-years), what are the attributable rate (rate difference) over
baseline and the attributable rate proportion associated with each duration category of OC use?
Interpret these measures and state what implications you might draw.  (For this question, use the
attributable risk formulas from the chapter even though the data are for rates.)
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4. In a study of adverse effects of radiotherapy among immigrant children in Israel (Ron E, Modan
B, and Boice JD. Mortality after radiotherapy for ringworm of the scalp. Am J Epidemiol
1988:127:713-25), 10,834 irradiated children were identified from original treatment records and
matched to 10,834 nonirradiated, tinea-free comparison subjects selected from the general
population.  Follow-up was accomplished using the Israeli Central Population Registry, which
enabled nearly all subjects to be followed forward in time (retrospectively) for a mean of 26 years
following age at irradiation.  Computation of person-years of observation began at the date of
treatment for tinea capitis, or the equivalent date for the matched comparison subjects, and
ended at the date of death for those who died or May 31, 1982 for those not known to have
died.  Person-years of observation were: irradiated subjects, 279,901 years; comparison subjects,
280,561 years.  During the follow-up there were 49 deaths from cancer in irradiated subjects, and
44 in the nonirradiated population comparison subjects (data from table 3 in Ron et al.).  (For
these questions, use the attributable risk formulas from the chapter even though the data are for
rates.)

a. What are the rates of cancer death in the two groups?

b. Calculate and describe in one sentence the incidence density ratio for cancer death
comparing irradiated and nonirradiated subjects?

c. Assuming causality, estimate how many cancer deaths per 100,000 person years of follow-up
of irradiated subjects were attributable to radiotherapy.

d. Again assuming causality, what proportion of cancer deaths in irradiated subjects were due
to radiation therapy?

e. If 10% of this population had received radiotherapy for tinea capitis, what proportion of all
cancer deaths within the relevant age span (mean age 7 to 33 years) would be due to
radiation therapy?

5. Algebraic calisthenics:  There are various formulas for the population attributable risk
proportion (PARP), including several given in the lecture handout.  Demonstrate the algebraic
equivalence of the PARP formulas in the text, i.e., derive each of the subsequent formulas from
the one derived from the attributable risk diagram:

"Attributable cases" (ID1 - ID0)n1
———————— = ——————

All cases I1n0 + I1n1

Icrude - I0 p1(RR - 1) 1
a. ————— b. —————— c. ————————

Icrude 1 + p1(RR - 1) 1 + 1/[ p1(RR-1)]
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Relating risk factors to health - Assignment solutions

1. Definitions:

a. Cumulative incidence ratio (CIR) - a measure of association equal to the ratio of two
cumulative incidences, or the proportion of one group who experience an event relative to
the proportion of another group who experience the event.

b. Incidence density ratio (IDR) - a measure of association equal to the ratio of two incidence
densities, or the magnitude of the incidence rate in one group relative to the incidence rate in
another.

c. Odds ratio - a measure of association based on the odds of disease or exposure in two
groups; the odds ratio often estimates or approximates the IDR and/or CIR

2. a. The overall quit rate was 17.6% (331/1887).

b. The quit rate is the proportion of abstainers among participants who provided data at their
16-months follow-up. In this sense, the quit rate is the prevalence of abstinence at a point in
time, with time being expressed relative study enrollment.  In fact, the smoking cessation
literature sometimes refers to this type of quit rate as "abstinence prevalence".  Since all
participants were smokers at baseline, the quit rate can also be regarded as the cumulative
incidence for becoming a nonsmoker during 16 months of follow-up.  The problem with
using cumulative incidence to measure quitting smoking is that abstinence is a reversible
state, so the "cases" (quitters) in this study may shortly thereafter revert to "noncases"
(smokers). The proportion of participants who quit for 24 hours at some time during the 16-
months of follow-up is more clearly a cumulative incidence, but it does not quite tell us what
we want to know.

c. Although quitting smoking is an "event", or at least a change of status, it is difficult to
translate into a conventional incidence measure.  It would be possible to compute an
incidence rate based on the number of quits divided by the number of participant-months of
follow-up.  However, such an incidence rate has no useful interpretation, since a low
incidence rate could mean few participants quit or that participants quit and stayed quit.  A
high rate could mean that many participants quit or that participants kept quitting and
relapsing.

Although it's difficult to know when permanent nonsmoking status has been achieved, the
longer the period of continuous abstinence the greater the probability of remaining smoke-
free.  Since quitting smoking for good has an "extended risk period", an incidence rate of
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number of "permanent" quits (defined on the basis of some duration of nonsmoking) per
participant-year of observation might be appropriate for measuring the effect of a continuing
quit-smoking intervention (e.g., a prolonged advertising campaign).  For the most part,
though, experimental interventions take place over a fairly short period of time, and their
effect is assumed to take place either during the intervention or shortly afterward, a situation
argues for a cumulative incidence quit rate during the expected period of effect.  Given the
conceptual complexities as well as the limitations of biochemical verification, continuous
abstinence from the completion of an intervention and abstinence prevalence appear to be
the measures most commonly used.

d. Quit rates ranged from 14.2% to 23.0%, with the highest rate in the MST group and the
lowest rates in the M and MS groups.  The control group had an intermediate quit rate.
Although the differences in absolute quit rates were modest, the MST group was clearly the
highest.  On the assumption that the control group received the least intervention, it is
surprising that its quit rate appeared to be higher than the two mail-only intervention groups.
(Indeed, one can speculate whether the quitting manual and/or social support brochures by
themselves actually depressed quitting below what would have happened; conversely, the
controls may have been more likely to obtain quitting assistance from other sources.  (Note:
the quit rates can be read from the bottom line (Col Pct) of the upper row or computed by
dividing the number of quitters in each condition by the total for that condition.)

e. The CIR for quitting for MST vs. MS groups is 0.230/0.142 = 1.62; i.e., the MST group quit
rate was 60% higher than or 1.6 times the rate for the MS group.  The OR for quitting for
MST vs. MS groups is (0.230/0.770 divided by 0.142/0.858) = (.230*.858)/(.142*.770) = 1.8.
As always, the OR is farther from 1.0 than the CIR  The OR approximates the CIR when
the outcome is rare, which is not quite the case here (quit rates of 14%-23%).  However,
when the CIR is not far from 1.0, as is the case here, the OR will be only modestly larger.

f. The "attributable risk" (quit rate difference) is 23.0% - 14.2% = 8.8% (absolute).  As a
percentage of the quit rate in the "exposed" (ARP or EF1), the impact of the telephone
component would be AR/I1 or 8.8/23.0 = 38%.  Thus, the telephone component appeared
to account for nine percentage points or 38% of the quit rate in the MST group.

3. (For this question, we are ignoring the distinction between rates and risks)

Duration Relative risk Attributable risk**
Attributable risk

proportion
1 year or less   1*

4 years 9 (9-1) (0.06) = 0.48 (9-1)/9 = 0.89
4-7 years 120 (120-1) (0.06) = 7.1 (120-1)/120 = 0.99
8+ years 500 (500-1) (0.06) = 30.0 (500-1)/500 = ~1.00

* Reference level (includes none)            ** per 100,000
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There is an extremely strong association between OC use (4 years or longer) and
hepatocellular adenoma, and the attributable risk proportion is nearly 1.0 for OC use above
4 years.  The excess risk incurred by OC users, however, is miniscule at 4 years of OC use,
and quite modest until 8 or more years.  The implication is that the association is likely to be
causal (due to the strength of the ratio measure of effect) but the resulting increase in risk
does not become important until more than 4 years of OC use.

4. a. Irradiated subjects: ID  =  49/279,901 person-years

=  0.000175, or 17.5 cancer deaths per 105 person-years

Comparison subjects:  ID  =  44/280,561 person-years

=  0.000157, or 15.7 cancer deaths per 105 person-years

b. IDR = ID1/ID0 = (17.5 per 105 person-years) / (15.7 per 105 person-years) = 1.1.  The rate
of cancer deaths in the exposed population is 1.1 times that in the non-exposed
comparisons.

c. Rate difference  =  ID1 – ID0   =  17.5 - 15.7  =  1.8 cancer deaths per 100,000 person-years.

d. Rate fraction  =  (ID1 – ID0)/ ID1  =  (17.5 - 15.7)/17.5 = 0.10

 or 10% of the cancer deaths in the exposed group are due to radiotherapy.

e. Population attributable risk proportion  =  p1(IDR – 1) / [1 + p1(IDR – 1)]

= 0.10(1.11 – 1) / [1 + 0.10(1.11 – 1)]   =  1.08% of cancer deaths  (ignoring the
distinction between risk and rate)

5. 

a.  Begin with: "Attributable cases" (I1 – I0)n1
———————— = ——————

All cases I1n0 + I1n1

Then remove the parenthesis in the numerator, add and subtract I0n0, and rearrange terms:
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I1n1– I0n1 + I0n0 - I0n0 I1n1 + I0n0 - I0n1 - I0n0
= —————————— = —————————

I0n0 + I1n1 I0n0 + I1n1

The crude rate (I) is a weighted average of the stratum-specific rates (I1, I0), weighted by the
proportions in each stratum, so I1n1 + I0n0 = I n.  Divide numerator & denominator by
n(=n1+ n0):

(I n) – I0 (n1+ n0) I – I0
= —————————— = ————

(I x n) I

b.  Begin again with: "Attributable cases" (I1 – I0)n1
———————— = ——————

All cases I1n0 + I1n1

(i) Add and subtract I0n1 in the denominator,

(ii) rearrange numerator and denominator, and

(iii) divide by n I0 , recalling that n=( n1 + n0), RR= I1/I0, and p1 = n1/n:

I ii iii
(I1 – I0) n1 n1(I1 – I0) p1(RR – 1)

——————————— = ————————— = ———————
I0n0 + I1 n1 – I0 n1 + I0 n1 (n0+ n1) I0 + n1 (I1– I0) 1 + p1(RR – 1)

c.  The formula: 1
————————
1 + 1/[ p1(RR – 1)]

is obtained by dividing numerator and
denominator in the preceding formula by
the numerator, p1(RR – 1).
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8. Analytic study designs

The architecture of the various strategies for testing hypotheses through epidemiologic
studies, a comparison of their relative strengths and weaknesses, and an in-depth

investigation of major designs.

Epidemiologic study designs

In previous topics we investigated issues in defining disease and other health-related outcomes, in
quantitating disease occurrence in populations, in relating disease rates to factors of interest, and in
exploring and monitoring disease rates and relationships in populations.  We have referred to cohort
studies, cross-sectional, and case-control studies as the sources of the measures we examined, but
the study designs themselves were secondary to our interest.  In the present chapter we will define
and compare various study designs and their usefulness for investigating relationships between an
outcome and an exposure or study factor.  We will then examine two designs – intervention trials
and case-control studies – in greater depth.

The study designs discussed in this chapter are called analytic because they are generally (not always)
employed to test one or more specific hypotheses, typically whether an exposure is a risk factor for a
disease or an intervention is effective in preventing or curing disease (or any other occurrence or
condition of interest).  Of course, data obtained in an analytic study can also be explored in a
descriptive mode, and data obtained in a descriptive study can be analyzed to test hypotheses.  Thus,
the distinction between "descriptive" and "analytic" studies is one of intent, objective, and approach,
rather than one of design.  Moreover, the usefulness of the distinction is being eroded by a broad
consensus (dogma?) in favor of testing hypotheses.  Since to characterize a study as "only
descriptive" tends to devalue it, investigators understandably try to portray their studies as "analytic"
and "hypothesis-driven" in order to make a better impression and to improve their chances for
funding and journal space.  (Opinions expressed herein are not necessarily those of the sponsor!)

Whether the study is "descriptive" or "analytic", it is important to clearly identify the objectives of
the study (preferably identifying the specific parameters to be measured – see Rothman and
Greenland) and the rationale (i.e., the case for conducting the research).  There are innumerable
decisions, judgments, and compromises that must be made during the design, conduct, analysis, and
interpretation of a study, and the principal guideposts for making them are the study objectives and
rationale.  For example, if the objective is to test hypotheses, then the investigator designs and
conducts the study so as to maximize the usefulness of the data for testing these hypotheses.  Failure
to keep the study objectives prominently in one's mind increases the advantage of hindsight over
foresight.

Epidemiologic investigations of disease etiology encounter many challenges, especially when they
must contend with one or more of the following:

 1. Difficulties in defining and measuring the disease;
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 2. Imprecision in determining the time of onset of the disease;

 3. Prolonged intervals between exposure to a causative agent and disease onset (induction
period) and between disease onset and detection (latency);

 4. Multifactorial disease etiology; and

 5. Differential effect of factors of interest on incidence and course of the disease.

[See Mausner and Kramer, Chapter 7, pp 178 et seq.]

Even more daunting can be studies of phenomena other than clinical diseases, where less assistance
is available from the biomedical armamentarium.

In view of these and other challenges, including the logistical and practical ones of obtaining access
to subjects, measuring variables of interest, protecting subjects' rights, and assembling sufficient
cases for rare diseases, the basic epidemiologic analytic strategy may be characterized as "by any
(ethical) means necessary", along with "try to get the best but if you have to, make do with what's
available".  For this reason there are innumerable variations in the details of study design.  But in
terms of the basic architecture - how the principal components of a study are assembled - there are
certain basic designs.

Traditional classification of epidemiologic study designs

A logical sequence of study designs encountered in epidemiology is:

 1. Case reports

 2. Case series

 3. Ecologic (also called correlational)

 4. Cross-sectional

 5. Case-control

 6. Follow-up/cohort

 7. Intervention trials/controlled trials

The first two of these designs are employed in clinical, rather than epidemiologic, studies, but often
are precursors to epidemiologic studies.  The next two designs are regarded as primarily descriptive,
the last design is primarily analytic, and designs 5 and 6 can be employed in analytic (hypothesis
testing) or descriptive modes, depending upon the extent to which the study is oriented towards a
pre-existing specific hypothesis.  Of course, it may be difficult to obtain resources for a lengthy or
expensive study without a priori hypotheses, but there are exceptions.  Of course, once the data have
been collected for whatever purpose, they will often be subject to a search ("search and destroy", as
some would have it; "seek and ye shall find" in the view of others) for other associations and
insights.
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Progression of types of studies

In the classic or ideal scenario, studies of disease etiology unfold from simple, inexpensive, and rapid
investigations that identify hypotheses to complex, costly, and lengthy ones to evaluate these
hypotheses.  General, exploratory studies typically take place before highly focused studies.

New syndrome or outbreak

The stimulus to investigating disease etiology may be prompted by the appearance of a new or
previously unrecognized syndrome.  In this case the initial efforts will be aimed at characterizing the
syndrome, developing a case definition, and searching for characteristics that differentiate people
with the disease from persons without the disease.  Or, a previously recognized disease may occur in
a population group or geographical area where it has not been thought to occur.  Such nonroutine
situations then prompt a case report in a medical journal, notification of public health officials, or
other actions that lead to initial studies – typically case series's and outbreak investigations – to
define the nature of the situation and to look for leads to its cause.

As we recounted in an earlier chapter, the history of AIDS epidemiology followed this classic
pattern.  Recognition of AIDS began with case reports and case series's describing cases of young
otherwise healthy men in California and New York City with Pneumocystis carinii pneumonia (PCP)
and Kaposi's Sarcoma (MMWR 1981;30:250-2 and 305-8).  Before that time, PCP had been seen
only in persons who had been medically immunosuppressed in connection with a transplant
operation.  Kaposi's Sarcoma had been known as a disease of Africans and elderly men of
Mediterranean origin.  The initial case series's described common and variable features of the
syndrome.  For example, all of the patients were men who had sex with men, most had a large
number of male sex partners, and many used inhalants, a type of recreational drugs.

The case series's led to an initial AIDS case definition for the purposes of identifying additional
cases and inaugurating surveillance.  With a case definition in hand, it was also possible to conduct
case-control studies in which persons with the disease could be compared with persons without the
disease and characteristics associated with the condition identified.  Comparisons of AIDS cases to
apparently healthy male homosexual controls indicated that the cases had higher numbers of
partners, had greater involvement in certain sexual practices (anal intercourse, fisting), and more
exposure to drugs used to enhance sexual pleasure.  These findings led to analytic studies to test
these and other exposure hypotheses.

Case reports and case series's are the clinical route to definition and recognition of disease entities
and to the formulation of hypotheses.  These studies are not "epidemiologic" in the sense that they
have no explicit comparison group or population reference.  On the other hand, one can think of an
implicit comparison with "common knowledge", "general experience", etc., when the characteristics
of cases are striking.  An example is history of maternal exposure to diethylstilbesterol (DES) in
teenage women with vaginal adenocarcinoma.  Other diseases where the clinical route to hypothesis
development was prominent are dental caries and fluoride, congenital malformations later linked to
maternal rubella infection and retrolental fibroplasia in premature newborns later linked to oxygen
exposure.
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Sometimes the appearance of a new syndrome is sufficiently alarming that public health authorities
are notified and involved at the outset.  For example, toxic shock syndrome, with its rapid and
malignant clinical course, Legionnaire's disease, where a group of conventioneers became severely ill
within hours of one another, and rapidly fatal Hanta virus infections among American Indians living
in the Southwestern United States in 1994 prompted investigations by public health authorities
thereby prompting a much more intensive investigation of microbiologic and environmental factors.

Descriptive studies and surveillance

An alternate stimulus to investigation may come from a surveillance activity or descriptive study.
The descriptive study might be a re-analysis of data collected for some other purpose (e.g., from a
national population survey or possibly from an analytic study of another hypothesis or even another
disease), a mapping study in which disease rates are plotted geographically, or an "ecological" study
that uses data on populations rather than on individuals.  For example, Warren Winklestein's
observation that in the Third National Cancer Survey (US) geographical areas with high rates for
cervical cancer tended to have high rates for lung cancer led him to the hypothesis that cigarette
smoking might be a risk factor for cervical cancer.

Observations made from population-level data require additional caution in their interpretation,
however.  For example, colon cancer rates are higher in U.S. counties that use mostly surface water
and in countries with high per capita meat consumption.  These relationships suggest that something
about surface water, e.g., chlorination, and something about meat consumption, e.g., saturated fat
intake, might be factors in the development of colon cancer.  However, since exposure is not known
at the individual level, it is possible that the cases of colon cancer are not themselves people who
drink chlorinated water or eat meat.  The attempt to infer individual characteristics or relationships
from group-level measures is called the "ecologic fallacy".  Ecologic, or group-level, studies can
nevertheless contribute important information, though, and not only in an exploratory mode.

Once the hypothesis has been advanced, analytic studies are the next epidemiologic recourse.  The
progression of designs at this point depends on the nature of the disease and exposure - the rarity of
the disease, the length of its natural history, the problems in measuring disease and exposure, and
other factors.  For many diseases, especially rare ones, the usual sequence is to begin with case-
control studies (since these are generally the most efficient and logistically practical design) and,
unless negative results occur and are accepted, move towards follow-up studies and possibly
intervention studies.

Individual-level studies

Although an "epidemiologic transition" appears to be underway, most analytic studies have the
person as the unit of data collection and analysis.  Thus, the four classic analytic study designs are
generally thought of in relation to individual-level studies, though as we shall see they can also be
employed for studies where the group is the unit of analysis.  These four primary designs are:
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Cross-sectional

A cross-sectional study is one in which subjects are sampled without respect to disease status and are
studied at a particular point in time, as in a random-sample health survey.  The term "cross-sectional
study" (or "prevalence study") usually refers to studies at the individual level, even though ecologic
studies are typically (though not necessarily) cross-sectional, also.  The target population is generally
one whose identity is of some wider interest (e.g., a political or geographical entity, a profession or
workforce, or a major organization (union, HMO, student body), but may not necessarily be so.

In a cross-sectional study, the current or historical status of individuals is assessed and may be
examined in relation to some current or past exposure.  These studies are obviously most useful for
conditions that are not rapidly fatal, not terribly rare, and/or not routinely brought to medical
attention (e.g., elevated blood pressure, elevated blood cholesterol, many psychiatric disorders, diet,
subclinical infection, and serologic markers of previous infections).

Since participants for a cross-sectional study are generally chosen without previous knowledge of
their disease or exposure status, such studies can be used to estimate prevalence of both diseases and
exposures and therefore to compute prevalence ratios and prevalence odds ratios.

Among the more widely known cross-sectional studies are the periodic national household
(interview) surveys by the U.S. National Center for Health Statistics (NCHS), the annual (telephone)
Behavioral Risk Factor Survey conducted by the U.S. Centers for Disease Control and Prevention
(CDC), and HIV seroprevalence studies.  Sometimes the process of recruiting subjects to a follow-
up study (e.g., the Lipids Research Clinics Coronary Primary Prevention Trial prevalence study)
serves as a cross-sectional study.  The cross-sectional NCHS NHANES (National Health and
Nutrition Examination Survey) study became a follow-up study when respondents were re-examined
ten years later, creating the NHANES Follow-up Study.

Strengths

! Can study entire populations or a representative sample.

! Provide estimates of prevalence of all factors measured.

! Greater generalizability.

Weaknesses

! Susceptible to selection bias (e.g. selective survival)

! Susceptible to misclassification (e.g. recall)

! Information on all factors is collected simultaneously, so it can be difficult to establish a putative
"cause' antedated the "effect'.

! Not good for rare diseases or rare exposures
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Case-control (case-referent, etc.) studies

A case-control study is one in which persons with a condition ("cases") are identified, suitable
comparison subjects ("controls") are identified, and the two groups are compared with respect to
prior exposure.  Thus, subjects are sampled by disease status.  Case-control studies are used in
infectious disease epidemiology, but they have become the primary strategy in chronic disease
epidemiology.  The investigation and refinement of the case-control design, a process which began
in about the middle of the 20th century (see classic articles by Cornfield, 1951 and Mantel and
Haenszel in 1959) constitutes a significant innovation in population-based research.  (Note:  The
analogy that presumably led case-control theorists to adopt the term "control" from experimental
designs is accurate only in a general sense, i.e., in both cases the control group serves as a point of
reference of comparison for the group of primary concern.  However, because of the fundamentally
different architecture of experimental and case-control designs, the analogy ends there and has
probably been a source of confusion in earlier writings about the case-control design.  See the end of
the section on selection bias in the next chapter.)

Because subjects are identified after the disease has developed, and inquiry then investigates prior
exposure, the case-control study is sometimes referred to as a "retrospective" or "backwards" design.
The "backwards" design poses greater demands in terms of methodological and analytic
sophistication.  However, by ensuring a greater balance between the numbers of cases and noncases,
the case-control design generally offers much greater statistical efficiency than other designs, giving
it a crucial advantage for studying rare diseases.

Case-control studies can use prevalent cases (i.e., existing at the time the study begins) or incident
cases (i.e., newly diagnosed during the period of the study).  In the former instance, the distinction
between a case-control study and a cross-sectional study can become very blurred.  In addition, data
collected through other kinds of studies can be analyzed as if data had come from a case-control
study, thereby providing another source of confusion.

Because case-control studies select participants on the basis of whether or not they have the disease,
the case-control design does not provide an estimate of incidence or prevalence of the disease,
unless data about the population size are available.  But as long as the participants are chosen
without regard to their exposures, the study can estimate the prevalence of one or more exposures.
With these prevalences, in turn, we can estimate an exposure odds ratio which we then use to
estimate the IDR or CIR in the base population.

Strengths

! Good for rare diseases

! Efficient in resources and time

Weaknesses

! Susceptible to selection bias (e.g., cases or controls may not be appropriately "representative")

! Susceptible to misclassification bias (e.g. selective recall)

! May be difficult to establish that "cause" preceded "effect".
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Follow-up studies

Along with case-control studies, follow-up studies constitute the other basic observational strategy
for testing hypotheses.  In a follow-up study, people without the disease are followed up to see who
develops it, and disease incidence in persons with a characteristic is compared with incidence in
persons without the characteristic.  If the population followed is a defined group of people (a
"cohort"), then the study is referred to as a cohort study.  Alternatively, the population under study
may be dynamic (e.g., the population of a geographical region).

Follow-up studies may be done "retrospectively", where the population at risk can be defined at
some time in the past and traced forward in time, or "prospectively", where the population is
identified or assembled by the investigator and then followed forward in time.

Since the study population for a follow-up study is selected from among people who are free of the
disease, this study design can estimate incidence based on new cases that develop during the follow-
up period.  Be cause the investigator can estimate incidence separately for exposed and unexposed
participants, the IDR and/or CIR can be directly obtained from the incidence estimates.  In some
cases, the study population is gathered on the basis of an initial cross-sectional study (e.g., the
Framingham and Evans County cohorts).  In such cases, exposure prevalences in the base
population can also be directly estimated, though this ability comes from the cross-sectional
component, not from the follow-up component.

Strengths

! Better for rare exposures

! Less confusion over relative timing of exposure and disease than with other observational
designs.

Weaknesses

! Costly and time consuming if disease is rare and/or slow to develop.

! Loss to follow-up (attrition) may lead to selection bias.

! Relatively statistically inefficient unless disease is common.

Intervention trials (controlled trials)

An intervention trial is a follow-up study in which the primary exposure under study is applied by
the investigator.  These are the only experimental form of epidemiologic studies, though they are
also observational in that subjects remain in their ordinary habitats.  In an intervention trial, the
investigator decides which subjects are to be "exposed" and which are not (in contrast to naturalistic
studies in which the subjects "choose" their exposure group by "deciding" whether to smoke, drink,
exercise, work in a hazardous environment, be exposed to toxic wastes, breathe polluted air, develop
elevated blood pressure, develop diabetes, etc.).

The term "clinical trial" emphasizes the controlled aspect of the intervention, at the expense of the
generalizability of the results; the term "community trial" emphasizes that the trial is carried out in a
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realistic setting and results may therefore be more generalizable (at the expense of having control
over what subjects actually do).  A community trial can involve an individual-level intervention (e.g.,
breast cancer screening), a community-level intervention (e.g., gun control), or interventions with
elements of both levels (e.g., mass media promotion of physical exercise).

In the United States, the National Heart Lung and Blood Institute (NHLBI) sponsored and led
several major (thousands of subjects, multiple expensive follow-up examinations, many millions of
dollars) individual-level randomized intervention trials to confirm the value of modifying coronary
heart disease and cardiovascular disease risk factors:  the Hypertension Detection and Follow-up
Program (HDFP), Multiple Risk Factor Intervention Trial (MRFIT), and the Lipids Research Clinics
Coronary Primary Prevention Trial (LRC CPPT).  More recently, the National Cancer Institute
(NCI) began large-scale trials to assess effectiveness of screening techniques for cancers at a number
of sites (colon, prostate).  Probably the largest individual-level randomized trial in the U.S. is the
Women's Health Initiative (WHI) which is funded through the National Institutes of Health (NIH,
of which both NHLBI and NCI are subdivisions).  Large trials of this type have also been
conducted in Australia, Canada, Europe, and probably elsewhere that I am not yet aware of.

Intermediate between a formal intervention trial and a follow-up study are follow-up studies in
which the intervention is applied by an outside agency (e.g., a health care provider or organization)
but is not being manipulated in response to an experimental design.

Strengths

! Most like an experiment

! Provides strongest evidence for causality in relation to temporality and control for unknown
"confounders"

! Fulfills the basic assumption of statistical hypothesis tests

Weaknesses

! Expensive, time consuming, sometimes ethically questionable.

! Subjects are often a highly selected group (selected for willingness to comply with treatment
regimen, level of health, etc.) and may not be representative of all people who might be put on
the treatment (i.e., generalizability may suffer).

Group-level (ecologic) studies or measures

Group-level studies (also called ecologic studies, correlational studies, or aggregate studies) obtain
data at the level of a group, community, or political entity (county, state, country), often by making
use of routinely collected data.  When they use data that are already available and usually already
summarized as well, these studies can be carried out much more quickly and at much less expense
than individual-level studies.  Group-level studies may also be the only way to study the effects of
group-level constructs, for example, laws (e.g., impact of a seatbelt law), services (availability of a
suicide prevention hotline), or community functioning.  Multi-level studies can include both
individual-level (e.g., disease, individual exposure) and group-level (e.g., median family income)
variables at the same time.  The popularity of multi-level studies is growing rapidly, due to the return
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of interest community-level influences and the increasing availability of statistical algorithms and
software to analyze multilevel data.

Each of the four classical study designs discussed above (cross-sectional, case-control, follow-up,
intervention) can also be carried out with group-level variables.  Thus, a set of counties, states, or
countries can be analyzed in a cross-sectional manner to look at the variation in a health variable
(e.g., mean blood pressure, hospitalizations for asthma, homicide rates, imprisonment rates) and its
relationship to country characteristics (e.g., salt intake, air pollution, handgun laws or possession,
drug policies).  Many group-level studies are of this type.  (Studies of homicide rates, new
hospitalizations, and other phenomena that represent events, rather than conditions, should perhaps
be regarded as follow-up studies, rather than cross-sectional.  When only a single year's data are
being analyzed or when data for several years are combined into an annual average, the traditional
perspective has been cross-sectional.)

Similarly, an investigator can assemble a set of groups (e.g., animal herds, states) with high rates of
some health outcome and compare their characteristics with those of states with low rates, as in a
case-control study, or can monitor aggregate populations as in a follow-up study to see if differences
in baseline variables (e.g., restrictions on cigarette advertising, higher cigarette taxes) are reflected in
the development of outcomes (smoking initiation by adolescents).  Finally, a group-level
intervention trial can be conducted in which schools, worksites, neighborhoods, or political
subdivisions are assigned to receive an interventions (school health clinics, curricula, media
messages, or lay health advisor programs) and outcomes are monitored over time.  Among the more
widely-known community intervention trials are the National Cancer Institute COMMIT trial (for
smoking cessation and prevention), the Stanford Three Community and Five-City Studies
(cardiovascular disease), the North Karelia Study (cardiovascular disease), and recent HIV
prevention trials using mass treatment for curable sexually transmitted diseases.

One situation where ecologic data are particularly useful is that where a powerful relationship that
has been established at the individual level is assessed at the ecological level in order to confirm its
public health impact.  If a risk factor is a major cause of a condition (in terms of population
attributable fraction as well as strength of association), then a lower presence of that factor in a
population should presumably be linked to a lower rate of the associated outcome.  Examples of
studies where this approach has been taken include studies of oral contraceptive sales and CVD in
women (Valerie Beral), incidence of endometrial cancer and prescription data for replacement
estrogens, and motor vehicular fatalities and occupant restraint legislation or enforcement.

Ecologic measures as surrogates for individual measures

Recent articles have clarified discussions about ecologic studies by noting that there are in fact two
basically different types of group-level studies, or, equivalently, two different ways in which a study
can be "ecologic" (Charles Poole, Ecologic analysis as outlook and method, 1994).  In the first type,
a study may be "ecologic" in that the exposure status (fat intake for individuals) is estimated from
the group average (per capita fat intake).  In this case the group-level variable serves as a proxy for
the values for individuals.  The group-level average is an inferior measure of the values of
individuals, but it is often much easier and economical to obtain.  In addition to the loss of precision
that results from using the group average as the data for individuals, there is also the danger of the
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"ecologic fallacy", the erroneous inference that specific individuals in a group share the
characteristics of the group.

Of course, most individuals in a group must share the characteristics of the groups which they
comprise.  But groups are heterogenous, and a subgroup of individuals can easily differ greatly from
the group mean.  For example, data showing that areas with higher average residential radon levels
had higher lung cancer rates than areas with lower levels do not logically imply that the higher lung
cancer rate are due to the higher radon levels.  Such an inference is based on the ecologic fallacy,
because it is possible that the excess lung cancers occurred to people in houses with low radon
levels.  In that case the group-level average would be an invalid surrogate for individual-level
measurements.  But even though it is not valid to infer from these data that radon exposure
contributes to the elevated lung cancer rates, that may nevertheless be a correct characterization of
the phenomenon.  Other data are needed to draw the inference; in the meantime, these ecologic data
provide the rationale for more in-depth study.

Ecologic measures as the relevant constructs

A second way in which a study can be "ecologic" is if the population, rather than the individual, is
the real unit of study.  In this case, a group-level factor is itself the exposure (e.g., an anti-smoking
ordinance, crime rate, population density) or, occasionally, the disease (e.g., homicide rate).
Although epidemiology has a long tradition of using population-level data for descriptive purposes,
the use of group-level data for hypothesis testing has been out of favor because of the problem of
the ecologic fallacy (even though it applies primarily to the other type of ecologic study), major
limitations in the ability to control for the effects of known determinants of the outcome under
study, and the ascendency of the biomedical paradigm in conjunction with the enormous expansion
in capabilities for biochemical measurement and analysis.

How one regards ecologic studies depends to a certain extent on which type of studies are being
considered - studies in which group-level variables are measured as economic and convenient, but
inferior, measures of diseases and exposures at the individual level or studies in which the
phenomena under study operate at the level of the group, rather than (or as well as) the individual.
A major modifying influence, though, is one's perspective on epidemiology and public health (see
chapter "The role of epidemiology in public health").  In Charlie Poole's (AJPH, May 1994)
formulation, epidemiologists who regard the health of a community as more than the summation of
the health of its individual members, regard ecologic studies (of the second variety) as critical to
conduct.  In contrast, epidemiologists who regard the health of a community as the summation of
the health of its members regard individual-level studies as the superior form of investigation.

Although the latter view remains the dominant one in the U.S. epidemiology profession and
government funding for epidemiologic research, the former has been gaining renewed attention, as
evidenced by the series of articles in the May 1994 American Journal of Public Health from which this
section draws heavily.  For Susser (who at that time was editor of AJPH, though not for his articles),
the prime justification for the ecological approach in epidemiology is the study of health in an
environmental context:  pairings, families, peer groups, schools, communities, cultures – contexts
that alter outcomes in ways not explicable by studies that focus solely on individuals (The logic in
ecological: I. The logic of analysis. AJPH 1994).  And where group-level constructs are involved, the
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ecological approach may be the appropriate level of study (Schwartz AJPH 1994; Susser AJPH 1994
[both his articles]).

Multi-level studies

Multi-level studies provide an area of agreement in this debate, since they potentially combine the
advantages of both individual- and group-level studies.  By using sophisticated methods of analysis –
which are only now starting to become readily available thanks to the computer revolution and the
development of statistical software – investigators can create mathematical models that include both
group-level and individual-level variables.  In principle, then, the investigator can take advantage of
the ability to control for individual variability and the measurement power and precision offered by
biochemical technology while at the same time addressing social, economic, and institutional
influences at the community-level.

But such advantages come at a cost.  Studying the effects of a group-level variable requires data for a
large enough number of groups to enable comparison among them.  Routinely collected data (e.g.,
census data) make such studies economical and relatively easy to conduct.  A multi-level study,
however, requires individual-level data as well, which typically means primary data collection with its
attendant costs, challenges, and time.  Moreover, the individual-level data must now be obtained
from individuals in a larger number of groups (e.g., worksites, counties) than might be necessary if
the objective of the study focused on individual-level variables.

Types of group-level variables

Group-level variables do not all possess the same degree of "groupness".  One variety of group-level
variable is are summaries of individual characteristics, such as per capita income.  Such a variable has
been termed contextual (Mervyn Susser, The logic in ecological: I. The logic of analysis. AJPH 1994)
or aggregate (Hal Morgenstern, chapter 23 in Rothman and Greenland).  Such variables illustrate the
distinction between individual-level and group-level perspectives, since the aggregate variable
measures a different construct from its name-sake at the individual level (Schwartz AJPH 1994).
Thus, per capita income may be used as a surrogate measure of individual or family socioeconomic
status, in which case it is inferior to the individual-level measure, or may instead directly measure
income at the community-level, in which case it is a group-level measure with implications for
availability of goods, services, facilities, and opportunities of all kinds education, commercial vitality,
neighborhood safety, and many other aspects of the social and institutional, and physical
environment.

Variables that are not summary measures of individual-level variables include factors like climate, air
pollution, disasters, and laws.  Susser uses the term integral variable for a variable that does not have
a corresponding individual-level value.  Integral variables, according to Susser, cannot be analyzed at
the individual level.

Morgenstern differentiates between environmental measures and global measures. Environmental
measures are "physical characteristics of the place in which members of each group live or work
(e.g., air-pollution level and hours of sunlight)" and which have individual-level analogs whose value
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can vary substantially among individuals.  In contrast, global measure have "no distinct analogue at
the individual level . . . (e.g., population density, level of social disorganization, the existence of a
specific law, or type of health-care)" (p460).

One can imagine, though, that global measures may also affect individuals differently.  Thus
population density affects people in different ways depending upon their occupation, preferred
activities, transportation requirements, needs for services, and economic resources.  Social
disorganization affects people more or less depending upon their age, personal social networks,
occupational affiliations, need for social services, and, of course, economic resources.  Anatole
France's aphorism that the law forbids both the poor and the rich alike from sleeping under a bridge
or stealing a loaf of bread reminds us that the law does not affect all individuals in the same way.
The individual-level effects of the type of health care system depends upon the individual's need for
health services, mobility, and, of course, economic resources.  Even climate presumably has weaker
effects on people with good climate control in their home, workplace, and automobile and who can
take extended vacations.

Dependent happenings

An important category of contextual variable is "dependent happenings", where a phenomenon
propagates from one person to others.  Dependent happenings arise most obviously in the case of
contagious diseases, where the prevalence is both a summary of individual infection status but also
greatly affects the risk of infection for exposed, nonimmune persons.  As an example of the inability
of individual-level analysis to analyze a situation with dependent happenings, Koopman and Longini
(AJPH May 1994;84:836-842) present a study of dengue fever in Mexican villages.  The study,
carried out following a multi-year epidemic, examined the association between history of infection
(measured by antibody test) and presence of Aedes aegypti larvae in a household.  The odds ratio for
an analysis at the individual level was 1.1, i.e., presence of larvae was not related to a positive
antibody test.  By contrast, the ecological (village-level) analysis yielded an OR of 12.7.

The authors' explanation for this difference is that transmission (i.e., dependent happenings)
decreases individual-level effects and increases ecological effects.  With a sufficient number of
infected persons in a village, the mosquitoes carry the infection to others in that village, even those
whose household has not been a breeding ground for mosquitoes.  In a village with few infected
persons, the mosquitoes are less likely to acquire the virus so households with larvae are not in fact
at elevated risk.  In this scenario, higher infection prevalence in a village contributes to the ecological
relationship directly (because infection prevalence is the outcome variable) and indirectly (in that
mosquitoes in high prevalence villages are more likely to get infected).

Other phenomena and situations can also obscure effects of risk factors for transmission in
individual-level studies (Koopman and Longini, citing Koopman et al. 1991).  In fact, when a risk
factor affects transmission, neither individual-level analysis nor ecological analysis works.  Although
infectous diseases have received the greatest attention in such work, psychosocial and behavioral
phenomena (e.g., drug use including smoking and alcohol, racism) probably also constitute
dependent happenings in some regards.
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What measures can be estimated from basic epidemiologic study designs?

The beauty of a follow-up study is that the investigator gets to watch what is happening and to
summarize the experience by calculating simple measures like the proportion of exposed subjects
who develop the disease ("the incidence of the disease in the exposed") or the rate at which the
disease develops in the exposed.  This is often not the situation in a case-control study, in which the
investigator typically assembles cases without identifying the entire exposed and unexposed
populations from which the cases arise.

It is said that a follow-up study "samples by exposure status" and a case-control study "samples by
disease status".  This is certainly true for a case-control study, but not necessarily so for a follow-up
study, which can sample without regard to exposure status.  A cross-sectional study can sample by
either disease or exposure or neither (i.e., a true "cross-section").  When a cross-sectional study
samples by existing disease, it is essentially the same as a case-control study with prevalent cases.
However, many of these concepts remain the subject of debate (if interested, see references in the
first section of the bibliography).

Multiaxial classification of study designs

There have been various attempts to classify study designs in a more analytic fashion than the
conventional taxonomy presented in this chapter.  One approach, presented in Kleinbaum, Kupper,
and Morgenstern's textbook Epidemiologic research: principles and quantitative methods, analyzes major
designs in respect to "directionality" (cohort studies are said to involve "forward directionality",
case-control studies to involve "backward directionality", and cross-sectional studies neither),
"timing" (the chronological relationship between the most recent data gathering and the occurrence
of the study factor and disease – if both study factor and disease were established and measured
before the study began, then the study was completely "retrospective"; if both study factor and
disease have not yet occurred when the study begins, then the study is completely "prospective" so
that measurements can be tailored to the study requirements; studies with exposure data collected
both before and disease onset studied after the start of the study were "ambispective"), "type of
population" (cross-sectional or longitudinal, fixed cohort or dynamic population), and "unit of
observation" (individual-level data, group-level data).

Various other conceptualizations are also in use.  For example, sometimes case-control studies are
said to involve "sampling on disease", because cases and controls are sampled separately (as in
stratified random sampling).  From this perspective, cohort studies are said to involve "sampling on
exposure" – exposed and unexposed persons are sampled separately.  However, though separate
sampling may be necessary in order to obtain a large enough number of participants with a rare
exposure, if the exposure is not rare then participants can be selected without regard to exposure
status.

Participants for a cross-sectional study can be selected without regard to exposure or disease status,
separately by exposure status, or separately by disease status.  In the last case, a cross-sectional study
is equivalent to a case-control study using prevalent cases.  A basic point but one worth noting is
that a study cannot estimate a dimension that has been set by its design.  That is, if participants are
selected separately according to their exposure status, than the proportion who are exposed cannot
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be estimated from that study since that proportion is determined by the study design (and its success
in recruitment), rather than from the sampling process.  If participants are selected according to
disease status, then exposure proportions (and odds) can be estimated but not disease prevalence (or
odds).  That is the reason that one cannot directly estimate risk in a case-control study.  (Rothman
and Greenland use the term "pseudo-risks" to refer to the proportion of cases among exposed and
unexposed case-control study participants.)

Design attributes

As can be seen in the bibliography for this chapter, classification of study designs has been the
subject of vigorous debate.  Nevertheless, there are various important design attributes that should
be noted for any given study.  These attributes are:

Subject selection

Under this heading come the various considerations used in selecting participants for the study (e.g.,
restriction to certain age groups, enforced comparability between groups being compared
(matching), natural comparability [twins, siblings], random sampling).

Method of data collection

Data can either be primary data, collected for the purposes of the study at hand or secondary data,
collected for purposes other than the study at hand, such as from medical records, death certificates,
billing records, or other administrative files.  Data may have been collected in the distant past.

Unit of observation
As noted above, data can be collected at the individual level or only at the group level.

Evaluation of a study design

The primary dimensions for evaluating the design of a particular study are:

Quality of information:  How accurate, relevant, and timely for the purposes of the study are
the data?

Cost-effectiveness:  How much information was obtained for how much expenditure of time,
effort, resources, discomfort, etc.?

[For more on the above, see Kleinbaum, Kupper, and Morgenstern, Epidemiologic research:  principles
and quantitative methods, ch 4-5.]

The following layout may be useful for reflection or discussion, but cannot be completed
unambiguously since in many cases the relative strengths of different designs depend upon the
particular study question and circumstances.)
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Strengths and weaknesses of the classic study designs

Cohort Case-control
(prospective) (historical) (incident) (prevalent)

Ability to estimate risk
Ascertainment of cases

(access to care, diagnostic
criteria, selective survival)

Measurement of exposure
Reliance on historical data
Selective recall
Disease may affect characteristic
Control of all relevant variables
Study affects subject behavior
Temporality established
Feasibility and logistics
Rare exposures
Rare diseases
Statistical power and efficiency
Attrition
Time and effort
Ethical concerns
Cost

Individual-level interpretations of measures of association

The individual-level follow-up study, cross-sectional study, and case-control study are fundamental
designs in epidemiologic research.  Data collected using any of these designs allow one to estimate
an individual-level measure of association or effect, i.e., a measure of the strength or magnitude of
the quantitative relationship of a study factor (i.e., exposure of interest) with a disease.  We learned
about these measures in a previous chapter.  We revisit them here to reinforce the relationship
between which measures can be estimated with which study designs.

One way of conceptualizing study designs is to regard the objective of an etiologic individual-level
study as the estimation of a measure of effect relating an exposure to a disease outcome, specifically
a risk ratio (CIR) or rate ratio (IDR).  The preference for these measures is that, as Greenland (1987)
demonstrates, they are interpretable at the level of the individual's risk or hazard function so that
under certain assumptions an RR of two means that an exposed individual's risk or hazard is twice
that of an unexposed individual.  (Although the odds ratio does not possess an interpretation in
terms of an individual's odds, it is useful through its ability to estimate a risk ratio or rate ratio.
Similarly, the prevalence odds ratio is of interest primarily because under certain assumptions it
estimates the incidence density ratio (rate ratio) [Greenland, 1987]).
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Risk ratio

Consider the example of a pregnant woman who drinks three or more alcoholic drinks per day
during pregnancy.  Suppose that that drinking that amount of alcohol is associated with a 20%
chance of bearing a malformed baby.  If that chance is 2% for a pregnant woman who does not
drink, the ratio of fetal malformations in relation to drinking three drinks/day is 10 (20%/2%).  A
risk ratio of 10 indicates a very strong association and therefore one that is more likely to be causal.
Also, the relative risk conveys a clear, intuitive meaning about the degree by which the exposure
increases risk.

We can also interpret this risk ratio at the individual level:  the risk for an individual woman who
drinks 3+ alcohol drinks/day during pregnancy was 10-times (or 900% greater than) that for a
woman who does not drink.  Such an interpretation, of course, involves a number of assumptions,
i.e., that apart from the effect of drinking, the women in the exposed group have the same risk as
women in the unexposed group and that the individual woman to whom the group-level association
is being imputed has risk-related characteristics close to the group average.  But mathematically there
is no problem.  [Aside:  Birth outcomes such as fetal malformations are generally regarded as
prevalences among babies born, since the denominator for births is generally unknowable; for
simplicity the above example assumes that all pregnancies result in a live birth.]

Rate ratio

Often we estimate disease rates, rather than risks, in which case the measure of effect of interest is a
rate ratio.  For example, in a study of breast cancer in relation to early use of oral contraceptives, we
may have anywhere from 10 to 20 years of follow-up on subjects.  To accomodate these differing
lengths of follow-up, we can calculate the rate of breast cancer cases per woman-year, rather than
per woman.  In that case a two-fold elevation would mean that the rate at which breast cancer cases
are observed in women with early use of oral contraceptives was twice that in women without early
use of oral contraceptives.  Again, the rate ratio has an interpretation at the individual level
(Greenland, 1987) and can be mathematically converted into an estimate of relative risk over a given
time interval.  It can also be interpreted in terms of the expected time until the event occurs in the
average woman.

Incidence odds ratio

The incidence odds ratio is the ratio of odds of disease in exposed persons to the odds of disease in
unexposed persons.  Odds are ratios of risks.  If the risk is r, the odds are r/(1–r).  When the risk is
small, risk and odds are nearly equal, and the odds ratio approximates the rate ratio and risk ratio.

Since the odds ratio can be estimated in a case-control study even where no other measure of
relative risk is directly available, the odds ratio is of great practical importance for epidemiolgists.
The prevalence odds ratio (from a cross-sectional study) also approximates the rate ratio when the
duration of the condition is unrelated to exposure status.  The prevalence ratio can also be the
measure of primary interest, when duration is itself the outcome, such as in the treatment of
depressive disorder.  However, mathematically (see Greenland) there is no direct individual-level
interpretation for the odds ratio (whereas the incidence proportion is the sum of the risks across all
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individuals, this relationship does not hold for the incidence odds and individual odds).  For this
reason, Greenland argues, the CIR and IDR are preferred.

Preferred measures of association

So, our primary interest for etiologic purposes is generally the risk ratio (CIR) or rate ratio (IDR).
Where we cannot estimate either of those directly, then we usually try to design the study so that we
can estimate the odds ratio and use it to estimate the rate ratio or risk ratio.  We may also want to
estimate a measure of impact, to quantify the importance of the relationship we are studying should
it turn out to be causal.  In the table below are listed the kinds of measures of association and impact
that can be derived from the basic epidemiologic study designs:

Measures of association for basic epidemiologic study designs

Type of study design
Measure of
association

Measure of
impact

Follow-up, person
denominator

Risk ratio Absolute
Relative

Follow-up, person-time
denominator

Rate ratio Absolute
Relative

Case-control Odds ratio Relative

Cross-sectional Prevalence odds ratio
or prevalence ratio

Relative

Formulas for and examples of computation

Construct (2x2, four-fold) table:

Exposure

Disease Yes No Total

Yes a b m1
(a + b)

No c d m2 (c + d)

Total n1 n0 n

(a + c) (b + d)

Example:  The following are hypothetical data involving subjects who have been determined to be
either hypertensive (diastolic blood pressure >90 mmHg) or normotensive (diastolic blood pressure
<=90 mmHg) and were classified into one of two categories of dietary salt intake, high or low.
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Dietary Salt Intake and hypertension(Hypothetical)

Dietary salt
intake

Hypertension High Low Total

Yes 135 160 295
No 180 420 600

Total 315 580 895

If these data came from a follow-up study, then the risk of disease in exposed subjects would be
a / n1, the risk in unexposed subjects would be b / n0, and the risk ratio or relative risk would be:

a / n1 135 / 315
RR = ——————— = ————— = 1.55

b / n0 160 / 580

If these data came from a cross-sectional study, the calculations would be identical except that the
data would yield measures of prevalence and a prevalence ratio instead of risk and risk ratio.
However, the prevalence odds ratio (see below) would generally be preferred as a measure of
association, since under the assumption of no difference in duration of hypertension between high-
and low-salt people, the prevalence odds ratio estimates the incidence density ratio in the
population.

If these data came from a case-control study, the above calculations would not be meaningful.  Since
a case-control study samples subjects on the basis of their disease status, proportion of exposed who
are cases does not estimate anything.  Rather, we need to compute the odds of cases and controls
who are exposed!  Thanks to the odds ratio, we can estimate the rate ratio in the population from
which the cases arose:

Odds of Exposure in Cases (D):

Proportion of cases exposed a / (a + b) a
Odds = ———————————— = ————— = ——

Proportion of cases not exposed b / (a + b) b

Odds of Exposure in Controls (D):

Proportion of controls exposed c / (c + d) c
Odds = ———————————— = ————— = ——

Proportion of controls not exposed d / (c + d) d
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Odds Ratio (OR)

Exposure odds in cases a / b ad
ORe = Exposure odds ratio = ——————————— = ——— = ——

Exposure in noncases c / d bc

ad 135  ×  420
ORe = —— = ————— = 1.97

bc 160 ×180

Intervention Trials

(An earlier version of this section was written by Joellen Schildkraut, Ph.D.)

In an experiment, a set of observations are conducted under controlled circumstances.  In contrast
to nonexperimental, observational epidemiologic studies, experimental studies permit the scientist to
manipulate conditions to ascertain what effect such manipulations have on the outcome.  The
objective of an experiment is the creation of duplicate sets of circumstances in which only one factor
that affects the outcome varies.  An example is laboratory animal studies such as those which
evaluate potential carcinogens.

In such studies, the investigator has a great deal of control over the experimental units, their
environment, measurements taken, and exposure to the study factors.  Even genetic factors can be
controlled by using inbred strains of mice.  Experiments provide a means to disentangle complex
problems in stepwise fashion, to reduce macro-level phenomena into collections of low-level
mechanisms.  This reductionist approach, made possible by laboratory experimentation, has made
possible the remarkable advances in knowledge and technology of the past few centuries.  The rub is
that not all phenomena are amenable to dissection in this way.  Laboratory experimentation on
humans is greatly constrained, and extrapolation from animals to humans often problematic.  Also,
many conditions of interest cannot be manipulated and it is generally impossible to recreate real-life
situations in the laboratory.

In epidemiology, intervention trials are the closest analog of a laboratory experiment.  What
distinguishes intervention trials from other types of epidemiologic studies is the manipulation of the
study factor.  This manipulation may be governed by random assignment, creating a true
experiment, or if not, a quasi-experiment.  Randomization offers the greatest opportunity to create
groups that are equivalent in all regards, with the corresponding opportunity to isolate the effect of
the intervention.  The potential for achieving such isolation in a study with nonrandom assignment
depends on the ability to adjust for differences in the analysis.  Even with good data on all relevant
factors adjustment may not be possible.  For example, no analytic technique could correct a study
where all patients with a better prognosis were assigned a new drug instead of an old drug.
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Intervention trials can include testing therapeutic or preventative hypotheses, the estimation of long
term health effects, and identification of persons at high risk.  Types of interventions include:

! Prophylactic - focus on prevention (e.g. vaccines, cholesterol lowering

! Diagnostic - focus in evaluation of new diagnostic procedure (e.g. comparison of a less invasive
diagnostic procedure to a gold standard, etc.)

! Therapeutic  - focus on treatment (e.g. drug testing, evaluation of new surgical technique, etc.)

A randomized clinical trial (RCT) is defined as a prospective study that estimates the effect of an
intervention by comparing participant outcomes between randomly assigned treatment and control
groups.  The major RCTs are multi-center studies in two or more hospitals with a common
protocol.  The strengths of multi-center studies are more representative patient populations, larger
sample size, and shorter study period (or duration of patient intake).  Finally multi-center studies
enable research on rare diseases.

Drug trials go through several levels of study:

Phase I - early study to determine dose level that is not too toxic (animal studies)

Phase II - efficacy trial to estimate the effectiveness of an agent with specified precision.

Phase III - comparative trial to test whether the new agent is better than the standard or control
agent.

Phase IV - for the detection of rare side effects by way of epidemiologic studies or prospective
monitoring

Steps of a Clinical Trial

There are three phases in a clinical trial: 1) planning, 2) the trial (data collection), and 3) concluding
phase:

1. Planning phase

Study Design

Clinical trials can be randomized controlled studies or nonrandomized studies (quasi-experiments).
If the latter they can have concurrent controls (a group or groups that are regarded as similar to the
experimental group and whose experience is observed during the same period of time as that of the
experimental group), historical controls (a group regarded as similar and for which data are already
available), or sometimes no controls.

Randomization is a method for allocation of subjects to intervention and control groups where each
subject is equally likely to be assigned to one or the other.  Various randomization procedures have
been proposed for use in clinical trials.  The most frequently used techniques are:
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Simple randomization - assignment of people to treatment groups is random, not concerned with
other variables

Balanced Block randomization - ensures balance in the proportion of patients assigned to each
treatment with in each group or blocks of patients entered.  (e.g. hospitals in a multicenter study).

Stratified randomization - is used when there are specific factors known to have a significant effect
in the outcome of the trial.  Separate balanced block randomization schemes are established within
each level of the stratified variable or variables.

In a multicenter study, randomization can be stratified by institution because of institutional
differences in the patient population, in the overall level of patient care, or in the treatment effect of
the institution.

Blindness or masking
Non-blinded - common in community trials

Blinded       - the observer is aware but the subject is not aware of treatment assignment

Double blinded - Neither the observer or the subject is aware of treatment assignment

Triple blinded - The observer, subject, and data analyst are not aware of treatment
assignment

Concurrent and non-randomized controls can result in systematic assignment bias and
uninterpretable results.  Historical controls may not be comparable in terms of patient selection,
external environment (even if it is the same hospital), improved diagnostic tests, and unknown
factors, but the cost is cheaper and the length of the time to complete the trial is shortened.
Evidence for bias in treatment assignment of controlled clinical trials was illustrated in a study by
Chalmers et al. (N Engl J Med 1983; 309:1358-61):

Type of Study
No. of
studies

>=1 significant
prognostic variable

Significant Difference
in fatality rate

Blinded Randomized 57 14.0 % 8.8%
Unblinded randomized 45 26.7 % 24.4%

Non-randomized 43 58.1 % 58.7%

Sample size estimates are vital to planning the study.  The estimated difference in the response
variable (outcome of interest), significance level, and noncompliance rate must be factored into the
calculation of sample size.

2. Trial phase (data collection)

Screening can be applied to those already admitted to the hospital or those who can be contacted
from outpatient services.  Patients should be those who are likely to benefit from the intervention
and those who are likely to comply with the intervention schedule.
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Treatment allocation can be 1) fixed in the beginning, optimally in one to one ratio, 2) it can be
adaptive allocation where results of an ongoing trial influences allocation so that the proportion of
patients with beneficial treatment is maximized or 3) crossover design which helps to eliminate the
variation between patients.

Study monitoring can be implemented so that if trends demonstrate that one treatment was
significantly better or worse than the other with respect to any study endpoints (mortality, morbidity,
side effects) it would be the responsibility of a special committee to determine whether the study
should be terminated.

Long term follow-up is important in clinical trials since patients sometimes do not adhere to the
originally assigned therapy.

3.  Analysis and publication phase

Some issues of relevance to the analysis of data from randomized clinical trials include: baseline
comparability of treatment groups, selection of prognostic factors, methods for evaluating treatment
differences, non-adherence to assigned therapy, and post-stratification.  Survival analysis is often the
method of choice.  A major consideration is how to analyze data when 1) persons are discovered,
after randomization, who do not meet entry criteria, 2) withdrawals, 3) noncompliant subjects, 4)
subjects who switch treatments.  Exclusion of any groups will "undo" the pure randomization
scheme and could result in a biased estimate of effect.

Advantages and disadvantages of RCTs:

Advantages Disadvantages
1. Prospective 1. Contrived situation

2. Randomization 2. Human behavior may be difficult to control

3. Clear temporal sequence 3. Ethical constraints

4. Best evidence for causation 4. Exclusions may limit generalizability

5. Expensive in time, personnel, facilities, and budget

Case-control studies

Of the three remaining classic epidemiologic study designs – cross-sectional, cohort or follow-up
and case-control – the case-control is the least straightforward.  We will therefore devote the
following section to examining the "anatomy" and "physiology" of case-control studies.

Definition of a case-control study

A study that starts with the identification of persons with the disease (or other outcome variable)
of interest, and a suitable control (comparison, reference) group of persons without the disease.
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The relationship of an attribute to the disease is examined by comparing the diseased and
nondiseased with regard to how frequently the attribute is present or, if quantitative, the levels of
the attribute in each of the groups. — Last JM, A dictionary of epidemiology. 2nd edition, NY,
Oxford, 1988

Synonyms: case comparison study, case compeer study, case history study, case referent study,
retrospective study

Defining characteristic

Subjects are selected on the basis of the outcome variable.

Key advantages

! Statistically efficient for rare conditions

! Logistically efficient for prolonged induction or latency diseases

! Can examine many exposures in one study

! Ethical - cannot affect onset of disease

Basic procedure

 1. Identify cases, determine their characteristics - cases estimate the prevalence of the exposure
in people who get the disease.

 2. Select controls (noncases), determine their characteristics - controls estimate the prevalence
of the exposure in people who have not developed the disease.

 3. Compare the characteristics of cases with characteristics of noncases.

 4. Draw inferences about the underlying processes that led to differences in characteristics of
cases and controls.  Odds ratio (OR = odds of exposure in cases/odds of exposure in
controls) estimates the incidence density ratio (IDR = rate of disease in exposed
persons/rate of disease in unexposed persons).  For rare disease, IDR closely approximates
cumulative incidence ratio (CIR, RR) of the disease for that exposure.
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Example

If we want to test the hypothesis that exogenous estrogen is an etiologic factor in cancer of the
uterine endometrium, we assemble a (case) group of women who have developed endometrial
cancer (preferably newly-detected cases) and a (control) group of women whom we believe
accurately reflect the population from which the cases have come.  The case group will be used to
estimate usage of estrogen by women who developed endometrial cancer; the control group will be
used to estimate usage of estrogen by women in the source population (the "study base") which gave
rise to the case group.

Estrogen
Endometrial

cancer Yes No Total

Case a b m1
(a + b)

Control c d m2 (c + d)

Total n1 n0 n

(a + c) (b + d)

C a s e - c o n t r o l  s t u d i e s

C o n t r o l sC a s e s
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(a / m1) / (b / m1) ad

ORe (Exposure odds ratio) = ———————— = ——
(c / m0) / (d / m0) bc

estimates IDR and CIR (rare disease)

If we wish to obtain an estimate of the incidence density ratio (or the relative risk) for endometrial
cancer with respect to estrogen use, we can use the proportion or prevalence of estrogen use in the
endometrial cancer cases to compute the odds of estrogen use among women who develop
endometrial cancer [pestrogen|case/(1-pestrogen|case)] and the proportion or prevalence of estrogen
use in the controls to compute the odds of estrogen use in the population [pestrogen|noncase/(1-
pestrogen|noncase)].  The odds ratio for exposure is then the ratio of these two odds, and gives us
the estimate of the relative risk (since endometrial cancer is a rare disease) and, if we have selected
our cases and controls appropriately, of the incidence density ratio.

Rationale for the odds ratio

 1. The cases provide an estimate of the prevalence of the exposure in people who get the disease.

 2. The number of exposed cases (and therefore the proportion or prevalence of exposure among
cases) reflects the rate of disease in exposed people in the population.  The number of
unexposed cases reflects the rate of disease in the unexposed population.

 3. The odds of exposure in the cases (proportion exposed/proportion unexposed) therefore
reflect the ratio of disease rates (or risks) in the population.

 4. The controls provide an estimate of the prevalence of the exposure characteristic in people who
have not developed the disease.

 5. The odds of exposure in the controls (proportion exposed/proportion unexposed) reflect the
odds of exposure in the population.

 6. So the odds ratio (OR) [odds of exposure in cases/odds of exposure in controls] indicates the
relative risk [incidence of disease in exposed persons/incidence of disease in unexposed
persons].

The above rationale is presented to convey a "feel" for why the odds ratio from a case-control study
conveys information about the strength of association between a disease and exposure.
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Controls 

Cases 
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Validity

The validity of a case-control study requires that:

! Cases in the study adequately represent the relevant cases (the population of cases about whom
inferences are to be made) with respect to the variables of interest (notably, prevalence of
exposure).  This depends upon whether the cases available do in fact reflect the rates of disease
in exposed and unexposed individuals undistorted by differential manifestation, detection, or
short-term survival (e.g., selective survival, access to care, detection bias);

! Controls accurately reflect the exposure proportions in the study base (the source population for
the cases).  For example, hospitalized controls may overrepresent exposures associated with
hospitalization for other conditions.

Both of these requirements, especially the latter, can be difficult to ensure.  Therefore, case-control
studies are regarded as highly susceptible to bias from problems with the:

Identification of cases
! Reliance on medical care system

! Often miss subclinical cases (detection bias?)

! Can miss rapidly fatal cases (selectively?)

Selection of controls
! Selection of controls can determine the study results

! Which controls are appropriate is often not obvious

! Trade-off between sampling and data collection

! Hospitalized controls, community controls, dead controls

! Controls may be reluctant to cooperate

Measurement of exposure for cases and controls
! Reliance on recall or records (differential?)

! Effect of disease on exposure assessment

! Effect of disease on exposure (confounding by indication)

There is also the thorny problem of establishing temporality, i.e., did the exposure precede the
disease?

Interpretability of the odds ratio

Why does the OR from the cases and controls we have assembled estimate anything in the
population?  Consider what the cells in the table below represent.  Assume that the cases were
selected as newly occurring cases of endometrial cancer over a period of time in a defined
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population and that the controls were selected at the same time as the cases from among women in
that population (this is called "density sampling of controls").

Estrogen
Endometrial

cancer Yes No Total

Case a b m1
(a + b)

Control c d m0 (c + d)

Total n1 n0 n

(a + c) (b + d)

If this situation, the cases would be all (or some fraction f1 of) cases of endometrial cancer in the
population.  If the incidence rate of endometrial cancer is ID and the amount of population-time is
N women-years, then:

m1 = (f1)(ID)(N)

[f1 is included only for purposes of generality — if all cases are included, then f1=1 and can be
ignored.]

Cases among women taking estrogen (cell "a") would be:

a = (f1)(ID1)(N1)

where ID1 and N1 are the incidence rate and population-time, respectively, for women taking
estrogen.

Similarly, cases among women not taking estrogen (cell "b") would be:

b = (f1)(ID0)(N0)

with ID0 and N0 applying to women not taking estrogen.

Note:  Whether N1 and N0 represent women-years of estrogen use or women-years in estrogen
users (i.e., are person-years for a women after she stops taking estrogen counted as exposed or
unexposed) would depend upon whether the estrogen effect endures after the drug is discontinued.

We now see where the cases have come from.  What about the controls?  The control group is
typically, though not necessarily, chosen in some fixed ratio to the number of cases, such as two
controls per case.
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Since the strategic advantage of the case-control method is that we do not need to enroll the entire
population from which the cases arise, the number m0 of controls will be some small fraction f0 of
the noncases in the population.  If we have 200 cases and have decided to select 400 controls, then
f0 would be 400 divided by the population size or the amount of population-time.  f0 is included to
demonstrate the link between the case-control study and the population from which the cases arise,
also referred to as the study base.  In actual practice we establish the number of cases and controls
required to meet certain sample size (statistical power) objectives; the sampling fraction f0 is what
results from the number of controls we seek.  Since we do not – must not – choose our controls
separately from each exposure group, the number of exposed (c) and unexposed (d) controls will be
determined by the amount of population-time in each exposure category:
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Estrogen users   (N1)

Nonusers   (N0)

Cases

      New cases among exposed = ID1 N1

      New cases among unexposed = ID0 N0

      Exposure odds in cases =

      Exposure odds in noncases ≈ N1 / N0
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c = f0N1 = number of exposed noncases

d = f0N0 = number of unexposed noncases

If the N's represent population-time, rather than simply population size, f0 reflects sampling over
time as well as over people.

The key point about f0 is that for the control group to provide a valid estimate of the relative sizes
of exposed and unexposed population-time, f0 must be the same for both exposed controls (c) and
unexposed controls (d).

The above discussion can be summarized in a revised 2 x 2 table:

Exposed Unexposed

Cases f1ID1N1 f1ID0N0
Controls f0N1 f0N0

With this background, we are ready to see how the OR can estimate the IDR:

ad (f1ID1N1)(f0N0) ID1
OR = —— = ——————— = —— = IDR

bc (f1ID0N0)(f0 N1) ID0

Numerical example

Assume a stable, dynamic population of 4 million women age 40 years or older, in which 1,000
incident cases of endometrial cancer occur each year (i.e., 1,000 cases/4 million women-years).

Increase rate to 2,500 cases/ 100,000 wy?

Assume:

! N1 = 1 million women-years (1,000,000 wy or 1 × 106 wy) of estrogen use

! N0 = 3 million women-years (3 × 106 wy) of unexposed person-time

! ID1 (incidence density in exposed) = 40 × 10-5/year (40/100,000 wy)

! ID0 (incidence density in unexposed population) = 20 × 10-5/year, so that the IDR is 2.0

In the 1 × 106 exposed women-years, there would be 400 cases.
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In the 3 × 106 unexposed women-years, there would be 600 cases.

Of the 1,000 cases, 400 are exposed and 600 are unexposed.  The prevalence of exposure among
cases is 400/(400+600) = 40%; the exposure odds in cases would be .40/.60 = 0.67.

The expected prevalence of exposure in an unbiased sample of noncases would be, since the disease
is so rare, N1/(N1+N0) = (1 × 106) / (1 × 106 + 3 × 106) = 0.25; the exposure odds among
noncases would be 0.25/0.75 = 0.33.

The exposure odds ratio (OR) would therefore be:

OR = (.40/.60)/(.25/.75) = 0.67/.0.33 = 2.0

A case-control study that recruited (randomly) 200 cases and 400 controls (f1 = 200/1,000 = 0.2; f0

= 400/4,000,000 = 1/10,000 or 10-4) would be expected to have the following results.

Expected Results from Hypothetical, Poplation-based
Case-Control Study of Endometrial Cancer and Estrogen

Exposed Unexposed Total

Cases 80 120 200

Controls 100 300 400

Total 180 420 600

80  ×  300
ORe = ————— = 2.0

120  ×  100

It is apparent that given the rarity of the disease it makes no practical difference here whether the
prevalence of exposure in the source population from which the cases emanate (i.e., the study base)
is estimated from the total population or only from those without the disease.

Identifying the study base

Disease and other types of events occur in populations.  Case-control studies provide a window into
the process of disease occurrence in a population, without the necessity of studying the entire
population.  Thus, case-control studies are best understood by considering what is happening in the
population (the study base) and by analyzing the relationship between it and the case-control study.

But how do we identify the study base?  The study base or source population consists of those
people who would have been available to be counted as cases had they developed the disease or
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experienced the event under study.  Thus, the source population must be at risk for the disease and
for being selected as cases if they were to develop it.  Moreover, the relevant exposure measure for
both cases and for the source population is the time during which the disease was initiated or
promoted in the cases.  Identifying the relevant period in time can be an issue for a disease with a
lengthy induction and/or latent period, such as most cancers, if the disease is common and/or the
population or its exposure distribution is undergoing substantial change.)

The first step in identifying the study base is generally based on geography or membership.  Thus,
for cancer cases from a state with a tumor registry, the study base is the state (or a portion of the
state if only cases from a certain portion of the state are being studied).  For cases detected in a
managed health care organization, the study base is its membership.  If identification of cases is
being made though hospitals, then the study base is the population from whom people would go to
that hospital if they developed the disease.  This last situation can be complicated by factors such as
the extent to which some people go to hospitals not covered in the study and whether the disease is
one which does not always lead to hospitalization.

An important next step is to identify that subset of the population that is truly at risk for the disease
(and its detection).  For endometrial cancer, obviously the study base does not include men.  Does
the study base include hysterectomized women?  Certainly not, since women without a uterus
obviously cannot develop endometrial cancer – though if the hysterectomy was recent, a woman
could be part of the study base for cases detected prior to that time.  (Also, there may be the
potential for selective depletion of endometrial cancer susceptibles, but we will not consider that
possibility here.)

Selecting a control group representative of the study base

At least as problematic as identifying the study base is coming up with a way to obtain a control
group that will faithfully represent it.  One obvious choice, which is now much more common than
in earlier decades, is to carry out a random sample survey of the study base as it exists at the time of
the study.

This approach is most likely to be valid if:

! an accurate sampling frame exists or is constructed

! a representative sample is drawn and adequately executed

! response rates are high and data are of adequate quality (high rate of accuracy)

Controls recruited from hospitals and other noncommunity-wide sources are nevertheless of interest
because the cost and logistical challenges are often not as great, greater cooperation may be
obtained, and data quality may be better than that from the general population.  However, when
controls are obtained from sources other than a random sample survey, validity depends upon
whether these controls have the same exposure distribution as the study base.  For example,
selecting controls from friends of the cases ("friend controls") can lead to bias because people tend
to choose friends because of shared interests, perspectives, affiliations, and so on which are often
associated with exposures.  Thus, the proportion of many exposures in friend controls will be more
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similar to that in the case group than in the study base as a whole.  The use of friend controls is an
example of "over-matching".

What about if some subsets of the study base are at much higher risk than others, due to, for
example, genetic factors or simultaneous exposures?  If the difference in risk is great, then both the
case group and study base should be demarcated on that risk factor, and separate (stratified) analyses
carried out.

Variants in the basic case-control design

There are several ways in which the case-control study design can be implemented.

! Incident versus prevalent cases:  Case-control studies can use only new cases (incident cases) of
the disease, thereby avoiding some of the sources of bias inherent in the use of prevalent cases
(e.g., influence of survival/duration of the condition), or they can use prevalent cases.

! Defined population or nesting:  Case-control studies can be carried out in a geographically-
defined population, e.g., a state where a cancer register provides notification of all incident cases
from a known denominator population, or in a cohort that has been followed (e.g., an
occupational group).  Having a defined population offers further advantages (such as availability
of an identified universe for selection of controls, knowledge of the denominator from which
migration has occurred, measurement of key variables prior to the disease).  A case-control study
within an identified cohort is sometimes termed a "nested case-control" study.  (Rothman and
Greenland regard nearly all case-control studies as nested in their source population.)

! Eligible controls:  Although classically, the controls in a case-control study were noncases, in
some designs people who later develop the disease can still serve as controls.

Types of control groups - case-control, case-cohort

The controls in a case-control study can be selected from among (a) persons who have not
developed the disease by the end of the period of case ascertainment (prevalence controls),
(b) persons who have not developed the disease at the time each case occurs - such controls are
usually matched in time to the cases (density sampling), or (c) persons at risk to become a case at the
outset of case ascertainment.

These controls may be selected before or after case ascertainment.  Rodrigues and Kirkwood (1990)
call the three types of controls, respectively, "exclusive", "concurrent", and "inclusive".  The
traditional approach is method (a), "exclusive" controls.  With this method, only people who remain
free of the disease to the end of case ascertainment are accepted as controls.  The odds ratio in this
situation estimates the incidence (i.e., risk) odds ratio in the cohort from which the cases arose.  For
a rare disease, this incidence odds ratio estimates the CIR.

In the second sampling scheme (density or concurrent sampling [method (b)), a participant can be
selected as a control at a given point even if that participant later develops the disease.  With this
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approach, the odds ratio computation estimates the relative rate (IDR) on the assumption that the
IDR does not change during the follow-up period (assuming matching of controls to cases by time)
(see Greenland and Thomas, 1982 and Rodrigues and Kirkwood, 1990).  This study design has been
referred to as a "density case-control study" (Hogue et al., 1983 referred to this design as a "case-
exposure study"; however, Rodrigues and Kirkwood (1990) use that term for the third design
[method (c)]).  If a participant selected as a control later develops the disease, then that participant is
also counted as a case; his/her data are used both as a case and as a control (his/her data appear in
both categories).

The third design [method (c)] has been called "case-base" and "case-cohort" (also "case-exposure" –
see Rodrigues and Kirkwood for citations).  When such a case-control study is carried out within a
fixed cohort, the odds ratio estimates the risk ratio with no rare disease assumption.

Rodrigues and Kirkwood show that the three ratio measures of association – CIR, IDR, and OR –
can each be expressed so that its numerator is the odds of exposure in cases.  Thus, all that differs
are the denominators, and the three different approaches to sampling controls provide estimates for
the respective denominators.

Odds of exposure given disease a / b
a. ORe = Exposure odds ratio = —————————————— = ———

Odds of exposure given non-diseased c / d

(c / d  is the odds of exposure in non-cases [never-cases at end of ascertainment period])

ID1 a / py1 a / b
b. IDR = —— = ——— = ————

ID0 b / py0 py1 / py0

(py1 / py0  is ratio of exposed to unexposed person-years, from density sampling)

CI1 a / n1 a / b
c. CIR = —— = ——— = ————

CI0 b / n0 n1 / n0

(n1 / n0  is the odds of exposure in the source population for the cases at the start of the
follow-up)

where "a" = exposed cases, "b" = unexposed cases, and "n" and "py" represent persons and person-
years for exposed (subscript 1) and unexposed (subscript 0).
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A modern perspective

In general, design issues in a case-control study are best understood by considering how the issues
would be dealt with in a randomized clinical trial (Feinstein, 1985) or a cohort study (Rothman and
Greenland).  In fact, students of epidemiology (including those of us on the other side of the
podium) might have an easier time if the terms cohort study and case-control study had never been
introduced, but rather the various approaches of studying disease presence and occurrence in a
population classified in regard to the "windows" they provide into the development of the disease in
the population.

c
m c = new cases

c
c d = deaths

c
c d c m = migrants

c
N S U S C E P T I B L E S

c m d

c
d c

c
d d

c

Time

The above diagram depicts a population of size N followed over time interval t. Suppose N0 are
susceptible (to a specific outcome) and that a surveillance system exists to detect cases (c's) of
various diseases or events.  For the moment, let us focus on a particular disease, and assume that M
cases develop during the follow-up period shown.  We will also focus on a particular exposure, to
which N1 of the population are exposed, leaving N0 unexposed.  We will designate the total
population-time in the exposed group as N1t and that in the unexposed group N0t.  The population
distribution of disease and exposure are summarized in the following table.
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Exposure

Yes No Total

Cases A B M1
People N1 N0 N

Incidence
proportion

A/N1 B/N0 M1/N

Incidence proportion
difference

(A/N1) – (B/N0)

Incidence proportion ratio (A/N1) / (B/N0)
Person-time N1t N0t Nt
Incidence

rate
A/(N1t) B/(N0t) M1/(Nt)

Incidence rate difference (A/N1t ) – (B/N0t)
Incidence rate ratio (A/N1t) / (B/N0t)

We can estimate any of the measures in this table with data from appropriately selected random
samples and good historical information.  For example, if we choose a random sample (n) from the
original susceptible population (N), the ratio of exposed persons in the sample (n1) to unexposed
persons in the sample (n0) estimates (N1/N0) the odds of exposure in the original population.  If we
then choose a random sample (of size m1) of the M1 cases (or obtain data from all M1 cases), then
ratio of cases in the sample who were exposed at the beginning of the period (a) to unexposed cases
in the sample (b) estimates the odds of exposure in cases.  By including only cases who were present
in the population at the start of the period, we can then estimate the incidence proportion ratio
[(A/N1)/(B/N0)] as the ratio of the estimated odds of exposure in cases (a/b) divided by the
estimated odds of exposure in the susceptible population at the start of the follow-up period
(n1/n0).  This estimate will be accurate if we have representative samples, accurate assessment of
baseline exposure, and no loss to follow-up from outmigration or deaths.  If in addition we know N,
the size of the original susceptible population, then we can also estimate N1 and N0 as, respectively,
(n/N)n1 and (n/N)n0, thereby allowing us to estimate incidence proportions and the incidence
proportion difference.  With this design we can estimate incidence density proportion ratios for any
diseases for which a surveillance system (possibly our own) is available and any exposures for which
we can obtain baseline data.  Note that no rare disease assumption is involved in the above
estimates.

If duration of follow-up time is important, we need to estimate the ratio of exposed and unexposed
susceptible follow-up time.  We can do this by sampling the susceptible population over time,
instead of at baseline, in such a way that the probability of selecting a person is proportional to the
amount of time he/she is susceptible ("density sampling").  One method for doing this is "risk-set"
sampling, in which a susceptible person is sampled at the same date that each case occurs.  The ratio



_____________________________________________________________________________________________
www.sph.unc.edu/courses/EPID168, © Victor J. Schoenbach 1999 8. Analytic study designs - 246
rev.  9/6/1999, 10/7/1999, 12/17/1999

of exposed to unexposed persons sampled in this way estimates N1t/N0t, which we can use to
estimate the incidence rate ratio.

Finally, if we choose to sample susceptibles at the end of the follow-up period (Rothman and
Greenberg call this the "cumulative" design), then we can estimate the incidence odds ratio, which if
the disease is rare will approximate the incidence rate ratio and the incidence proportion ratio.  See
Rothman and Greenland, chapter 7.
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Analytic study designs - Assignment

Part I

The following questions are based on the attached paper "Cancer and Tobacco Smoking"  (Morton
L. Levin, Hyman Goldstein, and Paul R. Gerhardt, JAMA, May 27, 1950, pages 336-338).

 1. What study design has been employed (circle one)

A. case-control

B. Cohort (prospective)

C. retrospective cohort (or historical cohort)

D. ecologic

E. May be either a or c

In one or two sentences justify your choice.

 2. The comparison group was composed of "those with symptoms referable to the same site but
which proved not to be due to cancer."  Briefly discuss the appropriateness of this comparison
group and its likely effect on the association observed in the study.  (3-6 sentences).

 3. Histories of tobacco usage were obtained routinely from all admitted patients before the final
diagnosis had been established. "This procedure is considered especially important from the
standpoint of excluding bias."  The authors are referring to bias from:

A. selective survival

B. cohort effect

C. antecedant-consequent confusion

D. ecologic fallacy

E. selective recall

Explain.
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 4. The authors state that "There were more than twice as many cases of lung cancer among cigarette
smokers as among any other group".  Briefly discuss the meaningfulness of this statement.

 5. Which interpretation of the data in Table 4 is correct?  [Watch out--this is tricky.]

A. Cumulative incidence of lung cancer in cigarette smokers* is approximately 2 1/2 times the
cumulative incidence in nonsmokers (20.7/8.6).

B. Incidence density rate of lung cancer in cigarette smokers* is approximately 2 1/2 times that
in nonsmokers (20.7/8.6).

C. Prevalence of lung cancer among all cigarette smokers* admitted to Roswell Park Memorial
Institute is approximately 2 1/2 times that among all nonsmokers admitted to Roswell Park
Memorial Institute (20.7/8.6).

D. Prevalence of cigarette smoking* among lung cancer cases is approximately 2 1/2 times the
prevalence of nonsmoking among lung cancer cases (20.7/8.6).

E. None of the above statements is correct.

In one or two sentences justify your answer.

__________

*Note:  25 years' duration or longer.

Note:  The two articles for this assignment were included the packet of copyrighted
material sold at the Health Affairs Bookstore.  The page numbers jump to reflect the
insertion of those pages.

Part II

The next five questions are based on the attached paper "The Mortality of doctors in relation to
their smoking habits", (Richard Doll, Austin Bradford Hill, British Medical Journal, June 26, 1954,
pages 1451-1455).

The questions are designed to direct your thoughts in reviewing the study.  Your answers can be
brief!  [It is suggested that you read through the entire paper before answering the questions.]
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 1. Doll and Hill state (page 1451, column 1) that "Further retrospective studies of that same kind
would seem to us unlikely to advance our knowledge materially or to throw any new light upon
the names of the association."

a. What specific design does "that same kind" refer to?

b. Why do the authors regard it necessary that there be studies employing a different design (a
"prospective" one).  What are some advantages of a prospective, rather than a retrospective,
approach?

 2. What study design have Doll and Hill in fact employed (check one):

A. case control with incident cases

B. cohort (prospective)

C. cohort (historical

D. cross-sectional

E. ecologic

F. case control nested within a cohort

In one or two sentences justify your choice.

 3. 

a. The study group was recruited from members of the medical profession in the United
Kingdom in 1951.  Briefly, discuss the appropriateness of using this target population.  What
problems would one anticipate in recruiting and following these subjects?  How might these
problems be minimized?

b. In reading the Methods Section, what drawbacks of a prospective investigation of this nature
are vividly apparent?

 4. 

a. Think about the approach to measuring smoking status in the Levin et al. study in Part I and
the Doll and Hill study.  Are you more confident in the validity of either approach?  What is
the "real" exposure factor or factors?

b. Lung cancer is a disease presumed to have a long latency period.  How do Doll and Hill
justify their use of current smoking habits as the exposure variable?
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 5. In contrast to many earlier investigations, Doll and Hill studied deaths rather than diagnosed
cases.  Cite some advantages and disadvantages of using deaths rather than incident cases.

 6. What is the reason given for standardizing rates by age (p.ÿ1452)?  Do you agree?

 7. What is the reason for concern about the criteria upon which the diagnosis of lung cancer was
based (page 1452, 2nd column)?

 8. Read the first paragraph under "Method of Smoking" (page 1453) carefully.  We will take up this
concept (nondifferential misclassification bias) later in the course. [No response required.]

 9. Are the results from the "prospective" study basically consistent with those of the retrospective
studies?  Cite several factors that might account for the lower rates in the present study.
[Thought question:  how were the authors able to estimate death rates from their retrospective
study?]

 10. Read the paragraph headed "The Diagnoses" (page 1454) carefully.  We will consider this concept
("Detection bias") later in the course.  [No response required]

 11. Doll and Hill end their conclusion:  "It seems clear that smoking cannot be a major factor in [the]
production [of deaths attributable to coronary thrombosis], but the steady increase in mortality
with the amount of tobacco smoking recorded suggests that there is a subgroup of these cases in
which tobacco has a significant adjuvant effect," (p.1455).  Was that "data dredging" or
prescience?  [No need to write, just think.]

 12. How would you, speaking on behalf of Doll and HIll, respond to the argument that people who
have never smoked, or who have stopped smoking, are often more health conscious, eat better
diets, get more exercise, use more preventive health services, and handle stress better than people
who smoke, and that these reasons, rather than smoking, may be responsible for the results
observed in the study?
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Analytic study designs - Assignment solutions

Part I

 1. A case control study design was employed.  Subjects were selected on the basis of their having or
not having the disease of interest (i.e., selected cancers).  A strength of this particular case control
study, however, is that exposure information had been obtained before the diagnosis was known.

 2. The case-control design has a number of subtleties, and a full understanding of the central issue
of control selection came only after several decades of case-control studies.  The principle for
selection of the control group is that it should permit estimation of the exposure distribution in
the study base, i.e., the population from which the cases arose.  However, previously it was
thought that, on analogy with an experimental comparison, the cases and controls should be
"comparable" or "as similar as possible except for their disease status".

Belief in the importance of comparability between cases and controls has probably been the
rationale for control selection procedures in many published studies and perhaps also for the
widespread use of matched controls.  There is a role for matching in selection of controls,
primarily where a known strong risk factor is prominent in the cases but much less frequent in
the study base.  In this situation, most cases will have the known risk factor (e.g., smoking in a
study of lung cancer) but most controls in an unmatched control group will not.  That difference
will make it difficult or at least inefficient to compare the exposure distributions of cases and
controls while taking account of the known risk factor.  Selecting the control group in a way that
forces it to have the same distribution of the established risk factor as will be found in the case
group avoids this problem.  However, if the matching criterion is not a strong risk factor, then
there is the danger that a matched control group will have an exposure distribution that is more
like that of the case group than is the exposure distribution in the study base, a situation referred
to as "over-matching".

There are other considerations that enter into the selection procedure for controls, however,
including feasibility, cost, anticipated response rate, and availability of exposure information.  For
example, people selected from the general population may not be able to provide their exposure
status (e.g., if measuring it involves a costly or invasive procedure, such as coronary angiography,
or access to records they will not have, such as workplace exposure to various chemicals).  Also,
if the condition under study is not rare but requires a costly or invasive procedure to detect, a
control group randomly selected from the general population could  include within it a
meaningful proportion of people with the condition.  So the actual selection procedure often
represents a compromise between the objective of constructing a  window into the study base
and constructing a window that is clear enough to see through, even if one knows that the view
through it may not quite be the study base.  Thus, even though they are not fully representative
of the population from which cases arose, hospital controls may be more motivated and available
than community controls and may provide opportunities for detection of exposure more similar
to those for cases.
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In this study the use of hospitalized controls produces an overestimate of the prevalence of
smoking in the population from which cases arose.  The reason is that many of the controls are
symptomatic for diseases associated with smoking.  Thus, this control group has a greater
proportion of smokers than would a general population sample and the contrast with the lung
cancer case group is therefore diminished, resulting in a negative bias in the measure of
association, similar to Berkson's or referral bias.   (Note: this is not what was meant by “Briefly”!)

 3. E. Selective Recall - Cases generally have an increased motivation or tendency to recollect
exposure to a putative causal agent.  To avoid bias, it is helpful if controls have a similar stimulus
to remember and report.

 4. This statement is imprecise in the present context.  In a case control study, such as this, one
directly estimates and compares the proportion of exposed (smokers) among the cases to the
proportion of exposed among the noncases, not the proportion of diseased among the exposed
and unexposed as implied in this statement.  The author's statement would be more appropriate
to a cohort design or to most cross-sectional studies.

 5. "E" - none of the statements is correct:  Statement "C" comes the closest to describing the data
presented in Table 4, though its usefulness is doubtful in a case control study.  Interpretation of
findings would be more appropriate in terms of the proportion exposed among the cases and
controls.  [Statement "C" is not actually correct because Table 4 does not deal with all smokers
and nonsmokers admitted to Roswell Park, but only with those with certain cancers or symptoms
referable to those same sites (see first paragraph of second column.]

Part II

 1. A. case control

! Exposure variable can be measured more reliably, with no danger of its measurement being
influenced by the disease outcome;

! Selection bias in the choice of a control group is avoided, while selection bias from loss to
follow-up can often be controlled or at least its likelihood guaged;

! The temporal sequence (i.e., that exposure precedes disease) is clearly demonstrated;

! Risk and rates can be estimated directly.

 2. B. Cohort -- The investigators measured initial exposure status (by survey) before death (and
ideally before disease onset) and subsequent mortality experience by surveillance of death
records.

 3. a.

! Better informed than general population

! Motivated to respond to medical research
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! Possible motivation to change behavior

! Busy schedule may lead to poor response rate from causes other than lung cancer

! Better medical care may decrease mortality from causes other than lung cancer.

Techniques to minimize problems of survey:

! Keep questionnaire brief

! Do not reveal research hypothesis

! Follow-up interviews with non-responders
b. 

! Large sample required and lengthy follow-up, with attendant expense, effort, and delay in
obtaining results

! Difficult to assess prior exposure history

! Poor response rate from initial survey

! Loss to follow-up.

 4. a. Since both involve questionnaire responses, the differences are in:  the timing of the survey
and the quantification of exposure.  Doll and Hill might be favored for less selective recall,
whereas Levin et al. might be selected for a more thorough inquiry with more precise
quantification of exposure.  The "real" exposure factor is presumably some constituent or
combination of constituents of tobacco smoke.  The "true" agents could vary with type of
cigarette, smoking practices, cigarette brand contents, and so on.  (Cigarettes smoke contains
thousands of substances, including many that are known carcinogens.)

b. The assumption is that current smoking practice, which is more reliably measured, is a good
indicator of previous smoking practice.  A prior case-control study showed current smoking
history was almost as great a risk factor for lung cancer as total smoking history.

 5. Advantages:

! Routine notification is available;

! Easy access to records;

! Necropsy confirmation available in many cases.

Disadvantages:

! Differential survival may influence the findings, though this should be less of a problem with
a rapidly fatal disease like lung cancer;

! Cause of death may be inaccurately recorded, particularly where multiple conditions are
present;
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! Follow-up must be longer for any given number of cases.

 6. The distribution of smoking habits varies considerably with age, as does cancer incidence.
Therefore, age adjustment or age-specific comparisons are needed.

 7. To demonstrate that disease diagnosis was not based not only on clinical judgment but
documented by examination of tissue specimens.  Particularly with a rare disease, like lung cancer,
false positives can readily distort the observed association, leading to information
(misclassification) bias.

 9. Yes:  Prevalent cases may have failed to respond initially, and therefore been deleted from the
cohort; short period of follow-up of disease with long induction; doctors may receive better
medical care, thereby reducing mortality.

 12. Ultimately, it is not possible to exclude all possible alternate explanations except by conducting
an experiment in which smoking (or stopping smoking), can be randomly allocated in sufficiently
large groups with sufficient adherence to the experimental regimen.  For ethical and practical
reasons, such an experiment cannot be conducted with smoking onset as the experimental
variable.  Smoking cessation programs have not been sufficiently effective to serve as an alternate
intervention.  If they were, it is doubtful that they could be used in a lung cancer trial, since the
evidence for the harmful effects of smoking is so abundant that ethical considerations would
probably preclude such a trial.

Though "absolute" proof requires human experiments, the weight of observational and animal
evidence is convincing.  Any particular factor proposed as an alternate explanation (e.g., exercise,
diet) can be examined simultaneously with smoking, to see which factor is associated with lung
cancer when the other factor is controlled.  There are no serious contenders.  Traditional criteria
for causal inference are well satisfied:

a. strong association (RR about 8 for smokers overall);

b. dose-response effect exists;

c. replication in many studies;

d. cohort studies demonstrate that exposure precedes disease;

e. biologic explanation (animal and tissue culture models, autopsy studies);

f. experimental confirmation available in animal models;

g. analogy to other carcinogen-cancer associations.

Smoking and lung cancer is one of the strongest of epidemiologically-established relationships.
Controversy remains, but that should not paralyze policy planning (see M.A. Ibrahim, The
cigarette smoking/ lung cancer hypothesis.  Editorial.  Am J Public Health 1976; 66:131-132).
Nevertheless, the debate has continued even into recent years (see references in Bibliography).
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9. Causal inference*

The desire to act on the results of epidemiologic studies frequently encounters vexing
difficulties in obtaining definitive guides for action.  Weighing epidemiologic evidence in

forming judgments about causation.

"The world is richer in associations than meanings, and it is the part of wisdom to
differentiate the two." — John Barth, novelist.

"Who knows, asked Robert Browning, but the world may end tonight?  True, but on
available evidence most of us make ready to commute on the 8.30 next day."   —
  A. B. Hill

Historical perspective

Our understanding of causation is so much a part of our daily lives that it is easy to forget that the
nature of causation is a central topic in the philosophy of science and that in particular, concepts of
disease causation have changed dramatically over time.  In our research and clinical practice, we
largely act with confidence that 21st century science has liberated us from the misconceptions of the
past, and that the truths of today will lead us surely to the truths of tomorrow.  However, it is a
useful corrective to observe that we are not the first generation to have thought this way.

In the 1950s, the middle of what will soon become the last century, medical and other scientists had
achieved such progress that, according to Dubos (page 163), most clinicians, public health officers,
epidemiologists, and microbiologists could proclaim that the conquest of infectious diseases had
been achieved.  Deans and faculties began the practice of appointing, as chairs of medical
microbiology, biochemists and geneticists who were not interested in the mechanisms of infectious
processes.  As infectious disease epidemiology continues to surge in popularity, we can only shake
our heads in disbelief at the shortsightedness of medical and public health institutions in dismantling
their capabilities to study and control infectious diseases, whose epidemics have repeatedly
decimated populations and even changed the course of history.

On the other hand, perhaps the connection is not so direct.  According to Dubos, the 19th-century
fall in death rates from infectious disease and malnutrition actually began in mid-century, several
decades before the medical discoveries of the scientific era could be turned into actual policies.
Medical science and the germ theory received an inordinate share of credit because the decline was
not widely recognized until the end of the century.  Moreover, he charges

The present generation [presumably the pre-World War II birth cohorts going back to
1910] goes still further and now believes that the control of infectious and nutritional
disease dates from the widespread use of antibacterial drugs and from the availability of
vitamins and processed foods.  So short and parochial are our memories!" (page 365)

* (An earlier version of these notes was prepared by Sandra Martin, Ph.D.)
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While acknowledging the very important roles played by local boards of health and other municipal
bodies, Dubos attributes most of the improvement in health to improvements in prosperity and
transportation that enabled many people to affort "at least one square meal a day":

No medical discovery made during recent decades can compare in pratcial importance
with the introduction of social and economic decency in the life of the average man.  The
greatest advances in the health of the people were probably the indirect results of better
housing and working conditions, the general availability of soap, of linen for
underclothing, of glass for windows, and the humanitarian concerns for higher living
standards.  (page 365)

Before proceeding to our investigation of causal inference, it will be helpful to take a brief look at
the history of public health and disease in the 17th-19th centuries.  [The following account comes
primarily from Wilson Smillie (Public health: its promise for the future), Mervyn Susser (Causal thinking in
the health sciences), and Lisa Berkman and Lester Breslow (Health and ways of living).]

In the early seventeenth century, medical science was "just emerging from the morass of the Middle
Ages" (Smillie, 1955:18).  The most deadly disease of the American colonies in that century was
smallpox.  The disease was even more devastating to the indigenous populations of the New World
and is believed to have killed over half the Indian population in Mexico following the Spanish
conquest (Smillie, 1955:21).  In Europe, smallpox was an endemic disease of childhood; but in the
more isolated situation in the colonies, recurrent epidemics devastated settlements.  According to
Smillie (p22), a 1633 smallpox epidemic in the Massachusetts Bay colony spread to the Indians and
killed "whole plantations" of them.  A 1689-1690 epidemic in New England killed 1,000 people in
one year (by comparison, Boston had a total population of about 7,000) at that time.

During the eighteenth century, the practice of smallpox inoculation (published by the Greek
Timonius in 1714) successfully aborted epidemics in the American colonies, although the practice
was at first resisted.  Smallpox inoculation was banned outright in New York City in 1747, required
the governor's permission in Carolina in 1764, and required the consent of the selectmen in towns in
Massachusetts (Smillie, 1955, p28).

Nevertheless, smallpox inoculation soon proved its worth.  At the beginning of the Revolutionary
War, in 1776, smallpox arrived in Boston.  A heroic campaign inoculated 9,152 nonimmune people
in three days.  Although the inoculations produced 8,114 smallpox cases resulting in 165 deaths
(1.8%), the 232 natural infections in susceptible persons who had not been inoculated resulted in 33
deaths (14.2%)  (data from Shattuck, Lemuel, reported in Smillie, 1955:29).  Two decades later,
Edward Jenner, an obscure country practitioner in England, demonstrated immunity to smallpox in
ten persons who had previously developed cowpox.  Although his paper to the Royal Society was
refused, he published his classic monograph in 1798 to become known as the father of vaccination.
(Take-home message: don't let a manuscript rejection discourage you!)

The second great communicable disease in eighteenth century North America, yellow fever, also
took a fearsome toll on communities in the New World.  The first American article on yellow fever
(by Dr. John Lining of Charleston) described the disease as both contagious and imported (Smillie,
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1955:35).  Quarantine of sick persons and of ships suspected of having yellow fever on board was
sometimes instituted to prevent or abort epidemics.

Towards the end of the eighteenth century, though, the miasma theory of disease arose – the theory
that all disease was due to bad air – contaminations (miasma) emanating from a great variety of
sources (Smillie, 1955:3).  So strong was the power of this new theory, that Dr. Benjamin Rush, the
greatest American physician of that time, was sure that the great 1793 yellow fever epidemic in
Philadelphia was neither contagious nor had come from the West Indies, but was rather due to a pile
of spoiled coffee thrown on a wharf (Smillie, 1955:9).

By the early nineteenth century, medicine and the public health movement were dominated by the
miasma theory (Susser, Causal Thinking in the Health Sciences).  The line of investigation was to prove
the ill-effects of miasma; the line of prevention was to eliminate the sources of miasma in slums and
poor sanitation.  Although the concept of miasma, overthrown later in the century, is ridiculed
today, the sanitation measures that the miasma theory called for were often dramatically effective in
reducing death rates.  During the nineteenth century, as Susser writes, Jacob Henle formulated the
conditions that needed to be met to prove the germ theory, and some 20 years later, Louis Pasteur
demonstrated the existence of microorganisms.  Now, the causes of disease could actually be seen –
microbiology had progressed from a science of inference to a science of direct observation.
Microorganisms then became the object of the search for causes.  The containment of the spread of
microbes became the object of prevention.  Asepsis, antisepsis, and disinfection - measures taken on
the basis of germ theory - also proved effective.  Moreover, the new paradigm proved superior to
the miasma theory through its greater specificity and in its ability to explain and predict certain
phenomena outside the miasma theory, such as immunization and chemotherapy.

The discovery of microorganisms and the ascendence of the germ theory of disease brought with
them the view that illness consisted of many discrete clinical entities, each caused by a different
agent, and each with certain morbid manifestations yielding distinct syndromes (Berkman and
Breslow, 1983:5).  This concept prevails even today, as illustrated in the dictionary definitions shown
in the chapter on the Phenomenon of Disease.  The search for specific agents has led to great
breakthroughs in medicine and public health, such as the effective control of many infectious
diseases in the developed world and the worldwide eradication of smallpox.  Even where the germ
theory did not apply, as in the case of vitamin deficiency diseases, the concept of specificity of cause
has also proved effective for etiology and control.

There were those who resisted the one-disease-one-cause model.  But the tide was against them.  As
Dubos (1965, quoted in Berkman and Breslow, p. 6) observed:

These vague arguments were no match for the precise experimentation by which Pasteur,
Koch, and their followers defended the doctrine of specific causation of disease.
Experimental science triumphed over the clinical art, and within a decade the theory of
specific etiology of disease was all but universally accepted, soon becoming, as we have
seen, the dominant force in medicine.

At the same time, this great spurt in medical research diminished awareness of the rarity of one-to-
one relationships and of the complex relationships between causes and effect that exist in the real
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world.  Even as late as the 1950's, for example, it was very difficult to conceptualize that smoking
can cause so many diseases (noted by the late Ernst Wynder in a 1997 seminar at UNC at Chapel
Hill), and the fact that so many diseases were associated with cigarette smoking was put forward as
an argument against interpeting the associations as causal.  (According to Sir Richard Doll, in 1992
the Sloan-Kettering Institute's new director "told Wynder that his conclusiion that a causal
relationship existed between smoking and lung cancer was irresponsible and that all future
publications by his goup would have to be cleared through the director's office", Ernst Wynder,
1923-1999, AJPH 1999;89:1798-9: 1799).

Lord Bertrand Russell has written, "every advance in a science takes us further away from the crude
uniformities which are first observed into a greater differentiation of antecedent and consequent and
into a continually wider circle of antecedents recognized as relevant (Mysticism and Logic, London:
Longmans, Green, 1918, p. 188, quoted in E.H. Carr, What is history, NY: Knopf, 1963, p. 118).  A
number of developments undermined the supremacy of the one-cause-one-disease model.

One was the growing predominance of microbial diseases of endogenous origin, diseases caused by
organisms that are carried by many people in the population (Dubos, 176).  Contempory examples
are bacterial infections secondary to acute viral illnesses, opportunistic infections in persons with
AIDS, and urinary tract infections with E. coli.  A second was the recognition that many pathogens,
including the tubercle bacillus, can be carried for long periods of time, only to cause disease when
the host's immunity becomes weakened.  A third was the shift of attention from infectious diseases
to heart disease and cancer, where various factors are related to risk but none absolutely necessary;
thus the term "multifactorial" disease.  (Although CHD is the classic multifactorial disease, there
have been recent suggestions that infectious processes may be an important dimension.)  Finally, as
epidemiology has expanded to study behavioral and environmental maladies (e.g., automobile
injuries, alcoholism, homicide, and unprotected intercourse), a unicausal model does not even have
meaning.

Nevertheless, in practice much of epidemiology focuses on single risk factors.  Ideally we could
make use of an overall model combining multiple etiologic agents into a comprehensive system.  But
often epidemiologic research has its greatest role in stages of investigation before a comprehensive
causal picture is possible.  Indeed, epidemiologic studies are one of the primary avenues towards
beginning to define the factors that might make up such a picture.  So the usual approach is to take
one or two suspected factors at a time and then see if, taking into account what has already been
discovered about the disease, the suspected factors increase the explanatory or predictive power of
the investigation.  This one factor-at-a-time approach is the essence of risk factor epidemiology, of
the concepts confounding and effect modification to be presented later, and of epidemiologic
approaches to causal inference.

The concept of causality

In Modern Epidemiology, Rothman and Greenland illustrate the process of understanding a cause with
a description of a toddler learning that moving a light switch causes the light to turn on.  But what
we take as a cause depends upon the level at which we seek understanding or the constituency we
represent.  Thus:
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The mother who replaced the burned-out light bulb may see her action as the cause for the
light's turning on, not that she denies the effect of the light switch but has her focus
elsewhere.

The electrician who has just replaced a defective circuit breaker may cite that as the cause of
the light's turning on, not that he denies the importance of the switch and the bulb, but his
focus is elsewhere still.

The lineman who repaired the transformer that was disabled by lightning may regard his repair
as the cause of the light's turning on.

The social service agency that arranged to pay the electricity bill may regard that payment as
the cause of the light's turning on, since with the electricity cut off, neither the switch nor
the circuit breaker matters.

The power company, the political authority awarding the franchise, the investment bankers
who raised the financing, the Federal Reserve that eased interest rates, the politician who
cut taxes, and the health care providers who contributed to the toddler's safe birth and
healthy development might all cite their actions as the real cause of the light's turning on.

The National Rifle Association's slogan "Guns don't kill people; people kill people" is not a public
health stance, but it does illustrate the complexities of apportioning causation.

Mervyn Susser proposes that for epidemiologists a causal relation has the following attributes:
association, time order, and direction.  A cause is something that is associated with its effect, is
present before or at least at the same time as its effect, and acts on its effect.  In principle, a cause
can be necessary – without it the effect will not occur – and/or sufficient – with it the effect will
result regardless of the presence or absence of other factors.  In practice, however, it is nearly always
possible to conceive of other factors whose absence or presence could avert an effect since, as with
the light switch example above, assumptions are always present.  A fall from a five story building
would appear to be a sufficient cause of death.  But it could be argued that death would not have
resulted had there been a safety net below!

Rothman has elaborated a component causes model that attempts to accomodate the multiplicity of
factors that contribute to the occurrence of an outcome.  In his model, a sufficient cause is
represented by a complete circle (a "causal pie"), the segments of which represent component
causes.  When all of the component causes are present, then the sufficient cause is complete and the
outcome occurs.  There may be more than one sufficient cause (i.e., circle) of the outcome, so that
the outcome can occur through multiple pathways.  A component cause that is a part of every
sufficient cause is a necessary cause.  The induction period for an event is defined in relation to each
particular component cause, as the time required for the remaining component causes to come into
existence.  Thus, the last component cause has an induction period of zero.  This model is useful for
illustrating a number of epidemiologic concepts, particularly in relation to "synergism" and "effect
modification", and we will return to it in a later chapter.
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Causal Inference

Direct observation vs. inference:

Much scientific knowledge is gained through direct observation.  The introduction of new
technology for observation along optical, aural, and chemical dimensions of perception, through
such tools as microscopes, x-rays, ultrasound, magnetic resonance scans, and biochemical assays has
greatly expanded our opportunities for direct observation and contributed to major advances in
scientific knowledge.  For example, a recent Nobel Prize was awarded for measuring ion channels in
cells, a process that previously had to be inferred.  With direct observation, it is possible to "see"
causation, especially if one can manipulate the process.  Thus, it has been said that the advances in
molecular biological techniques have been converting the science of genetics from one of inference
to one of direct observation.

In general, however, challenges to understanding transcend that which can be observed directly, so
that inference is an essential aspect of scientific activity.  It is typically not possible to observe all
aspects of a phenomenon of interest, and this situation is very much the case for relationships under
epidemiologic investigation.  Moreover, even observation involves inference.

Consider the difficulties that arise from latency and induction.  The rapidity with which scurvy
improved after Lind began his treatments was a great aid in recognizing the effect of lemons.  The
two-week induction period of measles and its infectiousness before the appearance of symptoms
must at one time have been a barrier to understanding its transmission.  At the time of Goldberger's
investigations, pellagra typically developed about four months after the onset of a niacin-deficient
diet.  The longer induction period must have made it that much more difficult to associate cause
with effect.  For example, an interval of four months confounded the seasonality, so that cases were
higher in spring and summer (when food was becoming more available) than in winter (when the
disease was really developing).  At times, opponents of the acceptance of the causal relationship
between tobacco and lung cancer have pointed to low rates of lung cancer in populations with high
smoking rates (for example, American women in the 1950's) as contradictory evidence, neglecting to
take into account the long interval between the onset of cigarette smoking and the development of
lung cancer.

Similarly, rare diseases require observation of many subjects, greatly restricting the level of detail that
can be visualized or examined.  Severe constraints on measurement are also imposed by the need to
rely largely on noninvasive measurement methods.

Idealized view of the scientific process

For reasons such as these, a primary recourse in epidemiology is to inference, through:

! positing of conceptual models (conceptual hypotheses);

! deduction of specific, operational hypotheses; and

! testing of operational hypotheses.



_____________________________________________________________________________________________
www.sph.unc.edu/courses/EPID168, © Victor J. Schoenbach 1999  9. Causal inference - 275
rev. 9/8/1998, 9/5/1999, 9/11/1999, 12/17/1999

As presented in Kleinbaum, Kupper, and Morgenstern, the cycle of scientific progress proceeds as
follows:

! Positing of conceptual hypotheses

! Deduction of specific study hypotheses

! Design of study and collection of data

! Analysis of data and conclusions about the study hypotheses

! Modification of the conceptual hypotheses if necessary

This admittedly idealized portrait appropriately emphasizes the importance of conceptual models.
As the distinguished historian Edward Hallett Carr has written (What is history, NY: Knopf, 1968,
p. 136) "The world of the historian, like the world of the scientist, is not a photographic copy of the
real world, but rather a working model which enables him more or less effectively to understand it
and to master it.  The historian distils from the experience of the past, or from so much of the
experience of the past as is accessible to him, that part which he recognizes as amenable to rational
explanation and interpretation, and from it draws conclusions which may serve as a guide to action.
A recent popular writer, speaking of the achievements of science, refers graphically to the processes
of the human mind which, 'rummaging in the ragbag of observed 'facts,' selects, pieces, and patterns
the relevant observed facts together, rejecting the irrelevant, until it has sewn together a logical and
rational quilt of "knowledge"' (Leslie Paul: The annihilation of man.  London: Faber & Faber, 1944,
p. 147)."

Carr continues, in a passage that applies much more broadly than to historical reasoning alone,
"History therefore is a process of selection in terms of historical significance.  To borrow Talcott
Parson's phrase once more, history is 'a selective system' not only of cognitive but of causal
orientations to reality.  Just as from the infinite ocean of facts the historian selects those which are
significant for his purpose, so from the multiplicity of sequences of cause and effect he extracts
those, and only those, which are historically significant; and the standard of historical significance is
his ability to fit them into his pattern of rational explanation and interpretation.  Other sequences of
cause and effect have to be rejected as accidental, not because the relation between cause and effect
is different, but because the sequence itself is irrelevant.  The historian can do nothing with it; it is
not amenable to rational interpretation, and has no meaning either for the past or the present."
(E.H. Carr, op.cit., p. 138).  Thus in a hypothetical situation Carr (p. 137) presents in which Jones,
driving from a party where he has drunk too much, in a car whose brakes are defective, at an
intersection with poor visibility runs down and kills Robinson, who was crossing the road to buy
cigarettes, we would entertain alcohol, defective brakes, and poor visibility as causes (and potential
targets for preventive action), but not cigarette smoking even though it is true that had Robinson
not been a cigarette smoker he would not have been killed that evening.

Conceptual hypotheses arise from inductive reasoning, based on available observations and theory,
analogies to known processes, and so forth.  For example, the effects of passive smoking on lung
cancer and of oral contraceptives on breast cancer were first posited based on knowledge of the
effects of active smoking on lung cancer and of oral contraceptives on estrogen-sensitive tissues.
Existing knowledge may be compatible with more than one alternative model.  For example, existing
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data on the effects of radiation on cancer risk are compatible with a linear relationship, in which
there is no threshold below which risk is absent, or with a curvilinear model in which a threshold of
risk exists.

From these conceptual hypotheses, deductive reasoning can generate specific predictions or study
hypotheses which ought to be true if the conceptual model is correct.  If these predictions or study
hypotheses are incompatible with valid data from empirical studies, then the conceptual model that
gave rise to the predictions is called into question.  This situation forces a re-appraisal or
modification of the conceptual hypotheses and lays the basis for advancing understanding.

Karl Popper – power of falsification:

This aspect of the process of scientific investigation has been emphasized by the philosopher Karl
Popper.  In Popper's conceptualization, falsification of a hypothesis appears to be more informative
than corroboration of a hypothesis.  There could be innumerable data sets that are consistent with a
false hypothesis.  A single counter example, however, forces a modification.  Therefore, in Popper's
view, studies should attempt to refute, rather than to confirm, hypotheses being entertained.  A
hypothesis that has survived numerous attempts to refute it gains in strength more than one that has
merely been corroborated repeatedly.

Although Popper's model is appealing, how well does it describe how science actually proceeds?
One problem with this orderly process of induction-deduction-testing requires a large body of
knowledge from which to conceptualize and deduce.  Particularly in the early stages of research in an
area, there is typically a need for descriptive investigations to generate a body of data that can give
some direction to thinking about the issues and provides some basis for inductive reasoning.  More
serious is the fact that in epidemiologic research, a negative result (finding of no association) often
cannot refute the original hypothesis because of the many sources of bias that work towards
masking underlying associations.

A further point at which the orderly progression outlined above is inadequate is the situation in
which the existing conceptual models have been found wanting yet no new ones have been
advanced to break through the stalemate.  In physics, for example, Einstein's theory of relativity – a
revolutionary reconceptualization of physical phenomena – broke through an impasse that had been
reached toward the latter part of the 19th century, and opened the way for dramatic advances in
knowledge.  Goldberger's investigations of pellagra provide a less dramatic but important illustration
of the role of a reconceptualization in studying a specific disease.  So it is important to bear in mind
that advances in knowledge can come from careful observation, precise description, and creative
thinking – though in many cases this thinking proceeds through the implicit positing of hypothesis
and testing them against available knowledge.  Indeed, even the process of direct observation
involves paradigms that guide our observation and interpretation.

According to D.C. Stove ("Karl Popper & the Jazz Age"), Popper's philosophy of science can be
understood only in reference to the social circumstances of its origins (Vienna in the years after the
First World War).  In Stove's view, Popper's philosophy is based on reversal of traditional notions of
science and philosophy.  Traditionally, propositions in science are verifiable.  For Popper, they are
distinguished by being falsifiable.  The method of science has been regarded as essentially inductive.
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Popper maintains that it is fundamentally deductive.  To many, the essence of science is caution;
Popper says that audacity is the essence of science.  Science was supposed to be distinguished from
guesswork and everyday opinion by the fact that its conclusions are certain or at least have a vast
preponderance of probability in their favor; Popper would say that scientific conclusions are never
more than guesswork, hypotheses, conjectures, and that no theory ever becomes more probable.
For historical reasons, according to Stove, Popper's philosophy of science received broad acceptance
by the public and the scientific community.  Particularly in epidemiology, where it is impossible to
control many sources of extraneous influence, the possibility that a true relationship will be obscured
makes it hard to refute an epidemiologic hypothesis and therefore limits the applicability of Popper's
model.  (See the Bibliography for other points of view.)

"Common sense":

An alternative model of scientific progress is that of "common sense", a phenomenon of increasing
interest to researchers in artificial intelligence.  Consider the following situation (Judea Pearl,
Cognitive Systems Laboratory, UCLA, as described in M. Mitchell Waldrop, "Causality, Structure,
and Common Sense", Science 11 September 1987; 237:1297-1299):

You go outside in the morning and notice the grass is wet.

The obvious inference is that it rained during the night.

However, suppose you now learn that someone left the lawn sprinkler on during the night.
Suddenly your confidence in the rain goes down considerably – upon receiving a new fact, you
withdraw your original conclusion.

According to presentations at the American Association for Artificial Intelligence in July 1987
(recounted in Waldrop's article), this kind of logical flip-flop ("nonmonotonic reasoning" in the
artificial intelligence community) is the epitome of common sense.  It is also a blatant violation of
the conventional theory of logic (based on axioms, theorems, proof of theorems).  But it is typical of
the kind of judgment under uncertainty that characterizes both human experts and computer-based
expert systems.  In common sense, causes compete, evidence cooperates.  The more clues we have
to support a given hypothesis, the more confident we are that the hypothesis is true.

Statistical inference and causal inference

Statistical inference is not the same as causal inference, though there is a parallelism in the inferential
process itself, and statistical inference is generally employed in evaluating the data for use in causal
inference.  In statistical inference, data from a sample of observations are used to make inferences
about the population from which they are assumed to derive.  A statistical model, expressed in a null
hypothesis (H0), is "tested" against data.  Based on the data, the statistical model is either accepted
or rejected as an adequate explanation of the data.  Rejection is a stronger statement and is usually
based on a more stringent criterion (a 5% significance level means that results as strong as those
observed would occur by chance only 5% of the time, whereas a typical 80% level of statistical
power means that a real relationship will not appear to be "significant" 20% of the time).
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But excluding an explanation based on chance does not establish causality, since there are many
other possible noncausal reasons for an association to exist.  The association could conceivably
reflect some peculiarities of the study group, problems with the measurement of disease or
exposures, or the effects of some other factor that might affect both the disease AND the putative
cause.  In fact, the putative risk factor may have occurred AFTER (even as a result of) the disease.
In causal inference, one examines the structure and results of many investigations in an attempt to
assess and, if possible, eliminate all possible noncausal reasons for observed associations.

Influence of knowledge and paradigms

Since causal inference is a process of reasoning, it is conditioned by what is believed to be true and
by prevailing concepts of disease.  These concepts are based on knowledge of the time, as well as on
ignorance and erroneous beliefs.

Consider the case of microbial agents.  The Henle-Koch Postulates (1884) for implicating a bacteria
as the cause of a disease held:

1. The parasite (the original term) must be present in all who have the disease;

2. The parasite can never occur in healthy persons;

3. The parasite can be isolated, cultured and capable of passing the disease to others

have been a useful model for diseases such as anthrax, tuberculosis, and tetanus.  But these
postulates are not adequate for many other diseases, especially viral diseases, because of (Rivers,
1937; Evans 1978):

1. Disease production may require co-factors.

2. Viruses cannot be cultured like bacteria because viruses need living cells in which to grow.

3. Pathogenic viruses can be present without clinical disease (subclinical infections, carrier
states).

When pathogens are not so toxic or virulent that their presence always brings disease, then we need
to consider multiple factors and a "web" of causation.

Criteria for causal inference in epidemiology

Criteria for causal inference became an issue of importance and controversy with the establishment
of the first Advisory Committee to the Surgeon General on the Health Consequences of Smoking.
In its 1964 report, the Committee presented a list of "epidemiologic criteria for causality" which Sir
Austin Bradford Hill subsequently elaborated in his classic 1965 Presidential Address to the newly
formed Section of Occupational Medicine of the Royal Society (Hill AB.  The environment and
disease: association or causation?  Proc Royal Soc Medicine 1965;58:295-300).  Hill's criteria are widely
recognized as a basis for inferring causality.

The basic underlying questions are:
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1. Is the association real or artefactual?

2. Is the association secondary to a "real" cause?

The Bradford Hill criteria

1. Strength of the association – The stronger an association, the less it could merely reflect the
influence of some other etiologic factor(s).  This criterion includes consideration of the statistical
precision (minimal influence of chance) and methodologic rigor of the existing studies with
respect to bias (selection, information, and confounding).

2. Consistency – replication of the findings by different investigators, at different times, in different
places, with different methods and the ability to convincingly explain different results.

3. Specificity of the association – There is an inherent relationship between specificity and strength
in the sense that the more accurately defined the disease and exposure, the stronger the observed
relationship should be.  But the fact that one agent contributes to multiple diseases is not
evidence against its role in any one disease.

4. Temporality – the ability to establish that the putative cause in fact preceded in time the
presumed effect.

5. Biological gradient – incremental change in disease rates in conjunction with corresponding
changes in exposure.  The verification of a dose-response relationship consistent with the
hypothesized conceptual model.

6. Plausibility – we are much readier to accept the case for a relationship that is consistent with our
general knowledge and beliefs.  Obviously this tendency has pitfalls, but commonsense often
serves us.

7. Coherence – how well do all the observations fit with the hypothesized model to form a
coherent picture?

8. Experiment – the demonstration that under controlled conditions changing the exposure causes
a change in the outcome is of great value, some would say indispensable, for inferring causality.

9. Analogy – we are readier to accept arguments that resemble others we accept.
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Strength of the association

! Pronounced excess of disease associated with the exposure.

! The magnitude of the ratio of incidence in the exposed to incidence in the unexposed.

! How strong is "strong"?  A rule-of-thumb:

Relative risk "Meaning"

1.1-1.3 Weak

1.4-1.7 Modest

1.8-3.0 Moderate

3-8 Strong

8-16 Very strong

16-40 Dramatic

40+ Overwhelming

Strong associations are less likely to be the result of other etiologic factors than are weak
associations.

Egs., Smoking and lung cancer; smoking and CHD.

Consistency

The association has been "repeatedly observed by different persons, in different places,
circumstances and times."  Consistency helps to guard against associations arising out of error or
artifact.  But consistently observed results are not necessarily free of bias, especially across a small
number of studies, and results in different populations may differ if a causal relationships is
influenced by the presence or absence of modifying variables.

Specificity

The relationship between exposure and disease is specific in various ways – a specific disease is
linked with a specific exposure, specific types of exposure are more effective, etc.  There is an
intimate relationship between specificity and strength in the sense that the more accurately defined
the disease and exposure, the stronger the observed relative risk should be.

e.g., Schildkraut and Thompson (Am J Epidemiol 1988; 128:456) reasoned that the familial
aggregation they observed for ovarian cancer was unlikely to be due to family information
bias because of the specificity of the relationship in that case-control differences in family
history (a) involved malignant but not borderline disease and (b) were greater for ovarian
than for other cancers.

But the fact that one agent contributes to multiple diseases is not evidence against its role in any one
disease.  For example, cigarette smoke causes many diseases.
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Temporality

First exposure, then disease.

It is sometimes difficult to document sequence, especially if there is a long lag between the exposure
and the disease, subclinical disease, exposure (e.g., a treatment) brought on by an early manifestation
of the disease).

Biological gradient

The verification of a dose-response relationship consistent with the hypothesized conceptual model.

Risk

Exposure

Need to consider threshold and saturation effects, characteristics of the exposure.

[See Noel Weiss, Inferring causal relationships, Am J Epidemiol 1981; 113:487.]

Plausibility

Does the association make sense biologically.

E.g.s, estrogen and endometrial cancer, estrogens and breast cancer, oral contraceptives and
breast cancer

Coherence

Does a causal interpretation fit with known facts of the natural history and biology of the disease,
including knowledge about the distributions of the exposure and disease (by person, place, time) and
the results of laboratory experiments.  Do all the "pieces fit into place"?

(For an exquisite example of the evaluation of coherence, see Cornfield, Jerome, William Haenszel,
E. Cuyler Hammond, Abraham M. Lilienfeld, Michael B. Shimkin, and Ernest L. Wynder.  Smoking
and lung cancer: recent evidence and a discussion of some questions.  J Nat Cancer Inst 1959;22:173–
203.)
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Experimental evidence

Certain types of study designs may provide more convincing evidence than other types of study
designs.  Intervention studies can provide the strongest support, especially when the exposure can
be randomly assigned.  Since it is unethical and/or impractical to assign many of the exposures that
epidemiologists study.  One possible alternative is to remove the exposure and see if the disease
decreases, unless the causal process is regarded as irreversible.

E.g.s, pellagra, scurvy, HDFP, LRC-CPPT, MRFIT.

Analogy

Have there been similar situations in the past?  (e.g., rubella, thalidomide during pregnancy)

Except for temporality, no criterion is absolute, since causal associations can be weak, relatively
nonspecific, inconsistently observed, and in conflict with prevailing biological understanding.  But
each criterion that is met strengthens our assurance in reaching a judgment of causality.  [See also
Hill's comments on tests of statistical significance.]

Several of his criteria (for example, coherence, biological gradient, specificity, and perhaps strength)
may be reformulated in terms of a more general issue of consistency of observed data with a
hypothesized etiological (usually biological) model.  For example, a biological gradient need not be
monotonic, as in the case of high doses of radiation which may lead to cell-killing and therefore a
lower probability of tumor development.  Similarly, specificity applies in certain situations but not
others, depending upon the pathophysiologic processes hypothesized.

Search for Cause versus Decision-making

Causal inference is of fundamental importance for advancing scientific knowledge.  The Popperian
stance is that in an ultimate sense, every theory is tentative.  Any theory can potentially be
overthrown by incompatible data that cannot themselves be called into question.  So in the view of
many, scientific knowledge advances through concerted attempts to refute existing theories.

In considering issues in causal inference in epidemiology, though, it is useful to draw a distinction
between inference aimed at establishing etiology and inference aimed at reaching a decision to act or
not to act.  The Popperian stance has less applicability in causal inference in support of decision-
making, because of the importance of timely action.  Even though individual and collective decisions
are often made based on considerations other than scientific knowledge, and even without any valid
causal data, causal inference is fundamental for decision-making.  Moreover, judgments of causality
– ultimately by governmental authorities and the public at large – are a critical basis for the
resolution of controversial issues, e.g., restrictions on products such as tobacco, saccharin, coffee,
oral contraceptives, handguns; pollution controls, etc.  Those moved to action can cite Hill's words:

All scientific work is incomplete - whether it be observational or experimental.  All
scientific work is liable to be upset or modified by advancing knowledge.  That does not
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confer upon us a freedom to ignore the knowledge we already have, or to postpone the
action that it appears to demand at a given time.

A.B. Hill, The environment and causation, p. 300

Parallel concepts in epidemiologic inference and the legal process

One can draw an interesting analogy between the process of decision-making in epidemiology and in
the legal process.  In both processes, a decision about facts must be reached on the evidence
available.  In the absence of revealed truth (e.g., mathematical proof), both approaches emphasize
integrity of the process of gathering and presenting information, adequate representation of
contending views, rules of evidence, standards of certainty for various potential consequences.  Both
areas emphasize procedural (methodological) safeguards, since the facts in a given situation are
generally established only as the findings of an adequate investigatory process.  Similarly, it is
important for both epidemiology and law not only that justice (i.e., proper
procedures/methodology) be done but also that it be seen to be done.  In law, pattern jury
instructions provide a basis for the jury to use in weighing evidence.  Similarly, epidemiology has
criteria for causal inference.

The legal rules of evidence offer several parallels to the epidemiologic approach to weighing
evidence and inferring causality.  In both systems, reliability of the information (data) is a prime
rationale.  Some examples are:

! The Hearsay Rule: evidence is not admissible if based on hearsay rather than direct observation.

Example:  If the doctor testifies that the patient said he was driving on the wrong side of the
road, that testimony is hearsay evidence and therefore not admissible.  The doctor did not see
the patient driving on the wrong side of the road.

There are exceptions:  official government sources, business records obtained in the regular
course of business (without an eye to a lawsuit), other records routinely made are admissible in
evidence.

! Dead man's statute:  testimony about conversation with person who is now deceased is not
admissible (because he/she cannot respond).

In both law and epidemiology, there is a relationship between the seriousness of the action and the
degree of evidence required for that action.  Some examples concerning searches, seizures and
judgments:

! To issue a search warrant, the magistrate must find that there is a reasonable suspicion that
the object of the search will be found.

! To issue an arrest warrant, the magistrate must find that there is probable cause that the
person committed the crime.

! For a police officer to arrest an individual without a warrant, he must have reasonable cause
to believe that a crime may be imminent or just committed.
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! To issue an indictment, the grand jury must find that there is a prima facie case that the
individual did commit the crime.

! For a decision against the defendant in a civil suit, the judge or jury must find a
"preponderance of the evidence".

! To convict the defendant in a criminal trial, the jury must find that the evidence establishes
his/her guilt "beyond a reasonable doubt".

! For a verdict of guilt based entirely on circumstantial evidence, the jury must be satisfied that
every reasonable hypothesis has been excluded except guilt.  (If there is some real evidence,
the requirement is not so strict.)

(In Scotland, there is a verdict of "not proved", which certainly has parallels in epidemiologic
"judgments".)

In both law and epidemiology, the facts in any individual case always factor importantly into the
decision, and the decision is generally influenced by considerations of:

! How imperative is it to act?

! How imminent is a possible harm?

! How serious is the potential harm?

It is generally better to err on the side of safety (though in law that's kept implicit, never given as
explicit reason).
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10. Sources of  error

A systematic framework for identifying potential sources and impact of distortion in
observational studies, with approaches to maintaining validity

We have already considered many sources of error in epidemiologic studies: selective survival,
selective recall, incorrect classification of subjects with regard to their disease and/or exposure
status.  Because of the limited opportunity for experimental controls, error, particularly "bias", is an
overriding concern of epidemiologists (and of our critics!) as well as the principal basis for doubting
or disputing the results of epidemiologic investigations.

Accuracy is a general term denoting the absence of error of all kinds.  In one modern conceptual
framework (Rothman and Greenland), the overall goal of an epidemiologic study is accuracy in
measurement of a parameter, such as the IDR relating an exposure to an outcome.  Sources of error
in measurement are classified as either random or systematic (Rothman, p. 78).

Rothman defines random error as "that part of our experience that we cannot predict" (p. 78).
From a statistical perspective, random error can also be conceptualized as sampling variability.  Even
when a formal sampling procedure is not involved, as in, for example, a single measurement of
blood pressure on one individual, the single measurement can be regarded as an observation from
the set of all possible values for that individual or as an observation of the true value plus an
observation from a random process representing instrument and situational factors.  The inverse of
random error is precision, which is therefore a desirable attribute of measurement and estimation.

Systematic error, or bias, is a difference between an observed value and the true value due to all
causes other than sampling variability (Mausner and Bahn, 1st ed., p. 139).  Systematic error can arise
from innumerable sources, including factors involved in the choice or recruitment of a study
population and factors involved in the definition and measurement of study variables.   The inverse
of bias is validity, also a desirable attribute.

These various terms – "systematic error", "bias", "validity" – are used by various disciplines and in
various contexts, with similar but not identical meanings.  In statistics, "bias" refers to the difference
between the average value of an estimator, computed over multiple random samples, and the true
value of the parameter which it seeks to estimate.  In psychometrics, "validity" most often refers to
the degree to which a measurement instrument measures the construct that it is supposed to
measure.  The distinction between random and systematic error is found in many disciplines, but as
we shall see these two types of error are not wholly separate.  We will return to the issue of
terminology below, in the section on "Concepts and terminology".)
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Precision

The presence of random variation must always be kept in mind in designing studies and in
interpreting data.  Generally speaking, small numbers lead to imprecise estimates.  Therefore, small
differences based on small numbers must be regarded with caution since these differences are as
likely the product of random variation as of something interpretable.

Estimates of ratio measures (e.g., the relative risk) based on sparse data are very susceptible to
instability.  For example, a relative risk of 5.0 based on the occurrence of 4 cases among the
nonexposed becomes twice as large (10.0) if two unexposed cases are missed through the vagaries of
sampling, measurement, missing data, or other reasons.  If three are missed, the relative risk will be
20.

Example to illustrate the concept of precision

Consider the following data, from Table 4 of Hulka et al., "Alternative" controls in a case-control
study of endometrial cancer and exogenous estrogen, Am J Epidemiol 112:376-387, 1980:

Effect of duration of estrogen use on relative risks
[age-adjusted] using three control groups among white

women, North Carolina, 1970-76

D&C Controls
Gynecol.
Controls

Community
ControlsDuration of use No. of

Cases No. RR No. RR No. RR

None used 125 136 118 172
Less than 6 months 8 13 0.7 12 0.7  20 0.8
6 months - 3.5 yrs. 9 14 0.7  9 0.9  21 0.7
3.5 yrs. - 6.5 yrs.  9 16 0.8  1  7 1.7
6.5 yrs. - 9.5 yrs.  9 11 1.2  2 3.8   5 2.5

More than 9.5 yrs 19 10 2.0  2 5.1   4 5.5

Note: "D&C Controls" = dilatation and curetage patients as controls
"Gyn Controls" = other gynecology clinic patients as controls

First, let's recall from our previous topic that since these data come from a case-control study, the
"relative risks" in the table are odds ratios.  Since the disease is a rare one, however, odds ratios, risk
ratios, and incidence density ratios will all be about the same.  Also from that lesson we should be
able to reformulate the above data as a series of 2 x 2 tables if for some reason we wished to.  Such
reformulation would make it easier to see how to calculate crude relative risk estimates (OR's) from
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the data in the table.  (Note that the OR's in the table are age-adjusted, through a mathematical
modeling procedure called multiple logistic regression, so our crude OR's will differ in some cases.)

Notice that the relative risk estimates for the GYN and community controls in the longer duration
categories are based on very few controls.  For example, if two of the community controls classified
as duration of use "3.5 years - 6.5 years" were instead duration "6.5 years - 9.5 years", then the
relative risk estimates would be reversed and the consistent dose-response picture would no longer
appear.  [For the moment we are ignoring the age adjustment, though for these two particular
duration groups in the community controls the adjusted OR's are the same as if they were calculated
from the data in the table.]  Similarly, the RR's over 5 for the longest duration subjects are based on
2 and 4 controls in the GYN and community groups, respectively.  On the other hand, the fact that
similar results were found in two control groups strengthens the assessment that a dose-response
relationship truly exists, rather than being a chance finding.

Quantifying the degree of precision or imprecision – confidence intervals

Statistical techniques such as standard errors and confidence inteverals are used to quantify the
degree of precision or imprecision of estimates; there are also rules of thumb (e.g., see Alvan
Feinstein, J Chron Dis 1987; 40:189-192).  A confidence interval provides a range of values that is
expected to include the true value of the parameter being estimated.  The narrower the confidence
interval, the more precise the estimate.

For example, suppose we are estimating the relative risk for endometrial cancer in women who have
used replacement estrogens for 3.5 years to 6.5 years (compared to women who have not taken
estrogens) and that the "true" (but unknown) relative risk is 1.5.  Suppose also that the estimate we
obtain from the data for community controls in the above table are unbiased, though they do reflect
random error.  Hulka et al. computed the age-adjusted value as 1.7 (the crude value is very similar:
1.77).  The 1.7 is a point estimate and provides our best single estimate of the (unknown) true
relative risk of 1.5.

We do not expect that our estimate is exactly correct, however, so we also compute an interval
estimate, or confidence interval as an indicator of how much data were available for the estimate.
Suppose that the 95% confidence interval is (0.6,4.7).  The interpretation would be that 1.7 is the
best single estimate of the (unknown) true relative risk and that there is "95% confidence that the
true relative risk is somewhere between 0.6 and 4.7".  "Confidence" does not mean the same thing as
"probability".  In this case "95% confidence" means that we obtained the confidence limits 0.6 and
4.7 through a procedure that yields an interval that will contain the true value in 95% of instances in
which we use it and will not contain the true value in the remaining 5% of instances..  Loosely
speaking, a 95% confidence interval of 0.6-4.7 means that the observed value of 1.7 is "compatible",
by conventional usage, with true relative risks anywhere between 0.6 and 4.7 inclusive.

Another way of describing the meaning of "compatible" is the following.  The limits 0.6 and 4.7 are
obtained from the point estimate of 1.7 and the estimated standard error of that estimate.  The
estimated standard error is a function of the size of the numbers (i.e., the amount of data) on which
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the point estimate is based and thus a measure of its imprecision.  A 95% confidence interval
(0.6,4.7) means that if our study had yielded a point estimate anywhere in that interval, the 95%
confidence interval around that point estimate would contain the value 1.7.  In that sense the
observed value of 1.7 is compatible with true relative risks anywhere between 0.6 and 4.7.]

In fact, the original table in Hulka et al. did include confidence intervals for the odds ratios.
Attention to confidence intervals or to sparseness of data is an important aspect of interpreting
results.

Reducing random variation (increasing precision)

Confidence intervals and other procedures for assessing the potential for random variation in a
study do not increase precision, but merely quantify it.  The major strategies for reducing the role of
random error are:

1. Increase sample size – a larger sample, other things being equal, will yield more precise
estimates of population parameters;

2. Improve sampling procedures – a more refined sampling strategy, e.g., stratified random
sampling combined with the appropriate analytic techniques can often reduce sampling
variability compared to simple random sampling;

3. Reduce measurement variability by using strict measurement protocols, better
instrumentation, or averages of multiple measurements.

4. Use more statistically efficient analytic methods – statistical procedures vary in their
efficiency, i.e., in the degree of precision obtainable from a given sample size;

Bias

Bias is by definition not affected by sample size.  Rather, bias depends on enrollment and retention
of study participants and on measurement.  [A technical definition of "bias" in its epidemiologic
usage (based on Kleinbaum, Kupper, and Morgenstern) is the extent to which an estimate differs
from the true value of the parameter being estimated, even after sample size is increased to the point
where random variation is negligible.  This definition is based on consistency; in statistics, an
estimator is consistent if its value comes progressively closer to the value of the parameter it
estimates as the sample size increases.]

Concepts and terminology

In the area of bias and validity, as in so many other areas that cross disciplines, terminology can be a
significant source of confusion.  Such dangers are particularly apparent when the terms are also used
in a nontechnical sense in ordinary discourse.  An additional source of confusion for terminology
concerning validity is overlap among the concepts.  For example, measurements are an ingredient of
studies, but studies can also be regarded as measurement procedures applied to populations or
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associations.  So the same terms may be applied to individual measurements and to entire studies,
though the meaning changes with the context.

Internal validity

Epidemiologists distinguish between internal validity and external validity.  Internal validity refers
to absence of systematic error that causes the study findings (parameter estimates) to differ from the
true values as defined in the study objectives.  Systematic error can result from inaccurate
measurements of study variables, nonuniform recruitment or retention of study participants, or
comparisons of groups that differ in unknown but important characteristics.  Thus, internal validity
concerns bias in estimates for the target population specified in the study objectives.

External validity

External validity refers to the extent to which a study's findings apply to populations other than
the one that was being investigate.  Generalizability to populations beyond the target population for
which the study was designed and/or beyond the circumstances implicit in the study is a matter of
scientific inference, rather than a technical or statistical question (see Rothman and Greenland).
Therefore external validity is probably better considered in relation to causal inference and
interpretation of study results. (Rothman and Greenland regard "external validity" as a misnomer,
preferring to draw the distinction between validity and generalizability.)

Validity pertains to a specific measure

Since different types of errors affect specific findings in different ways, validity must generally be
discussed in regard to a specific measure or measures.  A study aimed at testing an etiologic
hypothesis typically seeks to estimate strength of association measured as the ratio or difference of
incidences in different groups.  Lack of internal validity in this context means inaccuracy (bias) in
these estimates.  In fact, Kleinbaum, Kupper, and Morgenstern (Epidemiologic Research, ch. 10) define
(internal) validity and bias in terms of systematic distortion in the "measure of effect".  A study can
yield a valid (unbiased) measure of effect despite systematic errors in the data if the errors happen to
offset one another in respect to the measure of effect.  However, a study with no systematic error
can yield a biased estimate of a measure of effect (for example, due to random variability in an
important measurement – see appendix).  Much of the methodologic writing about bias concerns
distortion in effect measures.

Not all studies have as their objective the estimation of a measure of effect, and even studies that do
also report estimates of other parameters (e.g., incidence rates, prevalences, means).  Thus, even if
the measure of effect is accurately estimated, the possibility and extent of bias in other measures
must be considered.

Measurement validity

In Rothman and Greenland's perspective, measurement is the purpose of all studies, so the concept
of validity of measurement is the same as that of validity.  However, validity of the measurements
carried out in conducting a study raises issues of its own and is addressed in another category of
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methodological literature.  Validity of measurement (I have to confess that this is my own term to
differentiate this type of validity) concerns the avoidance of systematic error in measuring or
detecting a factor (e.g. blood pressure, smoking rate, alcoholism, HIV infection).  The sociologic and
psychologic literature deals extensively with measurement validity, particularly in relation to data
collected via questionnaires and interviews.  Cognitive psychology studies the thinking processes by
which study participants decode questionnaire items and retrieve the information from memory
(e.g., Warnecke et al., 1997a; Warnecke et al., 1997b).  Psychometrics studies statistical aspects of
psychological measurement instruments (Nunnally, 1994).  These disciplines are especially pertinent
for epidemiologists interested in sophisticated measurement of self-report measures.

Direction of bias – "which way is up"

Concepts and terminology can also complicate descriptions of the direction in which a bias may
distort a measure of effect.  The sources of confusion are:  (1) an association can be positive (RR >
1.0) or inverse (RR < 1.0, also referred to as "negative"), (2) a source of bias can make a measure of
effect increase in magnitude, decrease in magnitude, move towards 1.0 from either above or below,
and move away from 1.0 in either direction, and (3) it is easy to lose sight of whether the
measurement of association being referred to is that observed in the study or the "true" one that
exists in the target population.  [Try plotting some relative risks on a line as you read the next two
paragraphs.]

Describing the direction of bias – example:

Suppose that "aggressive" people are more likely to survive an acute myocardial infarction (MI) than
are nonaggressive people.  A case-control study of MI that recruits its cases from among (live)
hospitalized MI patients will therefore overrepresent aggressive MI cases, since proportionately
more of them will live long enough to enroll in the study.  If this is the only source of systematic
error, then we expect the observed relative risk (RR) to be greater than the true relative risk for
incidence of acute MI (since the true relative risk would include the victims who died before they
could be enrolled in the study).  The direction of bias is in the positive direction (toward higher
values of the RR), regardless of whether the true RR is greater than 1.0 (i.e., aggressive people also
more likely to have an MI) or less than 1.0 (aggressive people are less likely to have an MI).

In contrast, uniform random error in the measurement of aggressiveness independent of other
variables typically moves the observed RR "toward the null" (closer to 1.0 than the true RR).  Bias
toward the null can produce a lower observed RR (if the true RR is greater than 1.0) or a higher
observed RR (if the true RR is less than 1.0), but not an RR that is farther from the null than the
true RR.  On the other hand, the bias from greater survival of aggressive MI cases in the above
hypothetical case-control study will be closer to 1.0 only if the true RR is less than 1.0 and farther
from 1.0 only if the true RR is greater than 1.0.

For these reasons we need four terms to characterize the potential effects of sources of bias:

"Positive bias" – The observed measure of effect is a larger number than the true measure of
effect is (if it could be known);
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"Negative bias" – The observed measure of effect is a smaller number than the true measure of
effect is (if it could be known);

"Towards the null" – The observed measure of effect is closer to 1.0 than the true measure of
effect is (if it could be known);

"Away from the null" – The observed measure of effect is farther from 1.0 than the true
measure of effect is (if it could be known);

Another way of describing the direction of bias is to say that the observed measure of effect
overestimates (underestimates) the true measure.  With this phraseology, however, more information
must be available, since "overestimates" could be taken as meaning higher in numerical value or
greater in strength (farther from the null).

In the interests of precise communication, we will try to adhere to the above usage, which does not
appear to be standard in the profession.  However, terminology is only one source of confusion.
Consider the longstanding proposition that nondifferential misclassification (covered below) of a
dichotomous exposure or disease variable, in the absence of confunding (see next chapter) always
produces bias that is "toward the null".  This proposition holds as long as nondifferential
(independent) misclassification is no worse than what would result from classification each
observation by tossing a coin.  However, extreme nondifferential misclassification (in the limiting
case, misclassification of every participant), however, can bias the measure of effect beyond and then
away from the null value.

Types of bias

Students of epidemiology often wish for a catalog of types of bias in order to be able to spot them in
published studies.  David Sackett (Bias in analytic research.  J Chron Dis 32:51-63, 1979) once
attempted to develop one.  Nine sample entries he describes are:

 1. Prevalence-incidence (Neyman) bias

This is Sackett's term for, among other things, selective survival.  Also included are the
phenomena of reversion to normal of signs of previous clinical events (e.g., "silent" MI's may
leave no clear electrocardiographic evidence some time later) and/or risk factor change after a
pathophysiologic process has been initiated (e.g., a Type A may change his behavior after an
MI), so that studies based on prevalence will produce a distorted picture of what has happened
in terms of incidence.

 2. Admission rate (Berkson) bias

Where cases and/or controls are recruited from among hospital patients, the characteristics of
both of these groups will be influenced by hospital admission rates.

 3. Unmasking (detection signal) bias

Since by necessity, a disease must be detected in order to be counted, factors that influence
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disease detection may be mistakenly thought to influence disease occurrence.  This possibility
is particularly likely where the disease detection process takes place outside of the study (e.g., in
a case-control study), where the disease has an occult, or asymptomatic, phase, and where the
exposure leads to symptoms that induce the individual to seek medical attention.

 4. Non-respondent bias

Non-respondents to a survey often differ in important ways from respondents.  Similarly,
volunteers often differ from non-volunteers, late-respondents from early respondents, and
study dropouts from those who complete the study.

 5. Membership bias

Membership in a group may imply a degree of health which differs systematically from others
in the general population.  For example, the observation that vigorous physical activity protects
against CHD was initially thought likely to be a result of fitter people (with lower innate CHD
risk) being more likely to engage in vigorous activity.  Another example would be if people
who participate in a health promotion program subsequently make more beneficial lifestyle
changes than nonparticipants due not to the program itself but to the participants' motivation
and readiness to change.

 6. Diagnostic suspicion bias

The diagnostic process includes a great deal of room for judgment.  If knowledge of the
exposure or related factors influences the intensity and outcome of the diagnostic process, then
exposed cases have a greater (or lesser) chance of becoming diagnosed, and therefore, counted.

 7. Exposure suspicion bias

Knowledge of disease status may influence the intensity and outcome of a search for exposure
to the putative cause.

 8. Recall bias

Recall of cases and controls may differ both in amount and in accuracy (selective recall).  Cases
may be questioned more intensively than controls.

 9. Family information bias

Within a family, the flow of information about exposures and illnesses is stimulated by, and
directed to, a family member who develops the disease.  Thus a person who develops
rheumatoid arthritis may well be more likely than his or her unaffected siblings to know that a
parent has a history of arthritis.

The appendix to Sackett's article gives his entire catalog of biases.
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Classifying sources of bias

Inspite of David Sackett's initiative, a complete catalog of biases does not yet exist.  Instead,
following Olli Miettinen's work in the 1970's, epidemiologists generally refer to three major classes
of bias:

 1. Selection bias – distortion that results from the processes by which subjects are selected into
the study population:

 2. Information bias (also called misclassification bias) – distortion that results from
inaccuracies in the measurement of subject characteristics, and incorrect classification
therefrom:

 3. Confounding bias – distortion in the interpretation of findings due to failure to take into
account the effects of disease risk factors other than the exposure of interest.

Confounding bias is somewhat different from the other two forms in that the actual data collected
by the study may themselves be correct; the problem arises from a misattribution of observed effects
(or their absence), i.e., an apparent effect is attributed to the exposure of interest, whereas in fact it
ought to have been attributed to some other factor.  We will discuss confounding in the following
chapter.

Of course, as in so many other areas of epidemiology, the divisions among the classes are only
relative, not absolute!

Selection bias

Ignoring the questions of random error in sampling (i.e., assuming that all samples are large enough
so that random variation due to sampling is negligible), we can see that if the process by which
subjects are recruited favors or overlooks certain types of subjects, then the study population we
obtain will not be representative of the population for which we are attempting to obtain estimates.
For example, if we are studying characteristics of persons with diabetes and obtain all of our subjects
from among hospital patients, the characteristics of this study population will yield a distorted or
biased estimate of the characteristics of diabetics in general.

In case-control studies, situations that can produce selection bias include:

! the exposure has some influence on the process of case ascertainment ("detection bias"):  the
exposure prevalence in cases will be biased;

! selective survival or selective migration – the exposure prevalence in prevalent cases may be
biased compared to that in incident cases;

! the exposure has some influence on the process by which controls are selected (e.g., use of
chronic bronchitis patients as controls for a study of lung cancer and smoking):  the
exposure prevalence in controls will differ from that in the base population.
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In cohort studies, the primary source of selection bias is generally differential attrition or loss to
follow-up.  Example (hypothetical):

Complete cohort:

Type A Type B

CHD 40 20
CHD 160 180
Total 200 200 RR=2.0

Observed cohort:*

Type A Type B

CHD 32 18
CHD 144 162
Total 176 180 RR=1.82

*based on a 10% loss rate among subjects, except that Type A subjects who developed
CHD are assumed to have been lost at a 20% rate.  If all subjects, including the
CHD/Type A group had experienced a 10% loss rate, the incidence in each behavior
type group, and therefore the risk ratio, would be undistorted.

Conceptual framework

[After Kleinbaum, Kupper and Morgenstern, Epidemiologic Research and Am J Epidemiol article on
selection bias (see bibliography)].

External population:  the population of ultimate interest, but which we are not attempting to study
directly – e.g., we may wish to study the relationship between hypertension and stroke in general, but
study only subjects in North Carolina, recognizing that generalizing to other areas will require
consideration of differences between North Carolina and those other areas.  We will not concern
ourselves with generalizability in this chapter.

Target population: the population for which we intend to make estimates.

Actual population: the population to which our estimates actually apply.  This population may not
be obvious or even knowable.

Study population: the group of participants for whom we have collected data.  In Kleinbaum,
Kupper, and Morgenstern's framework, the study population is regarded as an unbiased sample of
the actual population, differing from it only from through unsystematic sampling variability error.
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The study population is a subset of the actual population.  Bias is the discrepancy between the actual
and target populations.  Generalizability deals with inference from the target population to an
external population (see previous page).

In thinking about selection bias and its potential effect on study results, we find it useful to consider
the probabilities according to which people in the target population could gain access to the actual
population.  These probabilities are called (population) selection probabilities.

For simplicity, consider a dichotomous disease and dichotomous exposure classification, and let the
fourfold table in the target population and actual population be as follows:

_ _
E E E E

D A B D Ao Bo

_ _
D C D D Co Do

Target Actual

We can then define four selection probabilities:

alpha (α) = (Ao/A) the probability that a person in cell A (in the target population) will be
selected into the actual population from which the study population is a random sample

beta  (β) = (Bo/B) the probability that a person in cell B (in the target population) will be
selected into the actual population

gamma (γ) = (Co/C) the probability that a person in cell C (in the target population) will be
selected into the actual population

delta (δ) = (Do/D) the probability that a person in cell D (in the target population) will be
selected into the actual population

Example:  assume that selective survival exists, such that cigarette smokers who suffer an MI are
more likely to die before reaching the hospital.  Then a case-control study of MI and smoking, using
hospitalized MI patients as cases will have alpha lower than beta (exposed cases are less available to
study than are nonexposed cases).  This bias will produce a distortion in the odds ratio that will
understate a true association between smoking and MI (i.e., negative bias).

The assignment for this lecture has an exercise that asks you to apply this conceptual framework to a
detection bias issue involving endometrial cancer and estrogen.  The basic issue is that use of
estrogen might lead to uterine bleeding, which would result in a woman seeking medical attention
and receiving a dilation and curettage (D&C).  If an occult (asymptomatic) endometrial cancer were
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present, then the D&C would detect it.  According to the detection bias scenario, women with
occult endometrial cancer are therefore more likely to come to medical attention if they are estrogen
users, creating a detection bias situation.

This scenario was vigorously disputed, since it depends upon the existence of a sizable reservoir of
asymptomatic endometrial cancer, and is now widely discounted.  Nevertheless, the endometrial
cancer and estrogen issue provides abundant illustrations for concepts related to selection bias and
information bias.  We will take up this case study presently. (Note that though bias in case-control
studies has attracted the most theoretical interest, all study designs are vulnerable.)

Recourse — Minimize loss to follow-up, obtain representative study populations, anticipate
sources of bias and avoid them.  Sometimes the factors associated with selection bias can be
measured, in which case the analysis of the data can attempt to take these factors into account.
Logic in the interpretation of the data may be able to marshall evidence for or against selection bias
as having been responsible for an observed association.  But if you can avoid it, that's the best!

Estrogen and endometrial cancer case example

During the 1970s, case-control studies reported a strong (OR about 10) association between
endometrial cancer and use of postmenopausal estrogens.  The association was biologically plausible,
since the endometrium of the uterus is an estrogen-responsive tissue.  Also, endometrial cancer rates
were rising in geographical areas where use of postmenopausal estrogens was growing most rapidly.

Criticism of case-control studies had also been rising, however.  For one, case-control studies
reporting an association between breast cancer and the anti-hypertensive medication reserpine had
received wide attention, but the association was later discounted.  Also, critics of the case-control
design (notably Alvan Feinstein, who labelled the design the "trohoc" study ["cohort" spelled
backwards]) had become prominent.  The Journal of Chronic Disease (now called the Journal of Clinical
Epidemiology) hosted a conference of leading epidemiologists to discuss the validity of the design
(proceedings published in Michel A. Ibrahim and Walter O. Spitzer.  The case-control study: consensus and
controversy.  Pergamon, New York, 1979).

At about this time, Barbara Hulka, Carol J.R. Hogue, and the late Bernard G. Greenberg (then all at
the UNC School of Public Health) published a comprehensive review of methodological issues
involved in the estrogen-endometrial cancer association (Methodologic issues in epidemiologic
studies of endometrial cancer and exogenous estrogen.  Amer J Epidemiol 1978; 107:267-276).  The
case-control design is particularly susceptible to selection bias, because since the disease has already
occurred, the validity of the study is critically dependent upon the selection of cases and controls.
The Hulka et al. review made the following points (more material from this review is presented in
the appendix to this chapter):

 1. Ascertainment of cases

Cases provide an estimate of estrogen exposure in women who develop endometrial cancer.
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This estimate of the prevalence of exposure among cases can be expressed in probability terms
as Pr(E|D) – the probability of exposure conditional on having the disease.

Cases in the study should therefore be representative of all similarly described (i.e., age,
geography, subdiagnosis) persons who develop the disease with respect to exposure status.
For endometrial cancer, two issues are -

 a. Heterogeneity of cases (stage, grade, histological type) may reflect different underlying
etiology or relationship to exposure.

 b. Sources of cases and diagnostic process may have implications for exposure status (e.g.,
cases from rural hospitals may have had less access to postmenopausal estrogens).

 2. Selection of controls

Controls provide an estimate of the prevalence of exposure in the source population from
which the cases arose (now referred to as the "study base").  This prevalence can be expressed
in probability terms as Pr(E) - the probability that a person selected at random from the study
base is exposed to exogenous estrogens.  Controls must therefore be representative of the
study base with respect to exposure status, so that the prevalence of estrogen use in controls
(in probability terms, Pr(E|not D) accurately estimates exposure in the study base.  In addition,
controls should be able to provide exposure and other data with accuracy equivalent to that
obtainable from cases (this point concerns information bias and will be discussed later in this
chapter).

Therefore, controls should be similar to cases in terms of:

 a. Data sources, so that the opportunity to find out about prior estrogen use is equivalent to
that for cases;

 b. Other determinants of the disease that cannot be controlled explicitly

But controls should not be too similar to cases on nondeterminants of the disease.

Overmatching and the selection of controls

This last qualification was directed at the issue of detection bias raised by Feinstein (see above).
Ralph Horwitz's and Feinstein's recommendation for reducing detection bias was to select controls
from among women who had had the same diagnostic procedure as had the cases (dilation and
curettage), thereby ensuring that controls did not have occult disease and making them more similar
to the cases.  Hulka et al.'s response was that such a selection procedure for controls constitutes
overmatching.

The concept of overmatching and Horwitz and Feinstein's proposed "alternative controls" (NEJM,
1978) focus on the relationship of selection bias and the selection of the control group in a case-
control study, which is why the estrogen – endometrial cancer topic is such an excellent one for
understanding control selection.
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Controls in an experiment

In a true experiment, in which one group is given a treatment and another serves as a control group,
the optimum situation is generally for the treatment and control groups to be as close to identical as
possible at the time of the treatment and to be subjected to as similar as possible an environment
apart from the treatment.  If randomization of a large number of participants is not feasible, the
control group is matched to the experimental group to achieve as much similarity as possible in
anything that might affect development of the outcome.

Earlier generations of epidemiologists were often taught that, by analogy, the control group in a
case-control study should be similar to the case group in all characteristics other than disease (and
exposure status, which the study seeks to estimate).  In that way, exposure differences could more
readily be attributed to the effects of the exposure on disease risk, the only other point of difference.
Toward that objective, controls have often been matched to cases to increase similarity of the
groups.

Analogies between experimental and case-control study designs

However, the analogy between the control group in a case-control study and the control group in an
experiment, is faulty.  In an experiment, exposure is introduced in one of two hopefully equivalent
groups, and outcomes subsequently develop.  The control group is chosen to have equivalent risk
for the outcome in the absence of the exposure.  In a case-control study, exposures exist in a
population, and outcomes develop.  The equivalence that is required for a valid comparison is that
between exposed and unexposed persons.  The case group – the members of the population who
have developed the outcome – are not located in a corresponding position vis-a-vis the disease
process as are the exposed group in a true experiment.  The former is a group of people who
develop the outcome; the latter are a group at risk for the outcome.

The correct experimental analog to the case group in a case-control study is the group of
participants who develop the outcome during the experiment.  In both designs, the cases arise from
a population of both exposed (or "experimental") and unexposed (or "control") persons.  Similarly,
the correct analog for the control group in a case-control study is a random sample of all
participants in the experiment at some point following the onset of exposure.  The set of all
participants in the experiment is the "study base" for the experiment.  If a case-control study is
conducted using the cases which arose in that experiment, then the control group should serve to
estimate the proportion of exposure in that study base.

Matching and selection bias

Forcing the control group to be similar to the case group, either through matching or through using
a source for recruitment of controls similar to that for recruitment of cases, will ordinarily make the
control group less like the study base and may therefore introduce selection bias.  Whether or not
selection bias will be introduced depends upon the analysis methods used and whether or not the
matching factors are related to prevalence of exposure.  If the characteristics are unrelated to
exposure then selection bias will not occur for that exposure, since both the matched and
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unmatched control groups will presumably yield the same estimate of exposure prevalence.  If the
characteristics are risk factors for the disease, then although matching may introduce selection bias,
this bias can be eliminated by controlling for the matching factors in the analysis (think of each
matching factor as identifying subsets in both the cases and study base, so that the overall study can
be regarded as a set of separate, parallel case-control studies, each itself valid).

Overmatching

However, if the characteristics are related to the exposure and are not risk factors for the disease,
then forcing the controls to be more like the cases will distort both the exposure prevalence in
controls (making it more like that in the cases and less like that in the study base) and odds ratio
relating exposure and disease.  This scenario is termed overmatching.  If the matching factors are
controlled in the analysis (which is not generally appropriate for factors other than risk factors for
the outcome), then the estimated OR will be correct but less precise (i.e., have a wider confidence
interval).

A hypothetical case-control study:

Suppose you are conducting an incident case-control study of endometrial cancer and exogenous
estrogen.  You arrange to be notified of any endometrial cancers diagnosed in 50-70-year-old female,
permanent, full-time (or retired and on pension) state employees and retirees in a multi-state area.
Assume that all receive medical care benefits; 100,000 are enrolled in fee-for-service plans, and
50,000 are enrolled in managed care (and no one changes!).  This population is the study base.

During the five years of follow-up, 200 cases of endometrial cancer develop, for an overall
cumulative incidence of endometrial cancer of 133 per 100,000 (0.00133).  Of the 200 cases, 175
were exposed to estrogen, and 25 were not (these numbers were derived assuming a cumulative
incidence of 200 per 100,000 (0.002) in women with estrogen exposure and 40 per 100,000 (0.0004)
in women without exposure, but of course if you knew these incidences, you would not be
conducting the study).

Suppose that a much larger percentage (75%) of women in fee-for-service plans are taking
exogenous estrogen than are women in managed care (25%).  However, you do not know that
either, because the prescription records in the various organizations you are dealing with are not
computerized (which is why you have resorted to a case-control study rather than following all
150,000 women as a cohort).

For your controls, you first choose a simple random (and by good fortune, precisely representative)
sample of 600 women from the 150,000 master file of state employees and retirees.  Your data then
look as follows:
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Southern endometrial cancer and estrogen study (SECES)

Estrogen
No

estrogen Total

Endometrial cancer 175 25 200
Controls 350 250 600

Total 525 275 800

OR = 5.0
95% confidence interval:  (3.19, 7.84)*

*(see chapter on Data Analysis and Interpretation)

(So far so good, since the CIR, by assumption, was 0.002/0.0004 = 5.0.)

However, you are concerned, since you anticipate that estrogen prescribing is very different in the
two different types of health care plans.  Your suspicion is further supported by the fact that
160/200=80% of the cases are in fee for service, compared to only two-thirds of the random sample
controls (400/600) (and 100,000/150,000 in the study base).  So even though you have no basis for
believing that a woman's health care plan affects her risk for detecting endometrial cancer, you
decide to make your control group more like the case group in regard to health plan membership
(i.e., you overmatch).

Since 80% of the cases are in fee-for-service and 20% are in managed care, you use stratified random
sampling to achieve that distribution in the controls.  For 600 controls, that means 480 (80% of 600)
from fee-for-service and 120 (20% of 600) from managed care.  Since (unbeknownst to you), 75%
of the women in fee-for-service take estrogen, as do 25% of the women in managed care, your
control group will contain 390 women taking estrogen – 360 exposed women (75% × 480) from
fee-for-service and 30 exposed women (25% × 120) in managed care.  Thus, your data will now be:

Southern endometrial cancer and estrogen study (SECES)
MATCHED control group

Estrogen
No

Estrogen Total

Endometrial cancer 175 25 200
Controls 390 210 600

Total 565 235 800

OR = 3.8
95% confidence interval:  (2.40, 5.92)
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The odds ratio for this table is 3.8, so your matched control group has indeed produced selection
bias.  Luckily your friend comes by and reminds you that when you use a matched control group,
you need to control for the matching factor in your analysis.  So you act as if you had conducted two
separate studies, one among the women in fee-for-service and the other among the women in
managed care (this is called a "stratified analysis" and will be discussed in the chapter on
Multicausality – Analysis Approaches).  Your two tables (and a combined total for cases and
controls) are:

Southern endometrial cancer and estrogen study (SECES)
MATCHED control group, STRATIFIED analysis

Fee for service Managed care Both
————————————— ————————————— ————

No No Grand
Estrogen Estrogen Total Estrogen estrogen Total total
———— ———— ———— ———— ———— ———— ————

Cancer cases 150 10 160 25 15 40 200
Controls 360 120 480 30 90 120 600

———— ———— ———— ———— ———— ———— ————
Total 510 130 640 55 105 160 800

OR 5.00 5.00
95% CI: ( 2.55,  9.30 ) ( 2.33, 10.71 )

Stratified analysis*
 (over both tables): OR=5.0 95% CI:  ( 3.02, 8.73 )

* See chapter on Multivariable analysis.

Each of the two case-control studies now has OR = 5.0.  The control group within each type of
health care plan was a simple random sample.  The selection bias in the matched control group held
only for the group as a whole compared to the study base as a whole.  However, the interval
estimate of the OR for the stratified analysis (the last table) is wider than the confidence interval for
the OR in the unmatched analysis, indicating a less precise estimate.
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The "detection bias" hypothesis 
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Selection bias in cohort studies

Selection bias is generally regarded as a greater danger in case-control than in cohort studies.  The
reason is that in cohort studies the investigator generally knows how many and which participants
were lost to follow-up, so that s/he can assess the potential extent of bias.  The investigator can also
often examine baseline characteristics of participants who are lost to follow-up for indications that
attrition is uniformly distributed and therefore less likely to result in selection bias.

Population cohort attrition

There is, however, a type of attrition that affects both cohort and case-control studies but which is
unseen and difficult to categorize.  The problem relates to the representativeness of people eligible
for study.  For simplicity we explain the situation in relation to cohort studies, but since a case-
control study is simply an efficient method for studying the same phenomena as a cohort study of
the study base, the problem is effectively the same in case-control studies.

A cohort consists of people who are alive at a point or period in calendar time or in relation to some
event they undergo (e.g., graduating from college, joining a workforce, undergoing a surgical
procedure) and then followed forward in time.  The investigators' attention is for the most part
directed at what happens after the cohort has been formed, but it is conceivable that mortality and
migration occurring before that point have influenced who is available to enroll and thereby
influenced what will be observed.  If these early selection factors are related to an exposure under
study they may diminish an observed effect.

Some examples:

If a cohort of HIV-infected persons is recruited by enrolling HIV seropositive persons
identified through a serosurvey, those who have progressed to AIDS more quickly will
be underrepresented as will persons involved in risk behaviors (e.g., injection drug use)
that are associated with high mortality.  Progression to AIDS in such a cohort will
appear different than what would be observed if people were recruited at the time of
initial HIV infection.

A study of the effect of hypertension in a cohort of elderly participants cannot enroll
persons whose hypertension caused their death prior to the entrance age of the cohort.
If those who died earlier had characteristics that made them more vulnerable to end-
organ damage from hypertension, then the cohort study may observe less morbidity and
mortality associated with hypertension than would be observed if the study had enrolled
younger participants.

Even a cohort study in a population of newborns can enroll only infants from conceptions
that result in a live birth.  If environmental tobacco smoke (ETS) increases the rate of
early fetal losses, possibly undetected, there may be differences between the fetuses who
die and those who survive to birth.  If fetuses who survive are more resistant to harm
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from ETS, then a cohort study of harmful effects of ETS on infants may observe a
weaker effect because the most susceptible of the exposed cases were never enrolled in
the cohort.

Assuming that the target populations are defined as persons age 70 years and older (in the
hypertension study) or newborns (in the ETS study), then internal validity as defined above would
not appear to be affected.  But study findings could nevertheless be misleading.  If cholesterol
lowering medication lengthens disease-free life in hypertensives, then more hypertensives taking this
medication will survive to age 70 to enter the cohort.  If these hypertensives have a higher rate of
developing end-organ damage, then the observed rate of morbidity and mortality associated with
hypertension will be higher, people taking cholesterol-lowering medication may now be observed to
have higher morbidity and mortality, and the stronger effect of hypertension will be found to be
associated with cholesterol-lowering medication.  Similarly, a factor that reduces fetal loss in ETS-
exposed pregnancies will increase the proportion of ETS-susceptible infants enrolled in the cohort
study and will be associated with higher infant morbidity/mortality.

This problem would appear to be closer to lack of external validity (generalizability across time or
setting), but it bears a strong resemblence to selective survival as encountered in a cross-sectional or
case-control study (e.g., the example of a case-control study of aggressiveness and MI, used above).
Thus losses prior to the inception of a cohort need careful consideration so that the investigator is
not misled by selective factors operating at an earlier stage.

Selection bias due to missing data

One other potential cause of selection bias in studies of all kinds is missing data for a variable
required in the analysis.  Bias due to missing data is usually a topic considered under the heading of
analysis, but its effect is akin to selection bias and its prevention requires avoidance of systematic
differences in rates of missing data.

The problem can be particularly severe in analyses involving a large number of variables.  For
example, regression procedures often exclude an entire observation if it is missing a value for any
one of the variables in the regression.  This practice (called "listwise deletion") can exclude large
percentages of observations and induce selection bias, even when only 5% or 10% of missing values
for any one variable.  Imputation procedures can often avoid the exclusion of observations, and
depending upon the processes that led to the missing data (the missing data "mechanism") they can
lead to less or unbiased analyses.  There are also analytic procedures that can reduce the bias from
nonresponse (inability to enroll participants) and/or attrition (loss of participants following
enrollment).
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Information bias

Information bias refers to systematic distortion of estimates resulting from inaccuracy in
measurement or classification of study variables  (misclassification bias is a subcategory of
information bias when the variable has only a small number of possible values).  For example, a
disease may be present but go unrecognized, a blood pressure may be misread or misrecorded, recall
of previous exposure may be faulty, or in extreme cases, data may have simply been fabricated by
uncooperative subjects or research personnel.  Typical sources of information/misclassification bias
are:

 1. variation among observers and among instruments – or variation across times by the same
observer or instrument;

 2. variation in the underlying characteristic (e.g, blood pressure) – and that variation has not been
adequately accomodated by study methods;

 3. misunderstanding of questions by a subject being interviewed or completing a questionnaire –
or inability or unwillingness to give the correct response; or selective recall;

 4. incomplete or inaccurate record data.

Systematic overview:

Information bias can occur with respect to the disease, the exposure, or other relevant variables.
Sometimes, information bias can be measured, as when two methods of measurement are available,
one being deemed more accurate than the other.  Sometimes, information bias can be assumed to
exist but cannot be directly assessed.

For example, if there is a true causal relationship between estrogens and endometrial cancer, i.e., a
biological process by which estrogen molecules initiate or promote cancerous cell growth in the
endometrium, then this pathophysiologic process presumably relates to certain specific molecular
species, operating over a certain time period, and resulting in certain forms of endometrial cancer.
To the extent that endometrial cancer is a heterogeneous entity, and the estrogen-related form is one
subtype, then the observed association between endometrial cancer and estrogen is being diluted, as
it were, by combining in one case group cancers caused by estrogens and cancers resulting from
other mechanisms.  Masking of the relationship also occurs by combining in one exposure group
women whose exposure caused their cancers, women whose exposure to estrogen occurred only
before or after the relevant time period in terms of the natural history of endometrial cancer, and
women who were exposed to a nonpathogenic form of estrogen, nonpathogenic dose, or
nonpathogenic mode of administration (should there be such).

Another example is the study of the health effects of exposure to lead.  The traditional index of
absorption, blood lead level, reflects only recent exposure, because the half-life of lead in blood is
only about 36 days (see Landrigan, 1994).  So there may be relatively little relationship between a
single blood lead measurement and body lead burden.  Pioneering studies by Herbert Needleman
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employing lead exposure measures from deciduous teeth enabled the demonstration of a
relationship between low lead exposure and cognitive and behavioral impairment in children.  Now,
the advent of K x-ray florescence analysis of lead in bone, where the half life is on the order of 25
years, may provide an important new tool in epidemiologic studies of lead exposure (Kosnett MJ et
al., 1994).

For these reasons, rigorous study design and execution employ:

 1. verification of case diagnosis, employing such procedures as multiple independent review of
tissue samples, x-rays, and other diagnostic data;

 2. definition of homogeneous subgroups, with separate analysis of data from each;

 3. multiple data sources concerning exposure (and other relevant variables), permitting each to
corroborate the other;

 4. precise characterization of actual exposure, with respect to type, time period, dosage, etc.

Unfortunately, reality constraints impose compromises.  For example, data from 20 years ago may
be the most relevant in terms of the causal model, but data from two years ago may be much more
available and accurate.  In using the more recent data, one either assumes that recent exposure is a
good proxy measure for previous exposure or that the recent exposure is also related to the disease,
though perhaps not as strongly as the previous exposure.

[For more on the above, see Hulka, Hogue, and Greenberg, "Methodologic issues in epidemiologic
studies of endometrial cancer and exogenous estrogen", and Kenneth J. Rothman, Induction and
latent periods, Am J Epidemiol 114:253-259, 1981 (the Rothman article addresses the question of
timing of exposure).]

One consideration raised by the above is the importance of developing specific hypotheses in
advance of the study.  Such hypotheses, if they can be elaborated, strengthen both the design and
interpretation of the study.  The design is strengthened because the hypotheses guide the
investigator in selecting the relevant variables and their features (time of occurrence, etc.) on which
to obtain data.  It may not be possible to obtain just the right information, but at least the
hypotheses protect guide the search.  Hypotheses also provide guidance about what relationships to
analyze and how to construct analysis variables (e.g., what disease subcategories to relate to which
forms of exposure).  Specific hypotheses – grounded in existing knowledge and theory – can also
increase the persuasiveness of the findings.

Basic terms and concepts

Reliability (of measurement or classification) concerns the repeatability of a measurement – across
time, across measurement instruments, across observers.  If a measure is reliable, it may still not be
accurate.  But if a measure is not reliable, then the data values for it contain a substantial random
component.  This random component reduces the information content of the variable, the strength
of associations involving it, and its effectiveness in controlling confounding (to be discussed in a
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following chapter).  The concept of reliability is relevant when two or more measures of comparable
authoritativeness are being compared.

Validity (of measurement or classification) is the extent to which a measurement measures what it is
supposed to measure.  Assessment of validity, therefore, implies the availability of a measurement
method that can be regarded as authoritative (often called a "gold standard").  Since one measure has
more authority, our interest shifts from simple agreement between measures to evaluation of the less
authoritative one.  For example, if mean blood pressure measured with a random-zero mercury
sphygmomanometer over a series of readings in a person lying on his/her back is our standard for
"true" blood pressure, then a casual pressure in a person sitting down will be systematically
inaccurate, since it will tend to be higher.  Although we will examine agreement between the supine
and casual blood pressures, our interest is on the accuracy of the latter with respect to the "gold
standard".

Relationship of reliability and validity

"Validity" is used as a general term for accuracy or correctness.  The procedure of assessing the
accuracy of a measurement instrument is often referred to as validation.  In many situations, though,
we do not know the correct result, so the best we can do is to compare measurements that are
assumed to be equally accurate.  In these situations, agreement between measurements is termed
"reliability".

In this sense, reliability is a subcategory of validity.  However, reliability (repeatability, consistency)
can be present without validity (two faculty can agree completely yet both be wrong!).  Also, a
measurement procedure can be valid in the sense that it gives the correct value on average, though
each measurement includes a large amount of random variation (e.g., 24-hour dietary recall for
cholesterol intake).  Sometimes it is said that "a measure that is unreliable cannot be valid".  Whether
this statement is true or not depends upon what aspect of validity is being considered.  More
commonly, random error (unreliability) and bias (lack of validity) are regarded as independent
components of total error.

Psychometrics is the subdiscipline of psychology that addresses the evaluation of questionnaire
items and scales.  "Validation" as used in psychometrics encompasses both reliability (consistency)
and validity.  However, due to the scarcity of classifications and measures that can be regarded as
authoritative, much of psychometric validation concerns assessment of reliability.  Common
situations where reliability is important to examine are comparisons of performance of two raters or
interviewers of equal stature (inter-rater reliability), of results from repeated measurements of a
characteristic that is believed to be stable (test-retest reliability), and of scores from equivalent items
that make up a scale (inter-item reliability – often termed "internal consistency").

Assessment of reliability

Validation involves the measurement of agreement between two or more measurements or
classifications.  Agreement is not identical to "association", but is rather a special case – the case in
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which the both measures increase in the same direction and have the same scale.  (An obvious
example of an association which does not imply agreement is an inverse association.)

Percent agreement

For categorical variables, a simple measure of reliability is the percentage of instances in which the
two measurement instruments agree.  Supposed that 100 electrocardiograms (ECG) are given to two
expert readers to code independently as "abnormal" or "normal", and that the two readers agree on
90 (30 that they both call "abnormal" and 60 that they both call "normal").  But the 90 percent
agreement is not as good as it seems, since it gives "credit" for agreement that we would expect to
occur just by chance.  What if the two readers, preferring to play golf, left the ECG's with their
secretaries, with instructions for each secretary to code each ECG independently by rolling a die and
coding the ECG as "abnormal" if the die came up 6.  To the unfortunate investigator, when s/he
checked the reliability of the coding, the two readers might appear to have 72% agreement (3
abnormals and 69 normals).

Categorical variables - Kappa

One measure of reliability that adjusts for agreement expected to occur by chance is Kappa
(introduced by Cohen in 1960).  For a categorical variable without inherent ordering (e.g., initial
diagnosis of chest pain as ?angina, ?gastroesopheal reflux, or ?musculoskeletal), Kappa is computed
as:

po – pc
Κ = ––––––––

1 – pc

po = observed proportion of agreement

pc = proportion of agreement expected by chance

The proportion of agreement expected by chance is computed by using the marginal percentages,
the same procedure that is used for computing a chi-square test for associatiion.

Suppose that a managed care organization (MCO) is investigating the reliability of physician
diagnostic work-up for chest pain.  Two physician's initial assessments and order for diagnostic
testings are compared for 100 sequential patients presenting with uncomplicated occasional chest
pain at their initial visit to the MCO.
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Comparison of diagnoses by physicians A and B
among 100 patients reporting chest pain

Physician B

?Angina ?Reflux
?Musculo-

skeletal Total

?Angina 12 1 1 14

?Reflux 2 36 4 42

?Musculo- 2 8 34 44
skeletal

P
h
y
s
i
c
i
a
n
A

Total 16 45 39 100

Since the physicians agree on the initial diagnosis for 12 + 36 + 34 patients, their percent agreement
is 82/100 = 82%.  However, based on the marginals we expect considerable agreement by chance
alone.  The expected proportion of agreement by chance is computed from the marginal
distributions as follows:

          Expected proportion of agreement  =
(Proportion ?Angina Physician A) × (Proportion ?Angina Physician B) 14/100 × 16/100

+ (Proportion ?Reflux Physician A) × (Proportion ?Reflux Physician B) 42/100 × 45/100
+ (Proportion ?Mus-Sk Physician A) × (Proportion ?Mus-Sk Physician B) 44/100 × 39/100
= 14/100 × 16/100   +   42/100 × 45/100   +   44/100 × 39/100
= 0.0224   +   0.189   +   0.1716  =  0.383

0.82  –  0.383
The value of Kappa for this table is therefore: Κ = ––––––––––––

1  –  0.383

For assessing agreement between ordinal variables with few categories, weighted versions of Kappa
are used in order to assign varying weights to different degrees of disagreement.  A discussion of
Kappa may be found in Joseph Fleiss's text Statistical Methods for Rates and Proportions.  The second
edition suggests adjectives for characterizing values of Kappa.

Continuous variables

For continuous measures and ordinal variables with many categories, the data display is a scatterplot,
rather than a crosstabulation.  Perfect agreement means that all of the measurement pairs lie on a
straight line with slope 1 and intercept 0 (i.e., the line goes through the origin).  The most direct
index of the level of agreement between the two measures are the regression coefficient and
intercept for the straight line that best fits the measurement pairs.  The closer the regression
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coefficient (slope) is to 1.0 and the regression intercept is to zero, and the narrower their confidence
intervals, the better the level of agreement.

A common index of agreement is the correlation coefficient.  The product-moment (Pearson)
correlation coefficient (r) assesses the extent to which pairs of observations from the two
measurements lie on a straight line.  The Spearman (rank) correlation coefficient, rho, used for
ordinal variables, assesses the extent to which the pairs of observations have the same ordering for
the two measurement instruments (the lowest for the first instrument is close to the bottom for the
second instrument, the tenth lowest for the the first is close to being tenth lowest for the second,
and so on).

However, correlation coefficients ignore location and scaling.  Thus, if the readings from one
thermometer are always exactly two degrees below the readings from a second thermometer,
agreement is certainly less than imperfect, yet the correlation coefficient between their readings will
be 1.0 (for a perfectly straight line of slope 1.0, but not through the origin).  If the readings from the
first thermometer are always twice those of the second, the correlation will also be 1.0 (for a straight
line through the origin, but with a slope of 2.0).  Therefore a correlation coefficient alone is an
inadequate assessment of agreement.  It must be accompanied by a comparison of the location
(mean, median) and scale (standard deviation or other measure of dispersion) for the readings of the
two measures.

Reliability of a scale [optional]

A measure of reliability that is widely used in psychometrics is Cronbach's coefficient alpha.
Coefficient alpha's conceptual basis (see Nunnally, Psychometric Theory) can be stated as
follows.

Suppose that you have a set of questionnaire items each of which attempts to measure the
same, unobservable construct (a "latent variable").  The response value for any individual
item will reflect the value of that latent variable but also some amount of error, which is
assumed to be random, independent of everything else, and symmetrically distributed with
mean zero.  Under these assumptions, the average of the response values for the set of items
will provide a more reliable measure of the latent variable than is available from any single
item (just as the average value for a set of otherwise equivalent blood pressure measurements
will yield a more accurate (precise) value than any single measurement).  The random
components in the item responses should counterbalance each other, so that the average is a
more precise measure of the latent variable.

In such a scenario, coefficient alpha assesses how much of the scale scores reflect the values
of the latent variable and how much reflects measurement error.  The the higher the "shared
item variance" (the more the individual items in the scale agree with each other) and the
larger the number of items, the higher the value of alpha.  More precisely stated, coefficient
alpha is the proportion of the total variance in the scale scores that represents the variance of
the values of the latent variable (the rest being the variance of the random errors for each
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item).  Alpha values of 0.80 are are considered adequate for computing correlations and
fitting regression models, and a sample size of 400 observations is regarded as adequate to
estimate alpha (see Nunally).

Obstacles to realizing this ideal scenario include the probability that items are not perfectly
equivalent, that people's responses to some items in the scale affect their answers to other
items (so errors in item responses are not independent), and that factors other than the
latent variable contribute non-random variation in item responses (thereby introducing
systematic error, i.e., bias).  Note that coefficient alpha does not address bias, only random
variability.

Assessment of validity – sensitivity and specificity

As noted above, assessment of validity is directed toward the evaluation of a rater or measurement
instrument compared to an authoritative rater or instrument.  For detection of a characteristic or a
condition, epidemiologists generally employ the concepts of sensitivity and specificity that were
introduced in a previous chapter.  Using the words "case" ("noncase") to refer, respectively, to
people who have (do not have) the condition or characteristic (e.g., a disease, an exposure, a gene)
being measured, then sensitivity and specificity are, respectively, the probabilities for correctly
classifying cases and noncases.

Sensitivity is the ability to detect a case.

Specificity is the ability to detect a noncase.

Example:

If a procedure correctly identifies 81 of 90 persons with a disease, condition, or characteristic, then
the sensitivity of the procedure is:

Se = 81/90 = 0.9 = 90%

If the same procedure correctly identifies 70 of 80 persons without the disease, condition, or
characteristic, then the specificity of the procedure is:

Sp = 70/80 = 0.875 = 88%

In probability notation,
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              _    _
Se = Pr(D'|D) Sp = PR(D'|D)

                   _                                                   _
where D = case,   D = noncase, D' = "classified as a 'case'", and D' = "classified as a 'noncase'".

The inverse of sensitivity and specificity are "false negatives" and "false positives".  Some authors
prefer to avoid the latter terms, because of the potential confusion about whether "negative" and
"positive" refer to the test (in accordance with the definition in John Last's Dictionary of Epidemiology
or to the true condition.  However, the terms remain in common use, and we will follow the
Dictionary's usage, whereby a "false negative" is a negative test result in a person who has the
characteristic (i.e., an erroneous negative test) and "false positive" is an erroneous positive test result.

Sensitivity and specificity as defined above suffer from the same limitation that we have noted for
percent agreement, that their calculation fails to take account of agreement expected on the basis of
chance.  Even a random process will classify some cases and noncases correctly.  Methods for
dealing with this limitation have been published (Roger Marshall, "Misclassification of exposure in
case-control studies", Epidemiology 1994;5:309-314), but are not yet in wide use.

Impact of misclassification

The impact of misclassification on estimates of rates, proportions, and measures of effect depend on
the circumstances.  Consider the following example for a rare disease.  Assume a cohort of 1,000
participants, of whom 60 develop CHD during the a four-year interval.

If the sensitivity of our diagnostic methods is only 0.80 (or 80%), then we will detect only 48 of
those cases (48/60, i.e., 80% of 60).  There will be 12 false negatives.

If the specificity of our diagnostic methods is 0.90 (or 90%), then we will incorrectly classify 94 of
the 940 subjects who did not develop CHD (90% of the 940 noncases will be correctly identified as
such, leaving 94 (940 minus 846) noncases to be incorrectly classified as "cases").  These 94 subjects
will be false positives.

Thus, we will observe (or think we observe) 142 "cases" of CHD – 48 who in fact have CHD and
94 who actually do not.  Note that in this case the majority of "cases" do not have the disease!  This
example illustrates the dilemma of false positives when studying a rare disease.  The false positives
and their characteristics will "dilute" or distort the characteristics of any "case" group we might
assemble.  Hence the emphasis on avoiding false positives through case verification, using such
methods as pathological confirmation.

Suppose that the participants in this cohort are "exposed", and another similar cohort consists of
1,000 participants who are not "exposed".  Assuming that the diagnostic accuracy is not influenced
by exposure status, we expect the results for the two cohorts to be as follows:
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Hypothetical scenario showing effect of misclassification bias
on measures of association

True Observed
(Se=1.0, Sp=1.0) Se=0.8, Sp=1.0 Se=1.0, Sp=0.9 Se=0.8, Sp=0.9

_ _ _ _
E E E E E E E E

D 60 30 D 48 24 D 154 127 D 142 121
_ _ _ _
D 940 740 D 952 976 D 846 873 D 858 879

1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

RR 2.0 2.0 1.21 1.17
RD 0.03 0.024 0.027 0.021

From this example, we can see that:

 1. Even rather high levels of sensitivity and specificity do not avoid bias;

 2. Different epidemiologic measures are affected in different ways;

 3. The RR need not be affected by imperfect sensitivity if specificity is sufficiently high; the RD
will be affected, though.

 4. The RR will be affected by imperfect specificity for detecting a rare disease even if sensitivity is
high; however, the RD may be affected only slightly.

 5. Specificity is of utmost importance for studying a rare disease, since it is easy to have more
false positive tests than real cases, identified or not;

 6. Bias in the classification of a dichotomous disease typically masks a true association, if the
misclassification is the same for exposed and unexposed groups.

[Try creating a spreadsheet to see how various levels of sensitivity and specificity change the RR and
RD.  Convenient formulae are in the appendix.]

Types of misclassification

The above example deals with misclassification of a disease, misclassification that is independent of
exposure status.  Nondifferential misclassification of a dichotomous exposure variable, i.e.,
misclassification that occurs independently of disease status – will bias ratio measures of effect
toward the null value of 1.0.  This will also be the case for nondifferential misclassification of a
dichotomous disease variable or of both a dichotomous disease variable and a dichotomous
exposure simultaneously.
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Differential misclassification, however, where errors in measuring one variable vary according to the
value of another variable, can lead to bias in any direction.  Common scenarios for differential
misclassification are selective recall of past exposures or selective detection of disease based on
knowledge of the patient's exposure history.  Also, when the misclassified variable has more than
two levels, even nondifferential misclassification can produce bias in any direction (because this last
point has been emphasized only in recent years and because traditionally the teaching of
epidemiology has focused on dichotomous disease and exposure variables, it is not uncommon to
hear the maxim "nondifferential misclassification bias is towards the null" without mention of the
exceptions).

In addition, measurement error for other variables involved in the analysis produces bias in a
direction that depends on the relationships of the variables.  For example, if we are performing age
adjustment and have bias in the measurement of age, then the age adjustment will not completely
remove the effect of age.  A situation of this type is referred to as information bias in the
measurement of a covariable and is discussed in Rothman and Greenland.

Direction and extent of bias

The importance of being able to discern the direction of the bias and, if possible, to assess its
magnitude, is to enable interpretation of the observed data.  For example, if a positive association is
observed between two factors and the direction of misclassification bias can be shown to be toward
the null, then such bias could not be responsible for the finding of a positive association.  Similarly,
if misclassification bias can be shown to be in the positive direction, then the failure to find an
association cannot be due to that bias.  In addition, techniques exist to correct for errors in
measurement in a number of analytic procedures.  However, these procedures often require some
outside estimate of sensitivity and specificity.

Where the categories of bias break down

Earlier it was mentioned that the boundaries between random error and systematic error as well as
those among the three classes of bias sometimes become unclear.  Here are some situations that are
challenging to classify.

False negatives in detecting cases for a case-control study.

If cases are missed due to information bias, then such persons will not be counted as cases in a case-
control study.  If this lack of sensitivity is in some way related to exposure status (e.g., greater
detection of endometrial cancer among women who take estrogen – the detection bias issue), then
the case group will not be representative of the population of cases.

From the viewpoint of the case-control study this type of bias will be classified as selection bias,
since it is manifest through differential selection probabilities for cases.  But the error mechanism in
this scenario was misclassification of cases.  Moreover, if some women with asymptomatic
endometrial cancer happen to be selected as controls, their presence in the control group is
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presumably classified as information (misclassification) bias, since in this situation the subjects
belong in the study, except that they should be in the case group.

Variability in a parameter being measured can produce both random error
(measurement imprecision) and information bias in a measure of effect

Blood pressure, for example, varies from moment to moment, so that every measurement of blood
pressure reflects a degree of random variability (random error).  If blood pressures are measured on
a single occasion, and then disease incidence or some other endpoint is recorded during the ensuring
five years, the observed association between blood pressure and the outcome will understate any
true association.

The reason for this is that subjects who were classified as "high" on their initial measurement will
include some who were "high" just by chance.  Subjects classified as "low" will include some who
were "low" just by chance.  The resulting error in exposure measurement will muddy the contrast
between the group outcomes compared to what would obtain if our "high" group contained only
those who were truly "high" and low group contained only those who were truly "low".

Assuming that chance variability is independent of study outcomes, then the result is nondifferential
misclassification, and the observed association will be weaker than the "true" association.  Thus,
random error can produce systematic error, or bias.

Blood pressure (and other physiological parameters) also varies in a diurnal pattern, being lower in
the morning and rising during the day.  Failure to provide for diurnal variation can produce several
kinds of error.  For example, if blood pressures are measured on study subjects at random times
during the day (i.e., each subject's blood pressure is measured once, but any given subject may be
examined at any time of day), then the diurnal variation adds a component of random error to that
from the moment to moment variation.  Therefore, estimates of group means and their differences
will be more imprecise than if measurements had been conducted at the same time of day.

If for some reason subjects in one category (e.g., blue collar workers) are examined in the morning
and subjects in another category (e.g., homemakers) are examined in the afternoon, then there will
be a systematic difference between the mean blood pressures for subjects in the different categories,
a systematic difference arising from the systematic variation in blood pressure combined with the
systematic difference in time of measurement.  The resulting systematic error could lead to selection
bias or information bias depending upon the nature of the study.

Regression to the mean

A well-known phenomenon that illustrates how random variability can lead to systematic error is
regression to the mean (Davis CE:  The effect of regression to the mean in epidemiologic and
clinical studies.  Am J Epidemiol 104:493-498, 1976).  When a continuous variable, such as blood
pressure or serum cholesterol, has a degree of random variability associated with it (or with its
measurement), then each measurement can be thought of as based on the "true value" for the
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subject plus or minus a random noise factor.  If the distribution of the random variable is symmetric
with a mean of zero, then the average value of a series of different readings will be close to the "true
value".  If the random component is large, however, any given measurement can be substantially
above or below the average.

In such a situation, a variable for which a given measurement falls at the high end or the low end of
the distribution for that variable will tend to be closer to the center of the distribution for a later
measurement.  For example, in the Lipid Research Clinics (LRC) Prevalence Study, populations were
screened for cholesterol and triglyceride levels, and those with elevated levels were asked to return
for additional evaluation.  If, say, 15% of the subjects screened were asked to return, it can be
expected (and did happen) that many of those subjects did not have elevated levels upon re-
measurement.

The reason for this "regression" is that the group of subjects in the top 15% of the lipid distribution
at their screening visit consists of subjects whose lipid measurement was high due to a large positive
random component as well as subjects whose lipid levels are truly high.  On re-measurement, the
random component will, on average, be smaller or negative, so that subjects without truly high lipid
levels will fall below the cutpoint as well as some subjects with truly high levels but who on this
measurement have a large negative random component.

If by an extreme value we mean one that is "unusually high", that implies that usually it should be
lower.  The opposite is true for unusually low values.  Therefore, the average serum cholesterol in an
unselected population will not tend to "regress towards the mean", since in a random process the
increases and decreases will balance each other.  But if we select a portion of the population based
on their initial measurements' being high (and/or low), then that selected population will tend to
"regress" towards the population mean.

In regression toward the mean, we have a situation in which random variability can produce
systematic distortion, in the sense that the mean of the cholesterol levels (or blood pressures) of the
"elevated" subjects overstates their "true mean" (assuming that "true" is defined as an average of
several measurements).  Whether this distortion produces selection bias or information bias will
depend upon the actual process of the study.

Suppose that "high risk" subjects (elevated cholesterol, blood pressure, and other CVD risk factors)
are enrolled in a "wellness" program and their risk levels are measured several months later, there
will probably be some decline in these levels regardless of the program's effects, simply due to
regression to the mean.  This process is one reason for the importance of a randomly allocated
control group, which would be expected to experience the same regression.

[According to John R. Nesselroade, Stephen M. Stigler, and Paul B. Baltes, regression to the mean is
not a ubiquitous phenomenon, but depends upon the characteristics of the underlying model or
process involved.  A thorough, but largely statistical, treatment of the topic can be found in
"Regression toward the mean and the study of change," Psychological Bulletin 88(3):622-637, 1980.]



_____________________________________________________________________________________________
www.epidemiolog.net © Victor J. Schoenbach 2001 10. Sources of error - 319
with Joellen Schildkraut and Wayne Rosamond, rev. 5/11/2001, 5/16/2001

Appendix 1

Formulas to see the effects of various levels of sensitivity and specificity on the RR and RD

If a, b, c, d are the TRUE values of the cells in a four-fold table, then the observed RR and observed
RD in the presence of Sensitivity (Se) and Specificity (Sp) for measuring disease are given by:

[(Se)a + (1-Sp)c]/n1
Observed RR = –––––––––––––––––––

[(Se)b + (1-Sp)d]/n0

(Se)a + (1-Sp)c (Se)b + (1-Sp)d
Observed RD = ––––––––––––––––––– – –––––––––––––––––––

n1 n0

a b c d
= Se ––– – ––– + (1 – Sp) ––– – –––(

n1 n0

) (
n1 n0

)
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Appendix 2

More on the concern to avoid false positive diagnoses of disease in case-control studies of a rare
disease (e.g., endometrial cancer and estrogen) – the importance of verification of case status:  [This
is a simplified version of the presentation in the Hulka, Hogue, and Greenberg article in the
bibliography.]

The case-control strategy aims to estimate the probability of exposure in cases and in noncases, the
ideal for the latter being the general population from which the cases arose.  Misclassification of
disease leads to contamination of these probability estimates.  In particular, false positives "dilute"
the cases:

     {Diagram)

The observed probability of exposure in subjects classified as "cases" equals:

 1. the probability of exposure in true cases

 2. plus a distortion equal to the proportion of false positive "cases" multiplied by the difference in
exposure probability between true cases and false positives.

Algebraically,

Pr(E|D') =                                                  —   the observed exposure prevalence in "cases"

     Pr(E|D)                                                 —   the true exposure prevalence in cases
               _                   _
      + Pr(D|D') [Pr(E|D) – Pr(E|D)]          —   the bias

                                                             _
where E = exposure, D = a true case, D = a true noncase,
and D' = any subject who is classified as a "case" (correctly or incorrectly)
          _
So Pr(D|D') is the probability that someone who is called a "case" is in fact a noncase
                 _
and Pr(E|D) is the probability that a true noncase has the exposure.

Correspondingly, the observed probability of exposure in subjects classified as "noncases" equals:

 1. the probability of exposure in true noncases

 2. plus a distortion equal to the proportion of false negatives among persons classified as
"noncases" multiplied by the difference in exposure probability between true noncases and
false negatives.
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Algebraically,

          _
Pr(E|D') =                                                 —   the observed exposure prevalence in "noncases"
          _
     Pr(E|D)                                                —   the true exposure prevalence in noncases
              _                               _
      + Pr(D|D') [Pr(E|D) – Pr(E|D)]        —   the bias

           _
where D' = any subject classified as a "noncase" (correctly or incorrectly)

Numerical example:

If:
the probability of exposure in true cases = 0.4,

the probability of exposure in true noncases = 0.2,

the probability of exposure in false positives = 0.2 (i.e., the false positives are really just like
other noncases)

then in a sample of subjects classified as "cases" in which one-third are falsely so classified (i.e., false
positives) we expect to observe a probability of exposure of:

Pr(E|D') = 0.4 + (1/3) [0.2-0.4] = 0.4 - (1/3)[0.2] = 0.333

or equivalently,

Pr(E|D') = (2/3)(0.4) + (1/3)(0.2) = 0.333

(i.e., the prevalence of exposure is a weighted average of the exposure prevalence in the correctly
classified cases and the exposure prevalence in the false positives).

Since the true probability of exposure in cases is 0.4, the observed results are biased downward.
Since the proportion of false negatives in the control group (diseased subjects classified as
"noncases") will generally be small if the disease is rare, the estimate of the probability of exposure
in noncases will generally not be biased.

The true OR is 2.67 [{.4/(1-.4)}/{.2/(1-.2)}]; the observed OR is 2.0 [{.333/(1-.333)}/{.2/(1-.2)}].
The discrepancy would be greater if the true exposure probabilities were more different.
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Sources of  error - Assignment

 1. The continuing controversy over the health effects of low frequency magnetic fields began with
an epidemiologic study of electrical wiring configurations and childhood cancer (Wertheimer N.
Am J Epidemiol 1979; 109:273-284).

Cases consisted of persons dying of cancer in Colorado before age 19 in the years 1950-1973
who also had a Colorado birth certificate and whose birth or "death" address was in the greater
Denver area and had been occupied from 1946-1973.  Controls consisted of next (non-sibling)
Denver-area birth certificates.  Residential status for cases and controls is shown below.

For all study participants, birth and death addresses were visited and a map of the wires and
transformers of the electric power distribution was drawn.  Homes were categorized as having
"high-current configurations" (HCC), "low-current configurations" (LCC), or "very low current
configurations"  (VLCC), according to their proximity to high current distribution lines.  Table 2
shows the distribution of expected current of residence addresses for cases and controls:

Table 1
Residential status of cases and controls

Residential status Cases Controls
Stable, same birth & death address 109 128
Moved, birth & death addresses available 145 128
Only one address available, either birth or death  88  88

Table 2
Case-control distribution for the amount of current expected from different wiring

configurations, based on all known addresses for study participants

Wiring configuration Expected current Cases Controls % Cases
HCC High-very high 182 103 64
LCC Low 289 324 47
VLCC Very low  20  45 31

a. Calculate the odds ratios comparing HCC to LCC houses, and LCC to VLCC houses.

b. What is the meaning of the percentages in the right-most column?  Are they incidences?  Do
they indicate a dose-response relationship between electric current and cancer occurrence?

c. Identify likely sources of selection and information bias in this study, with particular
attention to those sources that are common in case-control studies.  Can you suggest
methods to minimize these sources of bias?  (Use your imagination—you are not expected
to consult the article, though if you wish to do so, try answering this question first).

d. What was the purpose of selecting controls by taking the next birth certificate?
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e. OPTIONAL:  If the reported cumulative incidence (CI) of childhood cancer (by age 19) is
10 cases per 10,000 children in the general population, what would you estimate the
cumulative incidence to be among children living next to HCC's assuming that one out of
five children live next to HCC's?  What proportion of childhood cancer might be
attributable to HCC's?

 2. This question is based on the attached extract from Rosenberg et al., "Oral contraceptive use in
relation to nonfatal myocardial infarction".  (Am J Epidemiol 1980; 111:59-66).

a. What type of study design has been used?

A. case-control with prevalent cases

B. case-control with incident cases

C. prospective cohort

D. retrospective (historical) cohort

E. ecologic

F. case-control nested in a cohort

b. Give 2 possible sources of selection bias that might interfere with using these data to obtain
estimates of the relative risk of MI in women taking oral contraceptives.  For each source,
give an example of how it might cause the true relative risk to be overstated in the data.

c. Briefly assess the likelihood of misclassification of the outcome measure, reported MI.

d. Briefly (2-3 sentences) assess the likelihood of misclassification of the exposure measure,
reported oral contraceptive use.

 3. The issue of "detection bias" sparked a vigorous controversy in the investigation of the
relationship between endometrial cancer and the use of exogenous estrogen preparations.  The
case for the importance of "detection bias" was presented by Horwitz and Feinstein (Alternative
analytic methods for case-control studies of estrogens and endometrial cancer.  N Engl J Med
1978; 299:1089-1094).  The following questions refer to that article and Horwitz and Feinstein's
detection bias argument.

a. Give a definition of the term "detection bias" as it is applied by Horwitz and Feinstein to
studies of the endometrial cancer-exogenous estrogen relationship.

b. Would "detection bias" tend to overstate or understate a truly positive association between
estrogen use and endometrial cancer?  Explain briefly.

c. Is "detection bias" (in the above sense) a form of selection bias or information
(misclassification) bias?  Justify your position.

Consider "detection bias" to be a form of selection bias, and let alpha, beta, gamma, and delta be
probabilities by which individuals in the target population are included in a study, according to
the following scheme:



_____________________________________________________________________________________________
www.epidemiolog.net  © Victor J. Schoenbach 10. Sources of error - Assignment -327
rev. 9/8/1998, 9/6/1999, 10/30/2000

Alpha  (α) is the probability by which individuals with endometrial cancer and a history of
estrogen use are included in the study;

Beta  (β) is the probability by which individuals with endometrial cancer but without a
history of estrogen use are included in the study;

Gamma  (γ) is the probability by which individuals without endometrial cancer but with a
history of estrogen use are included in the study;

Delta  (δ) is the probability by which individuals without endometrial cancer and without a
history of estrogen use are included in the study.

Selection probabilities of inclusion in the actual population, by disease and exposure
characteristics of individuals in the target population

__
E E

D α β
__
D γ δ

d. Assuming that no other source of selection bias is present, what relationship among or
between selection probabilities most closely characterizes the detection bias situation
described by Horwitz and Feinstein?  Justify your answer.

e. Characterize, in terms of the above selection probabilities, the impact of the approach
adopted by Horwitz and Feinstein to correct for the effect of "detection bias" (i.e., their use
of "alternative controls").  Justify your answer.

f. What is an alternate, and presumably theoretically preferable, approach to avoiding detection
bias and how would it be characterized in terms of the above selection probabilities?
Comment on the practicality of the preferable approach.

 4. The major community studies of CVD, such as the Framingham study, began before the
availability of exercise ECGs, echocardiography, and other sophisticated methods of detecting
CHD.  For example, in the Evans County Study (Cassel JC et al., Arch Intern Med 1971
(December); 128 [entire issue]), CHD case detection in living subjects was accomplished using
clinical judgment based on history, symptoms, physical examination, resting ECG, and chest X-
ray.  Opportunities for bias from misclassification include both an incorrect exclusion decision at
enrollment (so that a subject later diagnosed as having CHD may have been a prevalent case at
the outset and therefore not a new case) and misclassification of CHD status at follow-up.

The following questions are based on data from the Evans County Cardiovascular Disease Study
(Cornoni JC, Waller LE, Cassel JC, Tyroler HA, Hames CG.  The incidence study—study design
and methods. Arch Intern Med 1971 [December];128:896-900):
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Results from the Evans County Cardiovascular Study

Persons examined in 1960-62 3102

CHD cases at initial examination 93

Died before 1967-1969 reexamination (includes 36 deaths among those
with CHD in 1960-62 and 56 CHD deaths among those without CHD in
1960-62)

320

Moved, vital status could not be determined 40

Known alive, but not re-examined (migrated or refused) 212

Re-examined in 1967-69 (includes 57 subjects who had CHD in 1960-62) 2530

CHD cases detected at reexamination in 1967-69 among survivors initially
free of CHD

87

a. Diagram the above data.

b. Calculate the observed (87-month) cumulative incidence of CHD in the Evans County
incidence study (exclude subjects who migrated, refused re-examination, were lost to follow-
up, or died of non-CHD causes).

c. Estimate the "true" incidence of CHD between 1960-62 and 1967-69 that would be
expected if the sensitivity and specificity of the diagnostic procedure in the Evans County
study were, respectively, 70% and 98%.  Assume that the 93 CHD cases detected in 1960-62
had in fact constituted all those and only those with CHD at the time and that there was no
misclassification of cause of death for subjects who did not survive until reexamination.

d. Optional:  It is reasonable to suppose that the sensitivity and specificity in 1960-62 would
have been worse than in 1967-69.  What is the lowest that specificity could have been given
the data (you may set sensitivity at any level you like).
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Sources of  error - Assignment solutions

 1. 

ad (182)(324)
a. ORHCC/LCC   = —— = ————— =  1.98

bc (289)(103)

(289)(45)
ORLCC/VLCC  = ————— =  2.01

(20)(324)

b. The percentages indicate the proportion of individuals within each exposure category (i.e.,
wiring configuration) who were cases.  These percentages do not represent incidences
(though Rothman and Greenland call them "pseudo-incidence rates".  To calculate incidence
one must know the size of the population at risk.  The controls here are at best a (very small)
sample of the population at risk.  The percentages do suggest a dose response relationship,
for although the total number of controls was arbitrary and fixed, their distribution among
the various exposure categories was not.

c. Potential Sources of Biases.

i) Misclassification of exposure.  The measurement of exposure was extremely imprecise.
Magnetic fields in the living space were not measured directly.  The child's address at
death did not necessarily represent where he had lived during the majority of his life (and
thus the exposure he had received).  Also, wiring configurations could have changed
between the time of actual exposure and the time of measurement.  Similarly, no note
was taken of exposures received when not at home (for instance at school).  Assuming
that in-home exposure measurement was not feasible, misclassification of exposure
could have been reduced if the study had been limited to participants who had the same
birth and death address and to those participants who lived in multiple dwellings, all of
which were evaluated and had the same "current expected" classification.

ii) Specification of the outcome variable was imprecise.  "All cancers" is a very
heterogenous group (with more than 1 etiology) rendering the results suspect.  The study
apparently relied on cause of death from death certificates, without obtaining supporting
evidence from medical records and pathological reports.

iii) Only children who had died as a result of their cancer were included in the study.  It may
be that HCCs are not carcinogenic, but rather are somehow related to prognosis once
the cancer has developed.

d. The purpose of selecting controls by taking the next birth certificate was to match on age
and to select controls who would have had similar environmental exposures other than
magnetic fields.  Also, the use of a systematic procedure avoids unwanted variability that
creates opportunities for introducing bias.

e. Let: I  = overall incidence
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I1 = incidence in the exposed

P1 = proportion of population exposed

I0 = incidence in the nonexposed

R0 = proportion of the population nonexposed

RR = relative risk

We know that:

I  =  I1P1 + I0P0

Ie  =  (RR)(I0), so that

I  =  (RR)(I0)(P1) + I0P0, and

I
I0    = —————

(RR)(P1) + P0

From the problem,

I  = .001

P1 = .2;  P0 = .8

RR = 2.11 (combining LCC & VLCC into 1 group)

0.001
I0    = ————— =  0.0008

2.11(.2)+.8

I – I0 0.001-0.0008
Population Attributable Risk %  = ——— = —————— = 20%

I 0.001
(For a review of the 20 years of epidemiologic studies stimulated by this one, see Greenland S,
Sheppard AR, Kaune WT, Poole C, Kelsh MA.  A pooled analysis of magnetic fields, wire codes,
and childhood leukemia. Epidemiology 2000;11:624-634.)

 2. 

a. Study design - a case control study with prevalent cases.

b. Selection bias:

i) Non-response--about 29% of the sample did not return completed questionnaires.  If
nonrespondents were disproportionately distributed so that the nonresponse rates
among MI nonusers of OCs or non-MI users of OC were higher than the other non-
response rates, then the odds ratio would overstate the true association.
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ii) Selective survival--if OC users and nonusers had different fatality rates from MI, then
the prevalent (surviving) MI subjects would not provide an accurate estimate of OC use
among women who later develop MI.  If the fatal MI rate is higher among nonusers of
OC, then the odds ratio observed would overstate the true association.

c. Misclassification of the outcome measure is likely, since:

i) MI may go undetected ("silent MI")

ii) MI may not be diagnosed, despite symptoms (due to, for example, lack of sensitivity of
diagnostic tests used)

iii) MI history may be "denied" or mistaken, though for nurses one expects greater accuracy
of reporting.  No check of hospital records appears to have been made.  Probably the
true prevalence will be understated.

Misclassification of the exposure measure is also likely, particularly concerning time periods and
duration of OC use.  Memory in this case is unverified by pharmacy or physician records.
Furthermore, the differences among types of OC preparations have not been noted.

The above limitations do not by any means invalidate the study, nor should the investigators
necessarily have attempted to collect additional data.  But it is important to be aware of the
limitations in interpreting the data and in reconciling results with other investigations.

 3. 

a. Detection bias, in the sense in which Horwitz and Feinstein have applied the term to studies
of endometrial cancer and exogenous estrogen, refers to a distortion in the observed
proportion of estrogen users among women diagnosed as having endometrial cancer.  The
distortion in the case would result from the allegedly greater likelihood of diagnostic testing
for endometrial cancer in women who take estrogens.  The series of events envisioned is:
women who take estrogen tend to have vaginal bleeding, prompting them to see their
doctor, who then performs a diagnostic procedure (dilitation and curretage ["D&C"]).  If an
asymptomatic cancer is present, it will come to medical attention.  A similar cancer present
in a woman not receiving estrogens would go undetected.  So the additional diagnostic
attention given to the women taking estrogens leads, according to Horwitz and Feinstein, to
additional detection of asymptomatic cancers.  The end result is that in any series of
endometrial cancer cases, the proportion of estrogen users is artificially inflated.

b. "Detection bias", as described above, would tend to overstate a truly positive association
between estrogen use and endometrial cancer, because by artificially inflating the proportion
of estrogen users among endometrial cancer cases, the difference between cases and controls
would become more marked.

c. "Detection bias". in the above sense, is a form of selection bias, since it deals with the
selection or ascertainment of cases into the study population.  It is true that there is a form
of misclassification at work, in that women with asymptomatic endometrial cancer are going
unrecognized as cases – and one or two of them might conceivably appear among the
control group of a study population.  Processes that influence who becomes part of the
study population lie in the realm of selection bias.  The misclassification of a possible control
or two in a study population could cause information bias, but only to a trivial degree.  So it
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makes most sense to view detection bias as a form of selection bias resulting from over
representation of estrogen users among the cases.

d. Detection bias, as described by Horwitz and Feinstein for this situation, is characterized by
alpha greater than beta: the probability of coming to medical attention, therefore of being
available for the case group of a study, is greater for women using estrogen than for women
not using estrogen.

e. The approach adopted by Horwitz and Feinstein attempts to introduce a compensatory
distortion in the control group, by recruiting controls from a population that is known to
have higher estrogen usage.  They therefore seek to increase gamma relative to delta, to
increase the proportion of estrogen users among controls.  Unfortunately, there is no way to
know how great is the distortion of alpha relative to beta, nor to know how much distortion
is being introduced to "compensate."  Two biases don't necessarily make a right!

f. A presumably preferable alternative, theoretically, would be to increase beta so that it equals
alpha, i.e., to introduce some measure to detect asymptomatic cancers in nonusers of
estrogen (or in all women, without regard to estrogen use).  With present technology, this
would require subjecting asymptomatic women to D&C's, an impractical and ethically
dubious approach given the low prevalence of endometrial cancer, the nature of a D&C, and
the curability of symptomatic endometrial cancer.
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a. Flow diagram:

Total examined
3,102

1960-1962

No CHD
(1960-62)

3,009

CHD
(1960-62)

93

1967-1969

Lost
40

Migrated or
Refused

212

Died
(no CHD)

228

Died
(CHD)

56

Alive
57

Dead
36

Re-
examined

CHD
87

Re-examined
no CHD

2,386

b. Observed cumulative incidence (removing from the denominator subjects lost to follow-up
or dying free from CHD):

87 + 56 143
CI   = ––––––––––––––– = ——— =  0.0565 =   56.5  per  1,000

87 + 56 + 2,386 2,529

c. Assume that (1) achieved sensitivity and specificity were, respectively, 70% and 98% for
CHD detection among the 2,473 (2,386 + 87) persons free of CHD in 1960-62 who were
re-examined  in 1967 and (2) there was 100% for both sensitivity and specificity for CHD
detection at death).

Since we are assuming 100% sensitivity and specificity for the 56 CHD deaths we will
remove them from the following computations.

Let T = "true" nonfatal incident cases

Persons counted as nonfatal incident cases are "true" cases correctly classified PLUS "true"
noncases incorrectly classified (see table on next page):

Correctly classified true cases + Incorrectly classified true noncases = Total observed "cases"
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Sensitivity × cases   +   (1 – Specificity) × noncases    =   87 observed cases

(Se) × T   +  (1 – Sp) × (2473 – T)  =   87 observed cases

0.7 × T   +  (1 – 0.98) × (2473 – T)   =   87 observed cases

0.7 × T   +     0.02 × (2473 – T)    =   87 observed cases

0.68 × T   +       49.46                 =   87 observed cases

T  =  55  "true" nonfatal incident cases

To obtain total new incident cases we add the new cases to the CHD deaths (assumed
classified correctly):

55  +  CHD deaths   =   55  +  56   =   111 new cases

and substitute the new number into the computation in part b, above:

111
87-month CI  = –––––  =   0.022  =  22 per 1,000

2,529

The above computations can be summarized in the following table, which compares the true
diagnosis to the study diagnosis assuming 70% sensitivity and 98% specificity for
participants who were re-examined in 1967.  For example, the upper left-hand cell has the
number of persons with CHD (T) who were counted as such:

"True" diagnosis

CHD
____
CHD Total

CHD
(Se) × T

(0.70) × T
(1 – Sp) × (2,473 – T)
(0.02) × (2,473 – T) 87Study

diagnosis
____
CHD

(1 – Se) × T
(1 – 0.70) × T

Sp × (2,473 – T)
(0.98) × (2,473 – T) 2,386

Total T (2,473 – T) 2,473*

Given:  Se = 0.70, Sp = 0.98

* (Only survivors were re-examined.)

d. The lowest that specificity in 1960-62 could have been given these data can be found by
supposing that all prevalent cases were false positives.  In that worst case scenario, the
following relationships would hold:

Se × T   +   (1 – Sp) × (3,102 – T)   =   93 observed cases in 1960-62

If there were no true cases, then T = 0,  (1 – Sp) × (3102)  =  93,    and    Sp  =  0.97

So the examination procedures in 1960-62 must have achieved at least 97% specificity.
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11. Multicausality:  Confounding 

Accounting for the multicausal nature of disease –  
secondary associations and their control 

Introduction 

When "modern epidemiology" developed in the 1970s, Olli Miettinen organized sources of bias into 
three major categories: selection bias, information bias, and confounding bias.  If our focus is the 
crude association between two factors, selection bias can lead us to observe an association that 
differs from that which exists in the population we believe we are studying (the target population).  
Similarly, information bias can cause the observed association to differ from what it actually is.  
Confounding differs from these other types of bias, however, because confounding does not alter 
the crude association.  Instead, concern for confounding comes into play for the interpretation of  
the observed association. 

We have already considered confounding, without referring to it by that term, in the chapter on age 
standardization.  The comparison of crude mortality rates can be misleading, not because the rates 
are biased, but because they are greatly affected by the age distributions in the groups being 
compared.  Thus, in order to be able to interpret the comparison of mortality rates we needed to 
examine age-specific and age-standardized rates in order avoid or equalize the influence of age.  Had 
we attemped to interpret the crude rates, our interpretation would have been confounded by age 
differences in the populations being compared.  We therefore controlled for the effects of age in 
order to remove the confounding.  In this chapter we will delve into the mechanics of confounding 
and review the repertoire of strategies to avoid or control it. 

Counterfactual reasoning 

Epidemiologic research, whether descriptive or analytic, etiologic or evaluative, generally seeks to 
make causal interpretations.  An association between two factors prompts the question what is 
responsible for it (or in the opposite case, what is responsible for our not seeing an association we 
expect).   Causal reasoning about associations, even those not the focus of investigation, is part of 
the process of making sense out of data.  So the ability to infer causal relationships from observed 
associations is a fundamental one. 

In an "epidemiologists' ideal world", we could infer causality by comparing a health outcome for a 
person exposed to a factor of interest to what the outcome would have been in the absence of 
exposure.  A comparison of what would occur with exposure to what would occur in the absence of 
exposure is called counterfactual, because one side of the comparison is contrary to fact (see 
Rothman and Greenland, p49, who attribute this concept to Hume's work in the 18th century).  This 
counterfactual comparison provides a sound logical basis for inferring causality, because the effect 
of the exposure can be isolated from the influence of other factors. 
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In the factual world, however, we can never observe the identical situation twice, except perhaps for 
“instant replay”, which does not allow us to alter exposure status.  The plethora of factors that can 
influence an outcome vary from person to person, place to place, and time to time.  Variation in 
these factors is responsible for the variability in the outcomes we observe, and so a key objective in 
both experimental and observational research is to minimize all sources of variability other than the 
one whose effects are being observed.  Only when all other sources of variability are adequately 
controlled can differences between outcomes with and without the exposure be definitively 
attributed to the exposure. 

Experimental sciences 

Experimental sciences minimize unwanted variability by controlling relevant factors through 
experimental design.  The opportunities for control that come from laboratory experimentation are 
one of the reasons for their power and success in obtaining repeatable findings.  For example, 
laboratory experiments can use tissue cultures or laboratory animals of the same genetic strain and 
maintain identical temperature, lighting, handling, accommodation, food, and so forth.  Since not all 
sources of variability can be controlled, experiments also employ control groups or conditions that 
reflect the influence of factors that the experimenter cannot control.  Comparison of the 
experimental and control conditions enables the experimenter to control analytically the effects of 
these unwanted influences. 

Because they can manipulate the object of study, experiments can achieve a high level of assurance 
of the equivalence of the experimental and control conditions in regard to all influences other than 
the exposure of interest.  The experimenter can make a before-after comparison by measuring the 
outcome before and after applying an "exposure".  Where it is important to control for changes that 
occur with time (aging), a concurrent control group can be employed.  With randomized assignment 
of the exposure, the probability of any difference between experimental and control groups can be 
estimated and made as small as desired by randomizing a large number of participants.  If the 
exposure does not have lingering effects, a cross-over design can be used in which the exposure is 
applied to a random half of the participants and later to the other half.  The before-after comparison 
controls for differences between groups, and the comparison across groups controls for changes 
that occur over time.  If measurements can be carried out without knowledge of exposure status, 
then observer effects can be reduced as well.  With sufficient control, a close approximation to the 
ideal, counterfactual comparison can be achieved.  

Comparison groups 

In epidemiology, before-after and cross-over studies are uncommon, partly because the exposure 
often cannot be manipulated by the investigator; partly because of the long time scale of the 
processes under study; and partly because either the exposure, the process of observation, or both 
often have lasting effects.  The more usual approximation to a counterfactual comparison uses a 
comparison group, often called a "control group" on analogy with the experimental model.  The 
comparison group serves as a surrogate for the counterfactual "exposed group without the 
exposure".  Thus, the adequacy of a comparison group depends upon its ability to yield an accurate 



 

_____________________________________________________________________________________________ 
www.epidemiolog.net, © Victor J. Schoenbach 2000  11. Multicausality: Confounding - 337 
rev. 11/2/2000, 5/11/2001, 11/22/2003 
 

estimate of what the outcomes would have been in the exposed group in the absence of the 
exposure.   

Randomized trials 

The epidemiologic study design that comes closest to the experimental model is the large 
randomized, controlled trial.  However, the degree of control attainable with humans is considerably 
less than with cell cultures.  For example, consider the Physicians Health Study, in which Dr. Charles 
Hennekins and colleagues at Harvard University enrolled U.S. physicians (including several faculty in 
my Department) into a trial to test whether aspirin and/or beta carotene reduce risk of acute 
myocardial infarction and/or cancer.  The study employed a factorial design in which the physicians 
were asked to take different pills on alternate days.  One group of physicians alternated between 
aspirin and beta carotene; another group alternated between aspirin and a placebo designed to look 
like a beta carotene capsule; the third group alternated between an aspirin look-alike and beta 
carotene; and the fourth group alternated between the two placebos).  In this way the researchers 
could examine the effects of each substance both by itself and with the other – two separate 
experiments conducted simultaneously. 

With 20,000 participants, this study design ensured that the four groups were virtually identical in 
terms of baseline characteristics.  But there was clearly less control over physicians during the 
follow-up period than would have been possible with, say, laboratory rats.  For example, the 
physician-participants may have increased their exercise levels, changed their diets, taken up 
meditation, or made other changes that might affect their disease risk.  Such changes can render a 
study uninformative. 

The MRFIT debacle 

Just such an unfortunate situation apparently developed in the Multiple Risk Factor Intervention 
Trial (MRFIT), a large-scale (12,000 participants, over $100 million) study sponsored by the National 
Heart, Lung, and Blood Institute (NHLBI) of the U.S. National Institutes of Health (NIH).  As 
evidence mounted that blood cholesterol was an etiologic risk factor for multiple forms of 
cardiovascular disease, particularly coronary heart disease (CHD), the possibility for a trial to verify 
that changing cholesterol levels would reduce CVD was being intensively explored.  However, in the 
late 1960's suitable drugs were not available; the only cholesterol-lowering intervention was dietary 
modification.  A "diet-heart" trial would require over one million participants and last many years – 
not an appealing scenario. 

The idea of a diet-heart trial persisted, however, eventually metamorphosizing into a study to verify 
that cardiovascular disease rates could be lowered by changing the three most common CVD risk 
factors:  cigarette smoking, elevated serum cholesterol, and hypertension.  Thus was born MRFIT. 

The trial was launched in the early 1970's.  Men (because they have higher CHD rates) whose risk 
factors placed them at high CHD risk (based on a model from the Framingham Study) were 
randomized to "Special Intervention" (SI) or Usual Care (UC).  SI participants received intensive, 
state-of-the-art, theoretically-based interventions to improve diet and promote smoking cessation.  
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Hypertensive SI participants were treated with a systematic protocol to control their blood pressure.  
UC participants had copies of their regular examinations sent to their personal physicians, but 
received no treatment through MRFIT.  In this pre-"wellness" (health promotion / disease 
prevention through individual behavior change) era, the trial's designers projected modest risk factor 
changes in SI participants and little if any change in UC participants.  Even though UC participants' 
physicians were to receive examination results, in those years few practicing physicians became 
involved in dietary change, smoking cessation, or even blood pressure control for healthy patients.   

The planned sample size of about 12,000 men, about 6,000 in SI and 6,000 in UC, was achieved, and 
follow-up was maintained for seven years.  By the end of the follow-up period, risk factor levels in 
the SI group had reached the target levels, and 46% of SI smokers quit smoking.  But to the surprise 
(and consternation) of the MRFIT investigators, cholesterol levels and blood pressures also declined 
among UC participants, and 29% of UC smokers quit.  During the years of the trial, smoking, diet, 
and hypertension had risen on the agendas of both the medical profession and the public 
(presumably aided by another NHLBI initiative, the National High Blood Pressure Control 
Program).  Mortality among the UC participants was not only considerably lower than the projection 
based on data from the Framingham study but was even (slightly) below that for SI participants.  
Needless to say, there were many uncomfortable epidemiologists when the results came out. 

Nonrandomized studies 

Most epidemiologic studies do not have the opportunity to compare groups formed by a random 
assignment procedure.  Whether we study smoking, alcohol, seat belts, handgun ownership, eating, 
exercise, overweight, use of particular medications, exposure to toxic agents, serum cholesterol, 
blood pressure, air pollution, or whatever, there is no assurance that the comparison group (the 
unexposed participants) is just like the exposed participants except for the exposure under study.  
Indeed, the opposite is more likely, since all sorts of factors are related to family and physical 
environment, occupation (e.g., workplace exposures), lifestyles (e.g., nutrition, physical activity), 
social influences (e.g., social support, injustice), health care, health conditions (e.g., medications), 
genetic endowment, and other characteristics.   

Confounding 

Thus, whenever we compare groups with respect to factors of interest, we must always consider that 
group differences in other, "extraneous" factors could be responsible for what we observe (or do 
not observe) (extraneous factors = factors other than the relationships under study).  Confounding 
(from the Latin confundere, to mix together) can be defined as a "situation in which a measure of the 
effect of an exposure on risk is distorted because of the association of exposure with other factor(s) 
that influence the outcome under study" (Last, A dictionary of epidemiology).  Confounding is a problem 
of comparison, a problem that arises when extraneous but important factors are differently 
distributed across groups being compared.  The centrality of the concept of confounding and its 
control in epidemiology derives from the limited opportunities for experimental control. 
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A hypothetical example (with apologies to the Western Collaborative Group 
Study) 

To investigate how confounding can arise and how it can be dealt with, consider the following 
hypothetical data based on the Western Collaborative Group Study of coronary heart disease (CHD) 
risk in managers and white collar workers exhibiting the coronary prone behavior pattern.  This 
pattern, most often referred to as the Type A behavior pattern, is described as hard-driving, time-
urgent, and hyperaggressive.  In contrast, Type B people are regarded as more relaxed and easy-
going. 

In this study, Meyer Friedman, Raymond Rosenman, and their colleagues recruited 3,154 white male 
managers, aged 39-59, employed at ten California companies.  The men were given medical 
examinations for CHD and a standardized, structured interview to determine their behavior type.  
Behavior type was determined by reviewing videotapes of the interviews.  The 2,648 participants 
judged to be free of CHD at baseline were followed-up with annual physical examinations to detect 
new CHD cases during the subsequent 8-1/2 years.  The (actual) results of the study are shown in 
the following diagram and are tabulated in Table 1. 

Figure 1 
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Table 1 
Relationship of CHD to Behavior Pattern 

 Behavior pattern  

 A B Total 

CHD cases 178    79    257     
No manifest CHD 1,129    1,262    2,391     
Total        1,307  1,341  2,648     

Since these data come from a cohort study, we would analyze them by estimating the incidence of 
CHD for the Type A and Type B groups.  Even though the risk period for CHD extends beyond 
the period of observation, we will use cumulative incidence (CI) for simplicity.  In these data, the CI 
is 178/1307 = 0.14 for the Type A group, and 79/1341 = 0.06 for the Type B group.  The relative 
risk (risk ratio, cumulative incidence ratio) is therefore 0.14/0.06 = 2.3 

Questions to ask: 

There are many aspects of the design and conduct of this study that we would want to inquire about.  
For example: 

What were the criteria for classifying participants as Type A or Type B? 

How many participants were lost to follow-up? 

How was CHD defined and diagnosed? 

Were the physicians who determined whether a participant was a new case or not aware of the 
participant's behavior type? 

But since our topic today is confounding, we are most interested in the question: 

Do the Type A and Type B groups differ in other factors that might have affected their 
observed CHD rates? 

or, equivalently, 

Are there factors other than behavior pattern that may have been responsible for the observed 
rates? 

(It might be interjected here that the same question would be relevant whether a difference between 
Type A and Type B had been observed or not). 
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Hypothetical scenario 

Probably most of you know that in the Western Collaborative Group Study, no other factors 
seemed to explain the difference in CHD incidence between Type A and Type B groups.  So here 
we will depart from the actual study in order to create a scenario in which the difference in the 
observed incidence for Type A and Type B participants is actually due to differences in cigarette 
smoking. 

Suppose we had obtained the data in the Table 1.  How could we see whether the difference in 
incidence between Type A and Type B groups should be attributed to differences in smoking rather 
than to behavior type?  The traditional and most common approach to answering this question is to 
break down or stratify the data by cigarette smoking status of the participants.  Table 2 shows the 
results of such a stratified analysis (with hypothetical data). 

Table 2 
Relationship of CHD to Behavior Pattern, 

Stratified Analysis Controlling for Smoking Status [HYPOTHETICAL DATA] 

 Smokers  Nonsmokers 
 –––––––––––––––––  ––––––––––––––––– 
 Type A Type B  Type A Type B 
 –––––– ––––––  –––––– –––––– 

CHD 168   34    10   45    
____      
CHD 880   177    249   1,085    

 –––––– ––––––  –––––– –––––– 
Total 1,048   211    259   1,130    

This table shows the relationship between behavior type and CHD, stratified by smoking 
experience.  Now we can compute the (cumulative) incidence of CHD among Type A nonsmokers 
and compare that to Type B nonsmokers, which will tell us the effect of behavior type when 
smoking could not possibly account for the results (not counting environmental tobacco smoke).  
We can also look at the incidence for Type A smokers and Type B smokers, where again we have (to 
some extent) created groups that are more comparable. 

What do we see when we do these calculations?  The incidence of CHD among Type A nonsmokers 
is 10/259 = 0.04, exactly the same as that among Type B nonsmokers (45/1130 = 0.04).  We are 
therefore led to the conclusion that at least among nonsmokers, behavior pattern made no 
difference.  Similarly, the cumulative incidence is the same (0.16) for Type A smokers and Type B 
smokers.  Again, behavior pattern made no difference.  Smoking, apparently, made a big difference.  
This key "extraneous" variable was apparently very unevenly distributed between the two behavior 
pattern groups and led to our observing a difference we nearly attributed to behavior pattern. 
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Confounding – a discrepancy between the crude and the controlled 

This example illustrates confounding.  In the uncontrolled or "crude" table, we saw an association 
(CIR of 2.3).  When we controlled for smoking (which we will assume for the present is the only 
relevant extraneous variable), we find that there was no association (CIR of 1.0) between our study 
factor (behavior pattern) and the outcome (CHD).  This discrepancy between the crude CIR (2.3) 
and the stratum specific CIR's (1.0) indicates that there is confounding by smoking status.  
Stratification is one method of controlling for the confounding effect of smoking.  [Please let me 
emphasize here that the above example is not true to life.  In the actual study by Friedman and 
Rosenman, Type A behavior was found to be associated with CHD even when the effects of 
smoking and other known CHD risk factors were controlled.]  It may also be worthwhile to 
mention that confounding could also happen in the reverse manner, that is, we might see no 
association in the crude analysis but find that there is one when we stratify.  So confounding can 
create an apparent association or mask a real one. 

Confounding arises from unequal distribution of a risk factor 

How can the phenomenon of confounding occur?  As indicated above, the conditions needed to 
create confounding (in this rather simplified situation) are that a true risk factor for the health 
outcome is unevenly distributed between the groups being compared.  To see this in the above 
example, I have rearranged the columns from Table 2.  This rearrangement emphasizes that most of 
the Type A's were smokers and most of the Type B's were not. 

Table 3 
Relationship between CHD, Behavior Pattern, and Smoking Status 

 [HYPOTHETICAL DATA] 

 Type A behavior pattern Type B behavior pattern Both 
 ————————————— ————————————— ————
  Non   Non  Grand 
        Smokers smokers Total Smokers smokers Total total 
 ——— ——— ——— ——— ——— ——— ——— 

CHD 168     10     178    34    45    79    257   
____     
CHD 880     249     1,129    177    1,085    1,262    2,391   

 ——— ——— ——— ——— ——— ——— ——— 
Total    1,048     259     1,307    211    1,130    1,341    2,648   

        

Although this table was created by rearranging columns in Table 2, it may be more revealing to think 
of it as providing the underlying story for the uncontrolled (crude) data in Table 1.  Notice that 
Table 1 is contained in this table as the marginals for each of the two subtables (the bolded 
columns).  The subtables show the composition of the Type A group and the Type B group.  
Clearly, the overwhelming majority (1048/1307 = 80%) of the Type A participants are smokers, 
whereas the overwhelming majority (1130/1341 = 84%) of the Type B participants are nonsmokers.  
With such a marked imbalance, it should not be surprising that a risk factor such as smoking could 
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distort the overall (uncontrolled) association.  The attributes of a confounder, then, are that it is an 
independent risk factor for the outcome and is associated with the study factor. 

Confounding – misattribution of an observed association 

The excess of cases in the Type A group is due, clearly, to the greater proportion of smokers in the 
Type A group than in the Type B groups.  Were we to have gone with the crude value, we would 
have misattributed the observed difference between groups to behavior pattern rather than to 
smoking.  Confounding can be defined as a distortion in the measure of association due to the 
unequal distribution of a determinant of the outcome. 

Note, however, that the crude association is still "real".  The type A participants did have a greater 
incidence of CHD.  Confounding arises when we attribute that elevated incidence to their being type 
A, since the higher incidence is really due to their smoking (in this example).  But the type A men as 
a group did indeed have higher CHD incidence.  There are situations where the crude association 
remains important to consider. 

Another perspective – weighted averages 

A summary table highlights the incidences and makes the pattern very evident. 

Table 4 
Incidence of CHD by Behavior Type and Smoking Status 

[HYPOTHETICAL DATA] 

 Smoking status  

Behavior pattern Smoker Nonsmoker Total  

Type A 0.16 0.04 0.14 ←   (incidences 
Type B 0.16 0.04 0.06 ←   from table 1) 

Total 0.16 0.04   

Here it is very clear that when we hold smoking constant (i.e., look down either of the first two 
columns of incidences), there is no effect of behavior type.  When we hold behavior type constant 
(i.e., look across either of the first two rows), we see that smoking is associated with a fourfold 
increase in incidence.  The marginals of the table are, in effect, weighted averages of the incidences 
in the interior of the table.  The incidences in the bottom row are the same as in the interior of the 
table – they have to be, because a weighted average of two identical numbers is always that number.  
The incidences in the rightmost column, however, could be almost any numbers between 0.16 and 
0.04 – depending upon the weighting used in averaging 0.16 and 0.04.  These concepts can be 
shown graphically. 
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CHD Incidence by Behavior Pattern and Smoking Status 
[HYPOTHETICAL] 
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As the diagram shows, the study population can be viewed as consisting of four distinct subgroups, 
each with a different combination of behavior type and smoking status.  If these were the only 
relevant subgroups, then the incidence rates for each would represent the irreducible "true" state in 
the study population.  The rate for the study population as a whole and for any group in it, e.g., all 
Type A's, may be regarded as a weighted average of the incidences in the component subgroups, 
where the weights are the proportional sizes of the component subgroups.  Thus the rate in the 
Type A's is: 

  178  1,048  168  259  10 
0.14 = ––––––––– = ––––––––– × ––––––––– + ––––––––– × –––––––– 
  1,307  1,307  1,048  1,307  259 

or symbolically, 
     _    _

 

CICHD|A = PS|A × CISA + PS|A × CISA 

where: 
CI is (cumulative) incidence 
P is prevalence or proportion 
                                 _         
S indicates smokers (S indicates nonsmoker) 
A indicates behavior Type A 
and the notation S|A means "smokers among (or given) Type A behavior". 



 

_____________________________________________________________________________________________ 
www.epidemiolog.net, © Victor J. Schoenbach 2000  11. Multicausality: Confounding - 345 
rev. 11/2/2000, 5/11/2001, 11/22/2003 
 

Confounding – comparison of weighted averages using different weights 

The incidence for any group (e.g., Type A's) can vary from the lowest incidence of any of its 
subgroups (e.g., nonsmoker Type A's) to the highest incidence of any subgroup (e.g., smoker Type 
A's).  Where in this range the overall group's incidence falls is determined by the size of each 
subgroup (Type A smokers, Type A nonsmokers) as a proportion of the overall group (all Type A's).  
Confounding can result when these proportions differ for groups that are being compared. 

Since there are many possible ways in which these proportions can differ, confounding can cause an 
overall (crude) measure of association to overstate, understate, completely obscure, or even invert 
the association that would be seen in comparisons carried out within the subgroups.  As a familiar 
example, if two populations have different age distributions, then a comparison of their overall 
(crude) death rates can overstate or understate the picture seen by comparing within specific age 
groups, even to the point that the comparison of crude rates appears to favor the population that 
has higher (worse) death rates within each age stratum.  Age standardization is a special case of the 
more general strategy called stratified analysis, which is one primary recourse for controlling 
confounding. 

The limits to confounding 

There are limits on the strength of the (secondary) association that can be produced by 
confounding.  For example, given the data in Table 1, a strong effect for smoking and a striking 
imbalance between the two behavior type groups was required in order for smoking to account 
completely for the apparent effect of Type A behavior.  That is one of the reasons why strength of 
association is a criterion for causal inference.  The stronger the observed association between the 
disease and the study factor, the less likely that some completely extraneous factor could account for 
all of the observed association. 

Case-control studies 

So far in our discussion we have confined ourselves to cohort-type studies.  When we turn to the 
issue of confounding in case-control studies, there are some additional complexities as a 
consequence of the way in which the base population is represented in the study population.  To 
understand the characteristics of confounding in a case-control study, let us generate such a study 
from the cohort we considered earlier. 

The original cohort consisted of 2,648 individuals with complete follow-up and yielded 257 cases.  
Ideally, our case-control study would detect all incident cases and would sample from non-cases as 
the cases occurred (called "density sampling").  To simplify our illustration, however, let us sample 
our controls from those individuals who were free from CHD at the end of the follow-up period.  
The following table shows the same cases, with the distribution of controls expected from obtaining 
a representative sample from the noncases, of size twice the number of cases (i.e., assume 514 
controls with the same proportion of Type A's and smokers as found in all noncases in the cohort 
study).  (The numbers in the "No CHD" row are obtained by multiplying the "No CHD" row in 
Table 1 (i.e., all the noncases) by 514/2391 (0.21) so that the 2,391 noncases become 514 controls.  
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In this way, the 1,129 Type A's without manifest CHD become 243 Type A controls, and the 1,262 
Type B's without manifest CHD become 271 Type B controls.) 

Table 5 
Expected Results from Case-Control Study [HYPOTHETICAL] 

 Behavior pattern   

 Type A Type B Total  

CHD cases 178 79     257  
No manifest CHD 243 271 514 ←  This row is simply 0.21 times 

Total        421 350 771 the corresponding row in Table 1. 

The odds ratio for this table is [2.5], slightly larger than the risk ratio in the cohort study.  [The 
difference between the odds ratio and risk ratio reflects the CHD incidence in the cohort – the 
smaller the incidence, the closer the odds ratio would be to the risk ratio.] 

Now let us generate, in the same manner, the expected table for smoking and behavior pattern in a 
stratified analysis: 

Table 6          
Expected Results for Case-Control Study, Stratified by Smoking Status 

[HYPOTHETICAL]          

 Smokers  Nonsmokers  
 –––––––––––––––––  –––––––––––––––––  
 Type A Type B  Type A Type B  
 ––––––– –––––––  ––––––– –––––––  

CHD 168 34  10 45      
____       
CHD 189 38  54 233 ←  This row is simply 0.21 times 

 ––––––– –––––––  ––––––– ––––––– the corresponding row in Table 2. 
Total 357 72  64 278  

The odds ratios for each table are 1.0, so confounding is again present.  Here again we see that the 
confounding factor is associated with the outcome:  the odds ratio for smoking and CHD in the 
Type B group is 4.6.  We also find that smoking is associated with behavior type:  the proportion of 
smokers among Type A noncases is 0.78 whereas among the Type B noncases it is only 0.14 [verify 
these numbers]. 

The reason for the above emphasis on conditional associations ("in the Type B group", "among 
noncases") rather than unconditional or crude associations is that a confounding variable must be 
associated with the exposure under study in the population from which the cases arise (see Rothman 
and Greenland).  It is the control group that provides the estimate of exposure prevalence in the 
source population.  Also, in a case-control study, the totals for different exposure groups (e.g., total 
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Type A smokers) are not very meaningful quantities, at least for comparison purposes.  The reason 
is that the relationships among these totals largely reflect the (arbitrary) ratio of cases to controls.  So 
the association of exposure that is relevant for confounding in a case-control study is the association 
between exposure and the potential confounder among the controls. 

The reason for not looking within the Type A group is that an association in this group could reflect 
effect modification between the exposure (Type A behavior) and the covariable, rather than 
confounding as such.  We will elaborate on this matter when we take up effect modification, in the 
next chapter. 

Confounding – a characteristic of the study base 

We have said that confounding requires two associations:  (1) the confounder must be a risk factor 
for the outcome or its detection and (2) the confounder must be associated with the exposure.  The 
latter association must exist within the study base (see Rothman and Greenland).  This point merits 
elaboration. 

Follow-up study 

In a follow-up study, the study base, from which the cases arise, is simply the population being 
followed, the study population.  For confounding to occur, the exposure and potential confounder 
must be associated in this population.  Randomized assignment of an intervention tends to 
distribute potential confounders evenly across intervention and control groups.  To the extent that 
randomized assignment succeeds, i.e., no extraneous variables will be associated with the 
intervention, so confounding cannot occur.  If, however, the randomization does not "work" so that 
an imbalance exists for a particular potential confounder, then confounding with respect to that 
potential confounder can occur.  The greater the number of participants, the less likely that any 
meaningful imbalance will occur by chance. 

Case-control studies 

In a case-control study, the study base is the underlying population that is being followed through 
the window of the case-control design.  For confounding to occur, the exposure and potential 
confounder (risk factor) must be associated in that underlying population (source population from 
which cases arise).  But since the investigator observes that population only indirectly, the matter is 
trickier.  However, if there is no association between the potential confounder and exposure in the 
study base, then confounding does not occur even if we do find the potential confounder and 
exposure to be associated within the control group of our case-control study (Miettinen and Cook, 
cited in Rothman, page 93). 

This somewhat surprising result is easily illustrated.  Suppose we are observing a population over 
time to examine an association between a suspected occupational carcinogen and a cancer that is 
also strongly (IDR=10) related to cigarette smoking.  Suppose also that the occupational exposure is 
in fact a carcinogen and that in this population smoking is not associated with the occupational 
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exposure.  If we assume a baseline rate of 3 cases/1,000 person-years and an IDR of 3.3 for the 
occupational carcinogen, the follow-up of the population might produce the following table. 

Incidence rates, population sizes, and number of cases 
for hypothetical data on an occupational exposure and smoking 

 Smokers Nonsmokers 
 ––––––––––––––––– ––––––––––––––––– 
 Exposed Unexposed Exposed Unexposed
 ––––––– ––––––– ––––––– ––––––– 
 (1) (2) (3) (4) 
1. Number of cases 300     90     70      21     
2. Population size (person-years) 3,000 3,000 7,000 7,000 
3. Incidence density per 1,000 py 100 30 10 3 

 IDR = 3.3 IDR = 3.3 

With a hypothetical 7,000 person-years of observation for nonsmokers who are also not exposed to 
the carcinogen, the assumed baseline incidence rate of 3/1,000 py will produce an expected 21 
incident cases.  If the amount of person-time among exposed nonsmokers is also 7,000 py, then we 
would expect 3.3 × 3/1,000 py × 7,000 py ≈ 21 cases for that group.  If person time for exposed 
and unexposed smokers is 3,000 py for each group, then we expect 300 and 90 incident cases, 
respectively, if the IDR for the occupational exposure is the same among nonsmokers and smokers 
and the IDR for smoking is 10, regardless of occupational exposure.  

Note that this hypothetical population has been constructed so that the proportion of exposed 
person-years is 50% among smokers (columns 1 and 2), among nonsmokers (columns 3 and 4), and 
overall, i.e., no association between smoking and the occupational exposure. Similarly, the 
proportions of person-years for smokers among exposed (columns 1 and 3) and unexposed 
(columns 2 and 4) are each 30% (3,000/[7,000+3,000]).  The crude IDR for the occupational 
carcinogen is therefore 3.3 (be certain that you can derive this IDR), which is identical to the IDR 
for the exposure among smokers and among nonsmokers.  Thus, confounding is not present. 

Suppose now that we were to conduct a case-control study in this population during the same 
period of time.  If there is a cancer registry we might hope to identify and include all 481 cases (see 
row 1 in the following table, which is identical to row 1 in the preceding table).  If we obtain a 5% 
representative sample of the population as our control group, then the distribution of smoking and 
the occupational carcinogen in our control group (row 2 in the following table) will be the same as 
the distribution of these variables in the population-time in row 2 of the preceding table (30% 
smokers and 50% exposed to the occupational carcinogen, with no association between these two).  
The OR (be certain that you can calculate this) will be identical to the IDR of 3.3, above.  In this 
case-control study with an (unbiased) control group that is directly proportional to the study base, 
there is no confounding. 
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Different control groups for hypothetical case-control study 
of an occupational exposure and smoking 

 Smokers Nonsmokers 
 ––––––––––––––––– ––––––––––––––––– 
Row Exposed Unexposed Exposed Unexposed
 ––––––– ––––––– ––––––– ––––––– 
 # (1) (2) (3) (4) 
1. Number of cases 300 90      70       21      
2. Proportional controls 150 150 350 350 
 (OR = 3.3) (OR = 3.3) 
3. Biased controls 250 150 250 350 
 (OR = 2.0) (OR = 4.7) 

Suppose, however, that controls are selected in a biased fashion, producing a biased control group 
(row 3 in the second table) in which smoking and exposure are associated (verify this fact; try, for 
example, computing the OR for smoking in relation to exposure).  Reflecting the biased control 
group, the stratum-specific IDR's are no longer 3.3.  However, in this chapter our focus is the crude 
association and whether it accurately represents the true situation (which in this instance we 
constructed, rather than having to regard the stratified associations as the true situation).  The crude 
OR from the above table, using the cases on row 1 and controls from row 3, is (do try computing 
this before reading the answer) (370 × 500) / (111 × 500) = 3.3.    

Thus, even with this biased control group the crude OR remains unconfounded.  Yet, the potential 
confounder (smoking, a causal risk factor for the outcome) is indeed associated with the exposure in 
the (biased) controls.  [Several ways to see this association are: 

The odds of exposure among smokers (cols. 1 and 2) are 250/150, quite different from the odds 
of exposure among nonsmokers (cols. 3 and 4: 250/350), producing an odds ratio between 
smoking and exposure of OR = 2.3). 

Proportionately more smokers are exposed [250/(250 + 150) = 0.63] than are nonsmokers 
[250/(250 + 350) = 0.42]. 

The odds of smoking among exposed (cols. 1 and 3) are 250/250, quite different from the odds 
of smoking among the unexposed (cols. 2 and 4): 150/350), producing, of course, the same 
odds ratio, 2.3). 

Proportionately more exposed are smokers [250/(250+250) = 0.5] than are unexposed 
[150/(150 + 350 ) = 0.3]. 

The potential confounder, smoking, is also associated with the outcome in the unexposed (e.g., IDR 
= 30 per 1,000py / 3 per 1,000py in the study base, OR = (90 × 350) / (21 × 150) in the case-
control study with either control group.  Thus, it is possible to have a risk factor that is associated 
with exposure in the noncases yet not have confounding. 
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Further insight can be gained by considering the mechanism that causes confounding, as illustrated 
in the Type A behavior example.  Confounding results from an imbalance between exposed and 
unexposed groups in regard to a disease determinant.  If the potential confounder increases disease 
risk and the potential confounder is associated with the exposure, then incidence of disease in the 
exposed will be boosted relative to that in the unexposed, due to the confounder.  This 
disproportionate increase in incidence, and therefore in cases, will increase the odds of exposure in a 
representative group of cases.  If the confounder is not controlled in the analysis, this increased odds 
will cause confounding of the exposure-disease association. 

The (exposure) OR for the outcome is simply the ratio of the exposure odds in the case group 
divided by the exposure odds in the control group.  The exposure odds in the case group is 
obviously not affected by anything that happens to the control group (including matching, 
incidentally).  So a distortion of the crude OR will have to come from a change in the exposure odds 
in the control group.  So long as the bias in the control group does not cause its crude exposure 
odds to differ from those in the source population (e.g., 0.5/0.5=1.0 in our occupational carcinogen 
example), the crude OR will remain the same as in the source population, i.e., unconfounded. 

In most case-control studies we have little independent information about the study base, so the 
control group provides our window into the study base.  If the control group is biased, then our 
view of the study base is distorted, and we may conclude that the condition for confounding (i.e., a 
risk factor for the disease is associated with the exposure in the noncases) is met.  Due to such a 
biased control group, controlling for the potential confounder will introduce bias in this analysis 
(e.g., in the above example, the stratum-specific OR's are different from the correct value of 3.3).  
However, a weighted average of stratum-specific OR's may be close to the crude value. 

Statistical tests for confounding 

Since confounding requires an association between the potential confounder and the exposure, 
investigators sometimes present statistical tests of the differences in potential confounders between 
exposure groups.  If the groups do not differ significantly, the investigators conclude that 
confounding will not occur.  This practice will often yield a correct conclusion, though it is 
somewhat off the mark. 

Statistical tests of significance address the question of whether or not there is an association between 
the exposure and the potential confounders beyond that likely to arise by chance alone.  But 
confounding depends upon the magnitude of association (e.g., odds ratio, prevalence ratio), rather 
than on the strength of evidence that it did not arise by chance.  So a large but "nonsignificant" 
difference can have more potential to cause confounding than a small but "highly significant" 
difference.   The reason for this apparently paradoxical statement is that statistical significance 
depends upon the magnitude of the number of exposed and unexposed participants, so that nearly 
any association will be statistically significant if the study is sufficiently large and nonsignificant if it 
is sufficiently small.  The presence or extent of confounding, however, is not affected by scaling up 
or down the number of participants. 
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Confounding, then, is a function of the magnitude of associations, rather than of their statistical 
significance.  Since strong associations are likely to be statistically significant, statistical tests 
comparing exposed and unexposed groups can be a convenient device for identifying associations 
that may be strong enough to cause confounding, which is why the procedure often yields the 
correct conclusion about the need to control for confounding.  Some (see Rothman and Greenland) 
have suggested using significance testing with a value for alpha (Type I error probability) of 0.20, to 
increase the power to detect differences that may be important in regard to confounding.  But as a 
guide to likely confounding, statistical tests are somewhat beside the point.  (There is a subtle but 
valuable distinction to be made between statistical tests to evaluate confounding and statistical tests 
to assess whether randomized allocation to treatment or control "worked".  Since randomized 
allocation attempts to operationalize "chance", the number and size of observed differences between 
treatment and control groups should not often exceed what we expect from chance, which is 
precisely what statistical tests are designed to evaluate.  If there are more differences than there 
"should be", that may indicate some problem in the implementation of the randomization.  It would 
also be expected that control for these differences would be needed.) 

Components of the crude relative risk 

There are several other aspects of confounding that it will be instructive to consider.  The first of 
these is a method, due to Miettinen (Miettinen OS:  Components of the crude risk ratio.  Am J 
Epidemiol 1972; 96:168-172) for allocating an observed association to a component due to 
confounding and a component due to the study factor of interest.  According to Miettinen, the 
crude risk ratio (or odds ratio) may be regarded as the product of a "true" risk ratio and a 
component due to confounding.  In the examples we have considered thus far, the whole of the 
observed association has been due to confounding, i.e., to the effect of smoking.  But it is also 
possible to have an association that remains, though stronger or weaker, after the effects of a 
confounder have been removed. 

The following hypothetical data illustrate Miettinen's concept.  Suppose that you are carrying out a 
case-control study to investigate whether trihalogenated hydrocarbons that occur in chlorinated 
drinking water containing organic matter increase colon cancer incidence.  You collect data on all 
cases in a multi-county region during several years and assemble a control group using random-digit 
dialing.  You interview cases and controls about their source of drinking water (treated surface water 
versus well or bottled water) and, because other studies have suggested that some unknown factor in 
urban living increases colon cancer incidence, you also collect data on urban-rural residence.  The 
crude analysis of your data yields the following table: 
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Table 7a 
Colon cancer and drinking water (hypothetical case-control data) 

  _
 

 

 E E Total 

Colon cancer cases 170 80     250 
Controls 80     170 250 

Total        250 250 500 

The crude OR for this table is (170 x 170) / (80 x 80) = 4.5.  Is it confounded by rural-urban 
residence? 

We can investigate confounding by stratifying the data by urban-rural residence and examining the 
stratum-specific OR's: 

Table 7b 
Colon cancer and drinking water (hypothetical case-control data) 

 Rural Urban Crude     
  _  _  _ 
 E E E E E E 

D 20 30 D 150   50 D 170   80 
_   _   _   

D 50 150   D 30 20 D 80 170   

The OR's in both the rural and urban strata are 2.0, so we know that the crude OR is confounded – 
it overstates the "true" OR, making a moderate association appear as a strong one.  How much of 
the crude OR can be attributed to confounding?  Miettinen suggests that the OR due to 
confounding is the OR for the association that would be observed even if the exposure 
(trihalogenated hydrocarbons) had no effect on the outcome (colon cancer).  If the exposure has no 
effect on the outcome, then whatever association remains in the crude analysis must be due entirely 
to confounding. 

So to obtain the OR attributable to confounding, we can eliminate the true association between 
trihalogenated hydrocarbons and colon cancer.  In the above example, we regard the stratum-
specific tables as displaying the true relationship (i.e., we are assuming that there is no selection bias, 
or information bias and that the only potential confounder is rural-urban residence as a 
dichotomous variable measured without error).  So we will "eliminate" the true association from the 
stratum-specific tables.  Then we can combine the modified stratum-specific tables into a new crude 
table and compute a new crude OR.  That OR must entirely reflect confounding, because the true 
association no longer exists. 

Since the OR is the crossproduct ratio for the four cells of a table, we can change the OR by 
changing any cell of the table.  By convention, we change the "a"-cell (exposed cases) to what it 
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would contain if there were no association between the study factor and the disease.  Here, if the 
D,E cell in the rural stratum contained 10 instead of 20, then the OR for the rural stratum would be 
1.0, i.e., no association.  Similarly, if the D,E cell in the Urban stratum contained ___ (your guess?) 
instead of 150, then the OR for that stratum would likewise be 1.0.  The revised tables are shown 
below: 

Table 7c 
Modified tables for Colon cancer and drinking water 

 Rural  Urban Modified crude    Original crude    
  _   _  _   _ 
 E E  E E E E  E E 

D 10 30 D ___ 50 D 85 80 D 170   80 
__    __    __   __    
D 50 150   D 30 20 D 80 170   D 80 170   

           

The OR for the modified crude table, and therefore the component attributable to confounding, is 
2.25.  Interestingly, this figure is the same as the quotient of the original crude (4.5) and controlled 
odds ratios (2.0).  Indeed, this relationship holds in general:  the crude OR equals the product of the 
controlled OR and the component attributable to confounding: 

 
Crude odds (or risk) 

ratio 
= Component due to study 

factor 
x Component due to 

confounding 

So the component (of the crude ratio) attributable to confounding is the degree of association 
"expected" from the distribution of the potential confounder (in this case, rural-urban residence), 
i.e., from the fact that the potential confounder is distributed differently in exposed and unexposed 
persons in the study base. 

Another way to look at this relationship is that the component attributable to the effect of the study 
factor, i.e., the unconfounded association, can be written as:  
 

  Crude odds (or risk) ratio 
Component due to study factor = ––––––––––––––––––––––––––

  Component due to confounding 

So the component (of the crude ratio) attributable to the study factor, i.e., the unconfounded, or 
"true", association, can be regarded as the ratio of an "observed" association to an "expected" 
association.  Expressing the relationship in this way is reminiscent of the standardized mortality ratio 
(SMR), which is also a ratio of an "expected" to an "observed".  In fact, Miettinen refers to the 
controlled OR above (i.e., the component due to the study factor) as an "internally standardized 
odds ratio", which is simply the odds ratio version of the SMR.  It is also interesting to note that the 
stratum-specific OR's are also ratios of "observed" to "expected", in that these OR's are equal to the 
ratio of the observed number of exposed cases (the contents of the "a-cell") and the expected 
number in the absence of a true association. 
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By this point you may well be wondering how much of this you need to know to practice 
epidemiology or control for confounding.  The answer is that this particular formulation is not 
essential, but seeing confounding from this perspective is another aid to understanding the closely 
interrelated concepts of confounding, stratified analysis, standardization, and even the counterfactual 
framework of causal inference.  If the true causal comparison is between the experience in an 
exposed group and what their experience would have been in the absence of exposure, the SMR 
might be regarded as the most relevant adjusted measure of effect, since it is the ratio of the 
observed rate in the exposed group to the rate that would be expected for them if they were not 
exposed (assuming that the rates in the study population differ from those in the standard 
population due only to the standardizing factor and the exposure). 

Matched studies 

Since confounding is a problem of comparison, a principal aim of study design is to obtain groups 
that are comparable with regard to determinants of the outcome.  In experimental designs, this aim 
is perhaps the principal motivation for randomized assignment of the study factor.  Since 
randomized allocation does not guarantee the equal distribution of all relevant factors (though in 
very large studies the probability of equal distribution is very high), prestratification (also called 
"blocking") may be employed to enforce identical distributions when sample size is small. 
Prestratification involves first placing participants into groups according to their configuration of 
risk factors and then performing separate randomizations within each group.  The procedure 
generally increases statistical efficiency (degree of precision per trial participant) (see Rothman and 
Greenland, p161). 

Follow-up studies 

In a nonrandomized study, where the investigator does not have the opportunity to assign the study 
factor, the analogous procedure to prestratification is matching.  In matching, the participants in 
the comparison group (i.e., the unexposed group in a follow-up study or the control group in a case-
control study) are selected so as to resemble the index group (the exposed in a follow-up study or 
the cases in a case-control study) on one or more relevant factors.  When the unexposed group in a 
follow-up study has been matched to the exposed group on all relevant factors, so that the two 
groups differ only in terms of exposure to the study factor of interest, then the incidences in the two 
groups can be compared with no danger of confounding by the matching variables.  In practice, 
however, competing risks and/or loss to follow-up can introduce differences.  For this and other 
reasons (see Rothman and Greenland, p160), matched cohort studies are not common. 

In any case, neither prestratification nor matching is required to avoid confounding, since 
confounding can be controlled in the analysis of the study results – providing there is adequate 
overlap in risk factor distributions between groups.  For this reason, the primary purpose of 
matching is to increase statistical efficiency by ensuring sufficient overlap (which therefore indirectly 
aids in controlling confounding). 
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Case-control study 

In a case-control study the situation is, as usual, not as straightforward.  Because of the nature of the 
case-control study design, matching does not avoid confounding by the matching factor(s).  
Moreover, by changing the composition of the control group, matching in a case-control study can 
even cause the crude (uncontrolled) analysis to be biased.  How can this be? 

Since a case-control study selects participants according to disease, matching means ensuring that 
the case and control groups are the same in respect to the potential confounders.  However, as we 
saw earlier, confounding depends on the comparability of exposed and unexposed groups in the 
study base, not between cases and controls in the study population.  Although ensuring that cases 
and controls are similar with respect to potential confounders may facilitate control for confounding 
(through greater statistical efficiency), matching controls to cases does not change the study base and 
thus cannot alter the exposure odds among cases.  But confounding arises because the exposure 
odds in cases is influenced by a population imbalance in a cause of the outcome. 

Furthermore, by selecting the control group in a way that makes it conform to the case group in age, 
sex, treatment facility, or other factors, the investigator can cause the overall control group to have a 
different prevalence of exposure than that in the study base, which the control group seeks to 
reflect.  Of course, a matched control group can still provide a correct estimate of exposure 
prevalence within each configuration of risk factors.  So there need be no problem as long as the 
analysis takes account of the matching.  If the matched analysis and unmatched analysis yield the 
same results, then the unmatched analysis can be used, and for simplicity often is unless the matched 
analysis provides greater precision. 

Example of matching in a case-control study 

The following example may help to clarify these concepts.  Consider another study of colon cancer 
and drinking water, presented in the following table.  This time the stratum-specific population sizes 
and prevalences of exposure to chlorinated drinking water are presented, along with the number of 
cases and the prevalence of exposure among cases. 

Colon cancer and drinking water (hypothetical data) 

Residence 
Population 

size 

% of total pop. 
with 

chlorinated 
drinking water

 
 

# of colon 
cancer cases 

% of cases 
with 

chlorinated 
water      

Rural 400,000 20 % 30 40 % 
Urban 600,000 80 % 90 90 % 
Total 1,000,000   56 % 120   ___ % 

An investigator conducting a case-control study in this population and selecting community controls 
without matching, would observe an exposure prevalence of 56% (i.e., an average of the urban- and 
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rural-specific exposure prevalences, weighted by their respective population sizes:   
[0.20(400/1000) + 0.80(600/1000)]).  In contrast, a control group matched to the distribution of 
cases would have an exposure prevalence of 65% [0.20(30/120) + 0.80(90/120)], since in this case 
the two prevalences are weighted by the proportions of rural and urban cases, rather than the 
proportions of rural and urban residents in the population. 

The prevalence of exposure in the matched control group, 65%, is a distorted estimate of the overall 
prevalence of exposure in the population as a whole.  But the estimate is not a problem when our 
analysis takes rural-urban residence into account, since the stratum-specific exposure prevalences are 
still correct and we know the proportions of rural and urban residents in the population.  If the 
exposure prevalence (right-most column) is 40% in rural cases and 90% in urban cases, then the 
odds ratios are 2.67 (rural) and 2.25 (urban), 2.70 (crude, unmatched controls) and 1.85 (crude, 
matched controls).  Thus neither the matched nor the unmatched controls give a correct OR for a 
crude analysis.  In contrast, a stratified analysis that takes residence into account will yield a valid 
odds ratio estimate with either control group. (Suggestion: derive all of these OR's.) 

For a fuller treatment of matching, see chapter 10 of Rothman and Greenland.  According to these 
authors, though there are circumstances where it is clearly desirable or not desirable, the value of 
matching in case-control studies is a complex question. 

Potential confounders versus actual confounders 

An issue of considerable practical and theoretical importance is how to choose which variables to 
investigate as confounders?  As we saw above, to be a confounder a variable must be associated with 
both the disease and the exposure.  Thus when through matching in a cohort study we ensure that 
the distribution of potential confounders is identical in both exposure groups (i.e., there is no 
association between these variables and exposure), then the former cannot confound our results 
(assuming no bias from competing causes of death and other attrition mechanisms).  Apart from 
that situation, we must control for potential confounders in the analysis of the study to see whether 
or not they have distorted the observed association (which implies that we have remembered to 
measure them!). 

Investigation of whether a variable is a potential confounder or an actual confounder is thus 
generally a matter of empirical determination in our data.  In practice, therefore, the question of 
whether or not variable X is a confounder is a side issue.  Our primary concern is to obtain a valid 
estimate of the relationship between study factor and outcome.  If we have to control we do; if we 
do not need to, we may not.  In either case we are not particularly concerned, ordinarily, about 
concluding that such-and-such a variable is a confounder. 

But which variables to regard as potential confounders, i.e., which variables must be measured and 
possibly controlled in order to obtain a valid estimate of the association between study factor and 
outcome, is a matter of first importance.  Our decisions here depend upon our understanding of 
which variables other than our study factor might explain or account for an observed relationship 
(or lack thereof).  Thus, the decision about whether a variable ought to be considered for control as 
a potential confounder rests first and foremost on our conceptual model. 
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First and foremost, a potential confounder must have some relationship to the occurrence of the 
disease or other outcome.  The potential confounder must increase the probability that the disease 
will occur or must shorten the time until the disease occurs.  If not, why should we attribute an 
observed association to that variable rather than to our study factor?  (Since disease occurrence must 
be observed, a factor that affects disease detection may also qualify.)  Furthermore, if the relevant 
variable occupies an intermediate position in the hypothesized causal chain linking the study factor 
to the disease, then again, how could that variable rather than the study factor be the "true" cause of 
an observed association?  (If I persuade George to rob a bank and the police find out, can I 
persuade the judge to set me free because apart from what George did I did not rob anything?)  
Thus, in stratifying on smoking status in our Type A - CHD example, we are assuming that the 
association between Type A behavior and smoking arises due to a common antecedant cause (e.g., 
inadequate coping skills in a high-pressure occupational environment) or due to an effect of 
smoking status on behavior pattern, but not due to an effect of behavior pattern on smoking status, 
which would make smoking an intervening variable and therefore not appropriate for control in this 
way (Kaufman and Kaufman, 2001).  

In practice, however, it is often difficult to make definite decisions about which variables are true 
risk factors, which are intervening variables, and so on, so that a cautious approach is to obtain data 
on as many potentially relevant variables as possible, explore the effects of controlling them in the 
analysis of the study, and then attempt to make sense out of the results.  Consider, for example, a 
study of the effect of overweight on CHD incidence.  Since overweight increases cholesterol and 
blood pressure levels, both of which are causal risk factors for CHD, then the crude association 
between overweight and CHD will reflect some combination of: 

1. a direct effect of overweight on CHD if such exists, 

2. an indirect of overweight on CHD due to the effect of overweight on cholesterol and blood 
pressure, which in turn increase CHD risk 

3. possible confounding, if cholesterol and blood pressure are higher in people who are 
overweight not because of an effect of overweight but due to some other reason (e.g., diet, 
sedentary lifestyle, genetic factors). 

Should we control for blood pressure and cholesterol when estimating the association between 
overweight and CHD?  If we do not, then our measure of association will be distorted to the extent 
that confounding is present.  If we do control by the usual methods, however, our measure of 
association will be distorted to the extent that overweight has its effects on CHD through increases 
on blood pressure and cholesterol. 

For another example, consider the problem of studying whether sexually transmitted diseases such 
as gonorrhea increase the risk of acquiring HIV and whether condom use decreases the risk.  Should 
the relationship between STD and HIV seroconversion be controlled for condom use?  Should the 
relationship between condom use and HIV incidence be controlled for STD?  Both condoms and 
STD appear to affect the risk of acquiring HIV infection, but condoms are also a means of 
preventing STD, which in that sense can be regarded as a variable located on the causal pathway 
from condoms to HIV.  Furthermore, an obligatory causal factor for both sexually-acquired STD 
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and/or HIV is sexual contact with an infected partner.  "Risky" partners have a higher probability of 
being infected, and the more of them, the greater the risk of exposure to the infection.  Should we 
control for the number of risky partners in investigating the relationship among condoms, STD, and 
HIV?  But risky partners are also a risk factor for STD, so that STD can be regarded as an 
intermediary variable between sex with risky partners and HIV.  Thus, thinking through which 
variables to control for in a web of causation can itself be confounding!  Greenland, Pearl, and 
Robins (1999) present a system of causal diagrams for describing and analyzing causal pathways to 
identify what variables must be controlled.  Among other points, they explain that controlling for a 
variable can in some situations create confounding which would otherwise not occur.  In general, 
control for confounding (and interpretation of data in general) is founded on assumptions of causal 
relationships involving measured and unmeasured variables.  Data alone are inadequate to resolve 
questions of causation without these assumptions.  Methodological understanding in this area is 
expanding (see the articles by Greenland, Pearl and Robins and Kaufman and Kaufman).  However, 
limited knowledge of causal relationships in addition to the one under study and the likely existence 
of unmeasured but important variables will remain fundamental stumbling blocks for observational 
research.. 

Controlling for sociodemographic variables 

Nearly all epidemiologic investigations control in some way or other for sociodemographic variables 
(e.g., age, gender, race, socioeconomic status).  As we saw in the chapter on Standardization, 
comparisons that do not control for such variables can be very misleading.  However, there are 
significant issues of interpretation of adjustment for sociodemographic factors, partly because 
associations with sociodeomographic factors likely reflect the effects of factors associated with 
them, and some of these factors may be intervening variables.  For example, studies of ethnic health 
disparities often attempt to control for differences in socioeconomic status.  However, it has been 
argued that socioeconomic status is an intervening variable between ethnicity and health outcomes, 
so that its control by the usual methods is problematic (Kaufman and Kaufman, 2001).  The 
problem of interpretation is compounded when the persistence of an association with ethnicity, 
despite control for other factors, prompts the investigator to make an unwarranted inference that a 
genetic factor must be at work.  It is also worth noting that the crude association presents the 
situation as it exists. Even if the causal explanation indicates other factors as responsible, the fact of 
disproportionate health status remains an issue to be dealt with.  Moreover, a remedy may not 
require dealing with the "real" cause. 

"Collapsibility" versus "comparability" 

Although the problem of confounding and the need to control for it have long been a part of 
epidemiology and other disciplines, theoretical understanding of the confounding has been 
developed largely since Miettinen's articles in the mid-1970's.  Two opposing definitions or 
perspectives have been debated during that time, one called "comparability" and the other called 
"collapsibility".   

In the comparability definition, advocated by Sander Greenland, James Robins, Hal Morgenstern, 
and Charles Poole, among others (see bibliography for article "Identifiability, exchangeability, and 
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epidemiological confounding" and correspondence "RE: Confounding confounding"), confounding 
is defined in relation to the counterfactual model for causal inference, described in the beginning of 
this chapter.  Confounding results from noncomparability, i.e., a difference between the distribution 
of outcomes for the unexposed group to what would have been observed in the exposed group if it 
had not been exposed.  Since the latter value is hypothetical and unobservable, the comparability 
definition cannot be directly applied, though it has some theoretical advantages as well as practical 
implications. 

In the collapsibility definition, advocated by D.A. Grayson (Am J Epidemiol 1987;126:546-53) and 
others, confounding is present when the crude measure of association differs from the value of that 
measure when extraneous variables are controlled by stratification, adjustment, or mathematical 
modeling.  If 2 x 2 tables for different strata of a risk factor (as in the Type A example above) 
produce measures of association (e.g., RR's) that are essentially equivalent to the measure of 
association for the "collapsed" 2 x 2 table (disregarding the risk factor used for stratification), then 
there is no confounding in regard to that measure of association.  The collapsibility definition is 
readily applied in practice and is widely used.  Disadvantages for this definition are that it makes 
confounding specific to the measure of association used and the particular variables that are being 
controlled. 

Fortunately for practicing epidemiologists, the two definitions generally agree on the presence or 
absence of confounding when the measure of effect is a ratio or difference of incidences 
(proportions or rates).  The major practical problem arises when the measure of association is the 
odds ratio (unless the situation is one where odds ratio closely estimates a risk or rate ratio, e.g., a 
rare outcome).  Further explanation of this and related issues are presented in the Appendix (and in 
Rothman and Greenland). 

Controlling confounding 

Now that we are all impressed with the importance and value of taking into account the effects of 
multiple variables, what are some of the analytic approaches available to us?  The principal ones are 
the following: 

• Restriction 

• Matching 

• Stratified analysis 

• Randomization 

• Modeling 

Restriction 
When we adopt restriction as an approach, we are in effect opting not to attempt a multivariable 
analysis – we simply restrict or confine our study to participants with particular characteristics (e.g.,  
male, age 40-50, nonsmokers of average weight for height, with no known diseases or elevated 
blood pressure) so that we will not have to be concerned about the effects of different values of 
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those variables.  Restriction of some sort is nearly always a part of study design, since virtually all 
studies deal with a delimited geographical area, specific age range, and so on, though the motive may 
be feasibility rather than avoidance of confounding.  If it is known or suspected that an association 
is strongest in a particular population subset, then it may make sense to focus studies in that group.  
Or, if there are few data available that apply to a particular population, it may make sense to restrict 
study participants to persons in that population.  Restriction is also useful when an important 
variable (particularly a strong suspected risk factor) is very unevenly distributed in the target 
population, so that it will be difficult and expensive to obtain enough participants at the less 
common levels of that variable. 

Considerations such as these have often been cited as the reason why so many studies in the United 
States have enrolled only white participants, often only white males.  For example, in many potential 
study populations (defined by geography, employment, or membership), there are (or were) too few 
members of minority groups to provide sufficient data for reliable estimates.  Reasoning that in such 
a situation stratified analysis by race/ethnicity is essentially be equivalent to restriction to whites 
only, investigators often simply limited data analysis or data collection to whites.  The reasoning 
behind limiting studies to males has been that the very different disease rates in men and women, so 
that studies of, for example, CHD in middle-aged persons, require many, many more women than 
men, in order to obtain a given number of cases (and therefore a given amount of statistical power 
or precision).  The fact that until about the 1980's the number of women epidemiologists and their 
representation in policymaking were fairly small may also have had some influence.   

The reasons for restricting study participants according to race/ethnicity are more complex.  If 
race/ethnicity (the term "race" virtually defies precise definition) is not a risk factor for the outcome 
under study, then there is no need to stratify or restrict by race/ethnicity in order to control for 
confounding.  But the United States' ever-present racial divide and its accompanying pervasive 
discrimination, widespread exploitation, frequent injustices, recurrent atrocities, and continuing 
neglect by the dominant society have created intellectual, attitudinal, political, and logistical barriers 
to race-neutral research (see bibliography; the states of the American south maintained legally-
enforced apartheid well into the 1960's, and extra-legally enforced apartheid continues to this day).  
Many of these issues have also arisen for other United States populations with ancestry from 
continents other than Europe. 

The concept of race as a powerful biological variable capable of confounding many exposure-disease 
associations has its historical roots in 19th century "race science", where various anatomical, 
physiological, and behavioral characteristics, assumed to be genetically-based, were interpreted as 
demonstrating the relative superiority/inferiority of population groups and justifying the 
subordination by whites of colored peoples (Bhopal, Raj.  Manuscript in preparation, 1996; see 
bibliography for additional references).  Various diseases and conditions were linked to racial groups 
(including "drapetomania", the irrational and pathological desire of slaves to run away, and 
"dysaethesia Aethiopica" ["rascality"]).  One reads in medical books from the period that blacks are 
"an exotic breed". 

Most of these ideas are now widely discredited, though by no means extinct (see Carles Muntaner, 
F. Javier Nieto, Patricia O'Campo "The Bell Curve: on race, social class, and epidemiologic 
research". Am J Epidemiol, September 15, 1996;144(6):531-536).  But until recently the vast majority 
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of epidemiologic study populations have been white, English-speaking, urban or suburban, and not 
poor.  A scientific basis linking race itself to health outcomes has emerged for only a handful of 
conditions (most prominently skin cancer and sickle cell trait and disease).  But the suspicion that 
race could be a risk factor is difficult to dispel, in part because it is reinforced by the many race-
related differences in health outcomes.  These differences presumably arise from differences in diet 
and nutrition, physical and social environment, early life experiences, economic resources, health 
care, neighborhood characteristics, social interactions, experiences of discrimination, lifestyle 
behaviors, and the host of other factors that affect health and wellbeing, but race is a much more 
easily measured (if not defined) surrogate for risk. 

In addition, many of these differences present logistical challenges (e.g., unfamiliarity of [primarily 
white, middle class] researchers and staff in studying persons and communities from other 
backgrounds, distances from research institutions, limited infrastructure, scarcity of questionnaire 
and other measurement tools that have been validated on multiple racial/ethnic groups, among 
others).  The practical aspects of epidemiologic studies typically demand a great deal of time, effort, 
and cost, so it is natural to seek ways to reduce these. 

Whatever the motivations and their merits, the overall impact of focusing research on white, 
English-speaking, urban/suburban, nonpoor populations is a scarcity of knowledge, research 
expertise, data collection tools, and ancillary benefits of participation in research (e.g., access to 
state-of-the-art treatments, linkages between health care providers and university research centers) 
for other populations – even for conditions for which these populations have higher rates or for 
which there are scientific or public health reasons for questioning the applicability of findings for 
Americans of European extraction to people of color or Latino ethnicity. 

Since about the mid-1980's, partly in response to prodding from Congressionally-inspired policies of 
the National Institutes of Health and Centers for Disease Control and Prevention that now require 
all grant applicants to provide strong justification for not including significant numbers of women 
and minorities in proposed studies, research on understudied populations has increased substantially.  
These policies and the measures taken to enforce them have created new challenges for 
epidemiologists and in many cases have increased the complexity of epidemiologic studies.  
However, epidemiology cannot on the one hand claim that it is an essential strategy for improving 
public health and on the other hand largely ignore one-fourth (minorities) or five-eighths (women 
plus minority men) of the population. 

Several years ago the American College of Epidemiology issued a "Statement of Principles on 
Epidemiology and Minority Populations" (Annals of Epidemiology, November 1995;5:505-508; 
commentary 503-504; also under "policy statements" on the College's web site, 
www.acepidemiology.org) recognizing the importance of minority health for public health, of 
improving epidemiologic data on minority populations, and of increasing ethnic diversity in the 
epidemiology profession.  The Statement has been endorsed by the governing bodies of various 
epidemiology and public health organizations, including the Council on Epidemiology and 
Prevention of the American Heart Association, North American Association of Central Cancer 
Registries, Association of Teachers of Preventive Medicine, American College of Preventive 
Medicine, American Statistical Association Section on Epidemiology in Statistics, American Public 



 

_____________________________________________________________________________________________ 
www.epidemiolog.net, © Victor J. Schoenbach 2000  11. Multicausality: Confounding - 362 
rev. 11/2/2000, 5/11/2001, 11/22/2003 
 

Health Association, and the epidemiology faculties at numerous institutions (e.g., Harvard, UNC, 
University of Massachusetts at Amherst, and University of Texas Health Sciences Center). In 
January 2000, the U.S. Department of Health and Human Services announced the goal of 
eliminating racial/ethnic disparities in health by the year 2010.  This challenge and the related one of 
bringing racial/ethnic diversity to the epidemiology profession are fundamental to public health in 
the United States at least. 

Matching 

As discussed earlier, confounding by a risk factor(s) can be avoided in a follow-up study by ensuring, 
through matching, that the various exposure groups have the same (joint) distributions for those risk 
factor(s).  Thus in a cohort study or an intervention trial, we can select participants at one exposure 
level and then select participants for another exposure level (including "unexposed") from a larger 
candidate population according to the distribution of selected risk factors in the first group. 

For example, consider a retrospective cohort study to investigate whether players in collegiate 
revenue sports (e.g., football, basketball), when they reach age 60, are more likely to have altered 
evoked potentials in response to auditory stimuli, suggestive of differences in neurologic function.  
The exposed cohort might consist of former basketball players from the team rosters of several 
universities, the comparison (unexposed) cohort of former students from the same universities 
during the same years. 

Since measurement of evoked potentials is a lengthy and expensive process, we want each 
participant to be as informative as possible, in order to minimize the total number of participants 
needed for the study.  If we choose unexposed participants completely at random, it is likely that 
they will differ from the basketball players in a number of ways (measured during their college years) 
that might affect evoked potentials – height, physical health, strength, agility, coordination, age (for 
example, the basketball players are unlikely to be mature students returning to complete a degree 
after taking time off to support a family), parental education, SAT (Scholastic Aptitude Test) scores 
(because athletes may be recruited for their talent even if their academic records are less 
competitive), and sex (revenue sports are, or at least were, all male).  Some of these characteristics 
may affect evoked potentials.  Thus, comparisons of evoked potentials at age 60 between the 
basketball players and the other alumni could be confounded by different distributions of these and 
other variables. 

When we attempt to control for these differences, we may find that they are so large that there are 
basketball players (e.g., those taller than 6-feet) for whom there are very few or no comparison 
subjects and comparison subjects (e.g., those shorter than 5-feet, 8-inches) for whom there are very 
few if any basketball players.  But strata with few basketball players or with few comparison subjects 
provide less information for comparing evoked potentials than do strata where the two groups are 
present in approximately equal numbers.  The findings from the analysis that controls for 
confounding will therefore be less "efficient", in terms of information per subject, than if basketball 
players and comparison subjects had similar distributions of the risk factors being controlled.  With 
the same total number of subjects and the same risk ratio, the study with more similar comparison 
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groups will yield a narrower confidence interval (greater statistical precision) as well as a smaller p-
value (greater statistical significance). 

One way to obtain a better balance in risk factors between the basketball players and the comparison 
group is to match the comparison group to the basketball player group on the most important risk 
factors.   For example, we could stratify the basketball players by height and GPA (grade point 
average) during college.  A two-way stratification might have a total of 16 strata.  We could then 
select comparison subjects so as to have the same distribution across these 16 strata. Choosing the 
comparison group in this way is called frequency or category matching. (This study might also be a 
logical place to use restriction, e.g., to include only males, aged 18-22 years, without any medical or 
physical impairments.) 

The above method of frequency matching requires knowing the risk-factor distribution of the index 
group before enrollment of comparison subjects, so that the latter can be chosen to have the same 
distribution.  Another method of accomplishing frequency matching is paired sampling.  With paired 
sampling, a comparison subject is chosen sequentially or at random from among potential 
comparison subjects having the same covariable values as each index subject.  For example, every 
time a former basketball player enrolls in the study, we find a comparison subject belonging to the 
same height-GPA stratum as the basketball player.  Whenever we stop enrolling subjects, the two 
groups will have identical distributions across the 16 strata. 

Similar to paired sampling is pair matching.  In pair matching, we choose each comparison subject 
according to characteristics of an index subject, characteristics that not widely shared with other 
index subjects (i.e., strata are very small, possibly containing only one index subject each).  For 
example, we might decide to use as comparison subjects the brothers of the index subjects.  Or, we 
might decide that we wanted the joint height-GPA distribution to be so similar between player and 
comparison groups that we did not want to have to categorize the variables.  In this case we would 
choose each comparison subject to have his height within a certain range (e.g., 2 centimeters) of the 
index subject's height and GPA within a certain small range of the index subject's GPA (pair 
matching in this way is called "caliper matching", though it has been criticized (see Rothman and 
Greenland). 

What differentiates pair matching from paired sampling and other forms of frequency matching is 
the tightness of the link between index and comparison subjects.  If there are multiple index-
comparison subject pairs in each stratum, so that the pairs could be dissolved, shuffled, and 
reformed, with no effect as long as all subjects stayed in their strata, then the situation is one of 
frequency matching.  If, in contrast, comparison subjects are for the most part not interchangeable 
with other comparison subjects, if each comparison subject is regarded as fully comparable only to 
the index subject with whom he is paired, then the situation is one of pair matching.  (For a 
discussion of paired sampling versus pair matching, see MacMahon and Pugh, 1970, pp. 252-256.  
Also, although the present discussion has focused on pairs, all of these concepts apply to triplets, 
quadruplets, and "n-tuplets", as well as to variable numbers of comparison subjects for each index 
subject, e.g., the index subject's siblings.) 
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In case-control studies, as we saw earlier, the study architecture prevents us from ensuring that 
exposure groups are similar with respect to other risk factors even in the study population, and 
certainly not in the study base.  Therefore, matching in a case-control studies does not prevent 
confounding.  Matching can be beneficial, though, since if important potential confounders are 
similarly distributed in cases and controls, the comparison of these two groups can be more 
statistically efficient – with the same number of participants, the confidence interval for the odds 
ratio estimate will be narrower (i.e., the estimate will be more precise). 

Unfortunately, the issue of whether or not it is beneficial to match controls to cases turns out not to 
have a simple answer, since in some cases matching can lead to reduced statistical efficiency.  If the 
matching variable(s) are strongly associated with the exposure, then the exposure prevalence in 
matched controls will be more similar to that in cases than would occur for an unmatched control 
group, thereby diminishing the observed strength of association between exposure and disease.  If 
the matching factors are not strong risk factors for the disease, then "overmatching" has occurred 
and a true association may be completely obscured. 

The current advice for case-control studies is to match only on strong determinants of the outcome 
under study, especially if they are likely to be very differently distributed in cases and controls.  Also, 
of course, do not match on a variable whose relationship to the outcome is of interest.  Once you 
have matched cases to controls on a variable, its odds ratio will be one.  Although matching in a 
follow-up study does not incur the problems that can arise in case-control studies, in any study 
design the use of matching can present practical and logistical difficulties, particularly if the pool of 
potential comparison subjects is small or if identifying or evaluating potential matches is costly. 

Randomization 

Randomization, the random assignment of participants to "exposed" or "treatment" and comparison 
groups, is available only in intervention trials.  Randomization will ensure that, on the average, index 
and comparison groups will have similar proportions and distributions of all factors.  Of course, in 
any particular study the groups may (and often will) differ in one respect or another (i.e., the 
randomization will not "work", though in a more precise sense, it does work – it just does not 
accomplish all that we would like it to).  So often intervention and control groups will be 
constrained to be similar (through matching, also called "pre-stratification") or will be analyzed using 
stratified analysis. 

An important consideration regarding randomization – and its decisive advantage over any of the 
other methods available – is that on the average randomization controls for the effects of variables 
that cannot be measured or are not even suspected of being risk factors.  Unless a variable has been 
identified as relevant and can be measured, none of the other approaches described above (or 
below) can be used.  With randomization, we have the assurance that at least on the average we have 
accommodated the influence of unknown and unsuspected risk factors. 
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Stratified analysis 

Stratified analysis involves the breaking down of an aggregate into component parts so that we can 
observe each subcomponent individually.  If smoking is a relevant factor for the disease under study, 
we simply say, "very well, we will look at the smokers and then we will look at the nonsmokers."  
Most of the examples of confounding and effect modification we have examined have been 
presented in terms of stratified analysis. 

Stratified analysis is intuitively meaningful and widely used.  It is particularly suited to the control of 
nominal variables (variables whose values have no ordered relation to one another, such as, 
geographical region [north, east, west]) and ordinal variables that have few categories (e.g., injury 
severity [minor, moderate, severe]).  Stratified analysis gives a "picture" of what is going on in the 
data, is easily presented and explained, and requires no restrictive assumptions about a statistical 
model. 

On the other hand, stratified analysis requires that continuous variables be categorized, which 
introduces a degree of arbitrariness and causes the loss of some information.  It is not possible to 
control for more than a few variables at the same time because as the number of strata grows large, 
understanding and interpreting the results may present a major challenge, especially if the results 
vary from one stratum to another without any obvious pattern.  Despite these drawbacks, stratified 
analysis is a mainstay of epidemiologic analysis approaches. 

When there are multiple strata, it may be difficult to describe and to summarize the results, 
particularly since many strata will contain relatively few participants, so differences might readily be 
due to random variation.  In such a case, various summary measures – generally different forms of 
weighted averages of the stratum-specific measures – are available.  A summary measure is a single 
overall measure of association over all strata (or over a subgroup of the strata), controlling for the 
variables on which stratification has taken place.  The standardized risk ratio (SRR) presented in the 
section on age standardization is one such summary measure.  Others will be presented in the 
chapter "Data analysis and interpretation".  Of course, as with any summary measure, if there are 
important differences across strata an overall average may not be meaningful. 

Modeling 

Given an unlimited number of participants, and an unlimited amount of time, patience, and capacity 
to interpret data, we could approach any multivariable analysis problem by means of stratification.  
But consider the dimensions of the challenge:  if we have three variables, each dichotomous, there 
are eight possible unique strata; if we have six variables, each dichotomous, there are 64; if we have 
six dichotomous variables and three variables having three levels each, the number of strata soars to 
1728!  Imagine trying to interpret 1728 odds ratios, even assuming that we have enough participants 
for each one. 

Since we often have more than a few variables we wish to accommodate, and variables (e.g., age, 
blood pressure, body weight) are often continuous so that we stand to lose information by 
categorizing them into any small number of levels, there is an obvious need for some more 
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sophisticated approach that does not require us to examine every possible combination of factor 
levels in order to uncover the effects of each variable.  There is such an approach – mathematical 
modeling – but its use involves a price, in terms of certain assumptions we make in the interests of 
simplifying the situation.  Another price we pay is that the data themselves are hidden from view.  In 
the words of Sir Richard Doll (interview with Beverly M. Calkins printed in the American College of 
Epidemiology Newsletter for Fall 1992): 

"There have been many important steps along the way:  larger scale studies, more powerful statistical 
techniques, and the development of computers that allow these techniques to be applied.  I fear, 
however, that the ease of applying statistical packages is sometimes blinding people to what is really 
going on.  You don't have a real close understanding of what the relationships are when you put 
environmental and all of the other components of the history together in a logistic regression that 
allows for fifteen different things.  I am a great believer in simple stratification.  You know what you 
are doing, and you really want to look at the intermediate steps and not have all of the data in the 
computer." 

Limitations in the ability to control potential confounders 

Typically, epidemiologists do not know all of the determinants of the health conditions they study.  
Other determinants may be known but cannot be measured, either in general or in the 
circumstances under study.  Unknown and unmeasured potential confounders can be controlled 
only through randomization.  This unique advantage randomized designs is a primary reason for 
their particular strength. 

Even for potential confounders that are controlled through restriction, matching, stratified analysis, 
or modeling, limitations or errors in the conceptualization, measurement, coding, and model 
specification will compromise the effectiveness of control.  Such incomplete control results in 
"residual confounding" by the potential confounder.  Residual confounding, like uncontrolled 
confounding, can lead to bias in any direction (positive or negative, away from the null or towards 
the null) in the adjusted measure of effect between the study factor and outcome.  Even if 
measurement error in the potential confounder is nondifferential (i.e., independent of the study 
factor and outcome), the bias in the association of primary interest can be in any direction. 

It is important to be aware of these limitations, but they are not grounds for discouragement.  
Notwithstanding these and other obstacles, epidemiology has provided and continues to provide 
valuable insights and evidence.  The limitations derive primarily from the subject matter – health -
related phenomena in free-living human populations – rather than from the discipline.  Remaining 
aware of limitations, minimizing them where possible, and insightfully assessing their potential 
impact in interpreting data are the mark of the well-trained epidemiologist. 

Confounding and effect modification 

As noted in the chapter on Causal Inference, epidemiology's single variable focus, the one-factor-at-
a-time approach that underlies the evolution of epidemiologic understanding, is the basis for the 
concepts of "confounding" and "effect modification".  There are also some similarities in the way 
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that they are investigated in data analysis.  To make the distinction clear, we will contrast these two 
different implications of multicausality. 

If we observe an association between a disease and some new factor - but fail to adequately account 
for possible effects of known causes of the disease - we may erroneously attribute the association we 
observe to the new factor when in fact we may be seeing the effects of known factors.  
"Confounding" refers to a situation in which an observed excess of disease can be mistakenly 
attributed to the exposure of interest when, in fact, some other factor – related to both the outcome 
and the exposure – is responsible for the observed excess.  For example, the crude death rate in 
Florida is higher than in Alaska.  If we attribute the higher death rate in Florida to the effect of citrus 
fruit industry, then we have fallen afoul of confounding.  For the underlying "true" reason for the 
higher Florida death rates is the older age distribution of the Florida population. 

When considering confounding, we are asking the question "Is the observed association between 
oral contraceptive use and myocardial infarction risk due to an effect of oral contraceptives or is the 
association actually due to the effects of other MI risk factors, such as cigarette smoking, elevated 
blood pressure, elevated blood cholesterol, and diabetes, that happen to be associated with oral 
contraceptive use?"  To answer that question, we will attempt to ascertain that the groups being 
compared are the same with regard to these "potential confounders" and/or we will examine the 
OC-MI relationship within categories of the "potential confounders" in an attempt to "hold other 
factors constant". 

"Effect modification" refers to variation in the relationship between exposure and outcome, 
variation that is due to the actions of some other factor (called an effect modifier).  For example, the 
relationship between exogenous estrogens and endometrial cancer appears to be weaker in the 
presence of obesity.  The relationship between oral contraceptives and myocardial infarction appears 
to be stronger in women who smoke cigarettes than in those who do not. 

When considering effect modification, we are asking the question "Is the observed association 
between oral contraceptive use and MI risk importantly influenced by other MI risk factors, such as 
cigarette smoking, elevated blood pressure, elevated cholesterol, or even by factors which, by 
themselves, do not affect MI risk?"  To answer that question, we will examine the OC-MI 
relationship within categories of these "potential modifiers".  We will also seek biological and/or 
behavioral explanations for possible modifying influences. 

With confounding, we are concerned with determining whether a relationship between our exposure 
and our outcome does or does not exist.  With effect modification, we are concerned with defining 
the specifics of the association between the exposure and the outcome.  That is, we are interested in 
identifying and describing the effects of factors that modify the exposure-outcome association.  The 
question about confounding is central in establishing risk factors.  The question about effect 
modification has important implications for defining disease etiology and for intervention.  
Confounding is a nuisance.  Effect modification, though for statistical reasons it may be difficult to 
assess, is of considerable potential interest. 
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A mnemonic aid that may be helpful is the following.  An evaluation of confounding is an 
investigation into "guilt" or "innocence".  An evaluation of effect modification is an investigation 
into "conspiracy". 

MAIN POINTS 

y Confounding is a distortion or misattribution of effect to a particular study factor.  It results 
from noncomparability of a comparison group. 

y A confounder is a determinant of the outcome or its detection, or possibly a correlate of a 
determinant, that is unequally distributed between groups being compared. 

y A determinant of the disease should appear as an independent risk factor, i.e., not one whose 
association with disease results from its association with the study factor. 

y A potential confounder (i.e., a disease determinant) need not be an actual confounder – an 
actual confounder must be associated with the study factor. 

y Confounding can be controlled in the study design and/or analysis. 

y Control through the study design is accomplished through restriction, matching 
(prestratification), or randomization. 

y Control in the analysis is accomplished through stratified analysis and/or mathematical 
modeling. 

y Adequacy of control is compromised by errors in the conceptualization, measurement, 
coding, and model specification for potential confounders. 

y Confounding deals with "guilt" or "innocence"; effect modification deals with "conspiracy". 

y Discovery that an association arises from confounding does not make it less "real", but does 
change its interpretation. 

y The crude association is real and for some purposes is the relevant measure. 
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Appendix 

The following discussion is for the more advanced student (either now or when you are taking a 
more advanced methodology course) – others can skip this section. 

Confounding:  "Comparability" versus "collapsibility" 

As presented earlier, the comparability definition labels as confounding a situation where the value 
of an outcome for the unexposed group differs from the (contrafactual) value for that outcome in 
the exposed group if it could be observed without the exposure.  The collapsibility definition sees 
confounding as a situation where the crude measure of association differs from the value of that 
measure when extraneous variables are controlled (by stratification, adjustment, or mathematical 
modeling).  The two definitions yield the same judgment in many situations, a major exception being 
those where the measure of association is an odds ratio which does not estimate a risk ratio (rare 
disease assumption not met) or a rate ratio (assumptions for estimating the IDR not met). 

The reason the odds ratio is different from the rate and risk ratios in this respect is related to the fact 
that unlike proportions and rates, the odds for a group are not a simple average of individual 
members' odds (Greenland S. Am J Epidemiol 1987;125:761).  Stratified analysis simply places the 
individual members of a group into a handful of strata.   Since incidence for a group does equal the 
simple average of the risks (or "hazards") for the individual members, the overall incidence will also 
equal the average of the stratum-specific risks or rates, now weighted by the stratum size (or number 
exposed, or number unexposed) as a proportion of the total (i.e., the distribution of participants 
across the strata). 

For risk or rate, therefore, the comparison (by means of a ratio or difference) of overall incidence in 
the exposed to overall incidence in the unexposed is a comparison of weighted averages.  If the 
weights in the exposed and unexposed groups are the same, then the comparison is valid (i.e., no 
confounding).  In this case, the overall incidence ratio (difference) is a weighted average of the 
incidence ratios (differences) across the strata, a condition for nonconfounding proposed by Boivin 
and Wacholder (Am J Epidemiol 1985;121:152-8) and implies collapsibility.  Since the weights are the 
distributions of exposed and unexposed participants across the strata, equal weights mean identical 
distributions, which in turn means that exposure is unrelated to the risk factor used to create the 
strata. 

If the distributions of exposed and unexposed participants across strata differ (i.e., the exposure is 
related to the stratification variable), then the overall incidence in exposed and in unexposed 
participants are averages based on different weights, so their ratio and difference will not be equal to 
a weighted average of the stratum-specific incidence ratios and differences.  Comparability and 
collapsibility are therefore not present, and the comparison between overall incidences is 
confounded by the stratification factor.  However, since the odds for the group is not a simple 
average of the odds for individual members, none of the above holds for the odds ratio unless it is 
sufficiently rare that it approximates the risk ratio or has been obtained from a design that causes the 
odds ratio to estimate the incidence density ratio. 
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Some of the relationships just presented can be readily demonstrated using simple algebra.  Let ai, bi, 
ci, di, n1i, and n0i in each stratum take on the values implied by the table below, and let their 
respective totals across all strata by a, b, c, d, n1, and n0 (i.e., a = all exposed cases, b = all 
unexposed cases, c = all exposed noncases, d = all unexposed noncases, n1 = all exposed persons, 
n0 = all unexposed persons). 

  Exposure   

Disease Yes No Total  

Yes ai bi m1 (ai + bi) 
No ci di m2 (ci + di) 

Total n1i n0i ni  

 (ai + ci) (bi + di)   

The incidence in exposed persons is ai/n1i within each stratum and a/n1 when the strata are ignored 
(i.e., the total, or crude table).  The (weighted) average incidence in the exposed across the strata is: 

 
n1i  ai  ai  a 
––– × ––– = ––– = ––– Σ (
n  n1i 

)
 
Σ (

n 
)

 n 

where the summation goes over all strata.  a/n is simply the crude incidence in the exposed.  
Similarly, the weighted average of the stratum-specific risk ratios can be expressed as the sum across 
all strata of: 

 
wi  ai /n1i  wi  ai n0i 

––– × ––– = ––– × ––––– 
W  bi /n0i  W  bi n1i 

where wi are the weights for each stratum and W is the sum of the wi.  If we let wi = bin1i /n0i, then 
we have the sum across strata of: 

bi n1i /n0i  ai n0i  ai wi 
––––––––– × ––––– = ––––– 

W  bi n1i  W 

Meanwhile, W is the sum across all strata of: 
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  bi n1i 
wi = ––––– 
  n0i 

If exposure is unrelated to the stratification variables, so that the distribution of exposed  n1i /(a + c) 
is the same across strata as the distribution of the unexposed  n0i /n0, then the ratio of exposed to 
unexposed in all strata must be the same as in the overall table, n1 /n0.  Therefore 

 
  bi n1i    b n1i 

wi = ––––– , whose sum is simply W = ––––– 
  n0i    n0i 

 

 ai  a   
Thus, the sum of –––– is ––––––– ,  which equals  

 wi  bn1 / n0   

 

a / n1  
––––– ,  the overall risk ratio.
b n0  

 

So, when there is no confounding, the following three summary measures are all equal: 

 
  Overall incidence in exposed 

Overall risk (or rate) ratio = –––––––––––––––––––––––––– 
  Overall incidence in unexposed 

 

  Weighted average of incidence in exposed, across strata 
 = –––––––––––––––––––––––––––––––––––––––––––––– 
  Weighted average of incidence in unexposed, across strata 

 

 = Weighted average of stratum-specific risk (or rate) ratios 
 

With incidence odds and odds ratios, however, the above does not apply.  The overall incidence 
odds are simply a/c.  In contrast, the average of the stratum-specific odds, weighted by the number 
of exposed, is the sum over all strata of: 
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n1i  ai 
––– × –––
n1  ci 

It is possible to construct an incidence odds ratio that is a weighted average of the stratum-specific 
incidence odds ratios, and therefore a summary incidence odds ratio.  However, this summary 
incidence odds ratio will not be equal to a ratio of average stratum-specific incidence odds for 
exposed and average stratum-specific incidence odds for unexposed. 
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Multicausality:  Confounding - Assignment

 1. Some years ago several studies were published showing an association between reserpine (a drug
used to lower blood pressure) and breast cancer in women.  Since obesity is associated both with
breast cancer and with hypertension (elevated blood pressure), the suspicion arose that the
association between reserpine and breast cancer could be secondary to the effect of obesity.
Assume that a cohort study had been conducted to address this question and produced the
following data:

Annual age-adjusted incidence of breast cancer per 100,000 women
by body weight and reserpine status

Reserpine use
Yes No Total

Obese 12.50 8.30 8.72
Not Obese 6.40 4.10 4.22
Total 10.47 6.14

Answer the following questions on the basis of the above data (ignore considerations of
statistical significance and precision).  For each answer cite the most relevant figures from the
table, allowing for the possibility that one factor affects the observed relation between the other
factor and breast cancer risk.

a. Is reserpine a risk factor for breast cancer?

b. Is obesity a risk factor for breast cancer?

c. Is reserpine use associated with obesity?

d. Is the association between reserpine and breast cancer attributable to obesity?
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 2. A 20-year retrospective cohort study of the incidence of chronic obstructive pulmonary disease
(COPD) was performed in two occupational cohorts with different levels of S02, copper smelters
(high SO2) and truck maintenance workers (low SO2).  In 1961, when the cohort was defined,
55% of the smelter workers and 55% of the truck shop workers were smokers.  The relative risk
for COPD due to smoking was 10.5 among the smelters and 3.0 among the truck shop workers.
Pulmonary function data taken in 1980 showed that 75% of the smelter workers had low FEV1
values (<90% predicted) and 33% of the truck shop workers had low FEV1 values.  COPD and
low FEV1 were strongly associated in each cohort.  [FEV1 is forced expiratory volume in one
second.]

a. In the above study, is smoking a likely confounder of the association between COPD and
SO2 exposure (i.e., in smelters vs. truck shop workers)?  Briefly discuss (1-3 sentences).

b. The best reason for not controlling for low FEV1 as a potential confounder is:

A. Low FEV1 is not associated with SO2 exposure according to the data.

B. Low FEV1 is not associated with COPD according to the data.

C. Low FEV1 is not an independent risk factor for COPD.

D. Low FEV1 is not associated with smoking according to the data.

 3. Diagrammed below are two possible causal models involving oral contraceptive use (OC), plasma
homocysteine level (HCS) and myocardial infarction (MI).  Briefly discuss the implications of the
two models with respect to whether HCS would need to be considered as a potential confounder
of the relationship between OC and MI.

OC
OC

HCS MI HCS MI

Other
factors

Other
factors

[arrows show hypothesized causal pathways]
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 4. The following table, published in the Oxford Family Planning Association Contraceptive Study
(Vessey et al.), shows characteristics of individuals at the time of recruitment in to the study.
Based on the data presented in the table, discuss three potential sources of bias apparent from
the characteristics of the three contraceptive groups.  How would these factors be expected to
influence the appearance of a causal association between oral contraceptive use and circulatory
deaths if no adjustment for the factors were carried out?

Some characteristics of subjects in the three contraceptive
groups at time of recruitment

Method of Contraception
in use on Admission

Characteristic Oral Diaphragm IUD
Percentage aged 25-29 years 56 35 35
Percentage in Social Classes I or II* 39 49 34
Percentage smoking 15 or more cig./day 17 7 12
Mean Quetelet's Index** 2.25 2.26 2.31
Percentage*** with history of:

Hypertension 0.91 0.67 0.50
Pre-eclamptic toxaemia 12.58 16.26 16.07
Stroke 0.03 0.04 0.30
Rheumatic fever 0.76 0.66 1.04
Rheumatic heart disease 0.09 0.26 0.32
Congenital heart disease 0.12 0.31 0.16
Venous thromboembolism 0.87 4.30 7.96

  *  Registrar General's classification [Social Class I is highest]

 **  Weight (g) / height (cm)2.
***  Standardized by indirect method for age and parity.  See Vessey, et al.

 5. The following questions (from the 1985 EPID 168 second midterm exam) are based on data
from Kantor AF, Hartge P, Hoover RN, et al.  Urinary tract infection and risk of bladder cancer.
Am J Epidemiol 1984;119:510-5).  In that study, 2982 newly-diagnosed bladder carcinoma patients
identified through the U.S. National Cancer Institute SEER (Surveillance, Epidemiology and End
Results) Program during a one-year period beginning in December 1977 were interviewed.  5782
population controls from the same geographic areas covered by SEER were selected using an
age- and sex-stratified random sample of the general populations, with 2:1 frequency-matching of
controls to cases.  Information on physician-diagnosed urinary tract infections (UTI) more than
one year before interview (and many other factors) was obtained through personal interviews
using structured questionnaires in respondents' homes.  The following data are from Table 1 in
Kantor, Hartge, Hoover et al.:
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Table 1
Relative risks (RR) of bladder cancer associated with

history of urinary tract infection,*
by number of infections;

10 geographic areas of the United States, 1978

Males Females

No. of
urinary tract
infections

Cases Controls RR
95%

confidence
interval

Cases Controls RR
95%

confidence
interval

0 1758 3642 1.0+ 398 979 1.0+
1 or 2 309 423 1.5 (1.3-1.8) 176 296 1.2 (0.9-1.5)

3+ 146 152 2.0 (1.6-2.6) 145 206 2.1 (1.6-2.7)

*  Maximum likelihood estimate of relative risk adjusted for race, age, smoking status (never
smoked, ex-smoker, current smoker) from stratified analyses.

  + Reference category

a. The sex-specific relative risks for bladder cancer (BC) shown in Table 1 are adjusted for race,
age, and smoking status.  Which one of the following could be the relative risk of BC risk for
3+ urinary tract infections (UTI) adjusted for race, age, smoking status, and gender?
[Choose one best answer]

A. 1.33

B. 1.92

C. 2.05

D. None of the above.

b. Using the data in Table 1, construct a labeled 2 by 2 table for estimating the crude (with
respect to race, age, smoking status, and gender) relative risk for BC in men and women who
have a history of 3+ UTI compared to men and women with no history of UTI.  Your
answer should show the correct formula and substitution.

c. Is gender associated with history of 3+ UTI?  Support your answer with the most relevant
numbers from Table 1.

d. Is gender a confounder of the association between BC risk and history of 3+ UTI?  Support
your answer with data from Table 1 and/or your answers to the two preceding questions._
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Multicausality:  Confounding - Assignment solutions

 1. 

a. Reserpine is a risk factor.  Overall, the incidence of breast cancer is 10.47 per 100,000
women-years in reserpine users and 6.14 per 100,000 women-years in nonusers.  Moreover,
among the non-obese, the rate ratio is:  6.40/4.10 = 1.6.  Looking in the non-obese women
avoids potential confounding by obesity if it is a risk factor.

b. Obesity is also a risk factor.  The overall incidence rates for obese and non-obese women,
respectively, are 8.72/100,000 women-years and 4.22/100,000 women-years.    Among the
women who did not take reserpine, the rate ratio is 8.30/4.10 = 2.0.  Looking in the group
of reserpine non-users avoids potential confounding by reserpine.

c. Reserpine use is associated with obesity, though that fact cannot be deduced from the
stratum-specific breast cancer rates alone.  The direct approach is to remember that the
crude rates are weighted averages of stratum-specific rates, with the weights consisting of the
population prevalence of the risk factors.  So:

12.50 PRO + 8.30 (1-PRO) = 8.72 and

           _             _
6.40 PRO + 4.10(1-PRO) = 4.22

where PRO is the prevalence of reserpine use in obese subjects,
and

      _
PRO is the prevalence of reserpine use in nonobese subjects.

                                                                                      _
Solving these two equations gives PRO = 0.1 and PRO = 0.05, so reserpine use is more
prevalent in obese women (presumably because they are more likely to have hypertension).
The relative prevalence is 2.0; the odds ratio of association between obesity and reserpine
use is [(.1)(.95)]/[(.9)(.05)] = 2.1.  Such an association might be characterized as "moderate."

Note that the above procedure involving weighted averages can be equally well carried out
on the basis of the column rates, rather than the row rates.  The odds ratio will be effectively
the same.

d. The association between reserpine and breast cancer is not attributable to obesity (in the data
for this problem).  The most relevant rates to demonstrate that the association is not
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completely attributable to obesity are those comparing reserpine users and nonusers among
the nonobese (6.40/4.10=1.6).  Since the crude rate ratio (10.47/6.14=1.7) is ever so slightly
greater than each of the stratum-specific rate ratios (1.6 in the nonobese, 1.5 in the obese) it
can be argued that a slight amount of the crude association is attributable to obesity.

 2. 

a. Smoking is not likely to be a confounder, because both of the compared groups (smelters
and truck stop workers) have identical proportions of smokers (55%).  Smoking could
therefore not account for a difference in lung disease between the two groups compared.

b. The best reason for not controlling low FEV1 as a potential confounder is C, low FEV1 is
not an independent risk factor for the development of COPD, but is rather a manifestation
of COPD.

 3. In the first causal model:

OC

HCS MI

Other
factors

[arrows show hypothesized causal pathways]

HCS is a causal risk factor for MI, through a pathway independent of OC.  Therefore, HCS
must be controlled as a potential confounder of an OC-MI association.

In the second causal model:

OC
HCS MI

Other
factors

[arrows show hypothesized causal pathways]

HCS is an intermediate in the causal pathway from OC to HCS.  Therefore, HCS cannot
logically be a confounder of the OC-MI relationship.  If one controls for the effect of HCS,
no residual effect will be found for OC.  A more useful approach would be to investigate the
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link between HCS and MI to ensure that it is causal.  Then the link between OC and HCS
should be explored while other influences on HCS are controlled.

 4. Some possible answers:

Age: The oral contraceptive users were much younger than either the diaphragm or IUD users.
In fact, there were 21% more women in the age range 25-29 using oral contraceptives than
in either of the other groups -- or almost one-and-a-half times more younger women using
OC's than other methods.  This would bias any associations between OC use and circulatory
deaths downward, since younger women are less likely to develop circulatory disease than
older women.

Cigarette Smoking:  The oral contraceptive users were also more likely to smoke 15 or more
cigarettes a day than either diaphragm or IUD users.  There were almost two-and-one half
times (17% vs 7%) more 15+/day smokers among OC uses than among women using the
diaphragm, and almost one-and-one-half times (17% vs 12%) more smokers among OC
users than among IUD user.  These differences would likely increase the risk of circulatory
deaths among OC as compared to non-OC users, since cigarette smoking is significantly
related to death from circulatory disease.

History of Hypertension:  Although the percentages were low, the oral contraceptive users were
more likely to have a history of hypertension than were other contracepting women (.91% vs
.67% and .50%).  This slight excess of hypertension among OC users might increase their
risk of developing circulatory disease as compared to the non-users, since hypertension is
one of the most significant risk factors for circulatory death.

Venous Thromboembolism:  The percentage of OC users with a history of venous
thromboembolism was much lower than among women using the diaphragm or the IUD.
There were 5 times (4.30% vs. .87%) more women with a thromboembolism problem
among diaphragm users than among OC users, and 9 times (7.96% vs. .87%) more women
with a history among IUD than OC users.  This difference would likely bias the risks of OC
use downward, since the non-OC user group had more prevalent circulatory disease, which
is more likely to lead to circulatory death.

History of Rheumatic Heart Disease:  Although the percentages were small, the OC users were
less likely to have had rheumatic heart disease than the non-OC users (.09% vs .26% and
.32%).  Since a history of rheumatic heart disease increases risk of circulatory death, the risks
for OC users would be lowered by this difference.
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 5. 

a. C -- the adjusted relative risk would be a weighted average of 2.0 and 2.1, so only 2.05 is a
possible value for the adjusted relative risk.

b. Bladder cancer

Cases Controls Total

3 + UTI 146 + 145 = 291 152 + 206 = 358 649
No UTI 1758 + 398 = 2,156 3642 + 979 = 4,621 6,777

Total 2,447 4,979 7,426

ad (291)(4,621)
OR = ––––– = –––––––––––– = 1.74

bc (358)(2,156)

c. Yes, strongly.  13.9% [206/(206+296+979)] women have 3+ UTI, compared to only 3.6%
[152/(152+423+3642)] men.  [The question did not ask about the relative risk of bladder
cancer.]

d. Yes, there is some confounding, since 1.7 is below both 2.0 and 2.1.
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12. Multicausality: Effect Modification

Issues in characterizing the combined effect of two or more causes of a disease (or,
equivalently, the effect of one factor in the presence or absence of other factors).

Multicausality

The rise of the germ theory of disease brought with it the paradigm of specificity of disease
causation, in which diseases were specific entities and each specific disease had a specific cause.
Since identifiable microorganisms could be linked to specific clinical syndromes and natural
histories, this paradigm contributed to the dramatic progress in medical microbiology and
development of antibiotics, which have transformed human vulnerability to infectious disease.  The
doctrine of specific causation proved something of a hindrance, however, in the study of
noninfectious disease, notably in appreciating the health effects of tobacco smoke.

Now that the concept of multifactorial disease is fully accepted, we should perhaps adopt a more
relativist perspective, in which specificity of causation varies according to the "disease" (used
hereinafter to refer to any outcome of interest) and its definition, the type of causal agents or factors
we wish to consider, and on the stage in the causal process.  John Cassel invited this way of thinking
when he described tuberculosis, a hallmark of the revolution in bacteriology, as a multifactorial
disease in regard to various characteristics of the host and his/her social environment.  The
resurgence of mycobacterial tuberculosis in the United States during the 1980's, as a result of such
factors as the spread of HIV, the rise in homelessness, and the reduction of funding for tuberculosis
control, illustrates the importance of host and environmental factors for this disease.

The upsurge in syphilis in the southeastern region of the U.S. during a similar period provides
another example. In the chapter on Phenomenon of Disease, syphilis served as an example of a
disease defined by causal criteria and thus definitionally linked to a specific microorganism,
Treponema pallidum.  Syphilis infection can induce a great variety of symptoms and signs, so great that
it has been called the "Great Imitator" (by Sir William Osler, I believe, who I think also wrote
"Know syphilis and you will know all diseases"). Given the diversity of ways in which syphilis
manifests, it is fortunate that we do not need to rely on manifestational criteria to define syphilis.
Nevertheless, although defined in relation to its "cause", syphilis can also be considered a
multifactorial disease, since risk of syphilis is related to personal and contextual factors such as
number and type of sexual partners, use of condoms, exchange of sex for drugs or money, use of
crack cocaine, access to care, proficiency of clinicians, effectiveness of public health services, degree
of social stigma, racism, and limited resources devoted to developing a vaccine.  Since syphilis is not
transmitted in every unprotected exposure, there may be transmission and immune factors to add to
this list.

Similarly, coronary heart disease is a classic multifactorial disease, with an ever-growing list of risk
factors that includes at least atherogenic blood lipid profile, cigarette smoke, elevated blood
pressure, sedentary lifestyle, diabetes mellitus, elevated plasma homocysteine, and insufficient intake
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of dietary antioxidants.  However, coronary artery disease is a clinically-defined entity that develops
from a composite of changes in the coronary arteries.  As our understanding of the pathophysiology
and pathogenesis of coronary heart disease becomes more refined, researchers may eventually decide
that it is more useful to subdivide this complex disease entity into its specific pathogenetic processes,
which include certain types of injury to the coronary endothelium, growth of atheromas, and
thrombus formation.  These different pathologies could be defined as separate diseases, even though
clinical manifestations usually require more than one to be present.

The one-variable-at-a-time perspective

Epidemiologists, however, typically focus on a single putative risk factor at a time and only
sometimes have the opportunity to focus on specific pathogenetic processes.  One reason for this is
that epidemiology is in the front lines of disease control, and it is often possible to control disease
with only a very partial understanding of its pathophysiology and etiology.  Once it was
demonstrated that cigarette smoking increased the risk of various severe diseases, including lung
cancer, coronary heart disease, and obstructive lung diseases, many cases could be prevented by
reducing the prevalence of smoking even though the pathophysiologic mechanisms were largely
unknown.  Once it was found that AIDS was in all probability caused by an infectious agent and
that unprotected anal intercourse greatly facilitated its transmission, effective preventive measures
could be taken even before the virus itself was identified and the details of its pathogenicity
unravelled.

Thus, epidemiologists often find ourselves taking a "one-variable-at-a-time" approach to diseases of
unknown and/or multifactorial etiology.  Lacking the knowledge needed to work from a
comprehensive model of the pathophysiologic process, epidemiologists attempt to isolate the effects
of a single putative risk factor from the known, suspected, or potential effects of other factors.
Thus, in the preceding chapter we examined how the effects of one factor can be misattributed to
another factor ("guilt by association") and considered ways to control for or "hold constant" the
effects of other risk factors so that we might attribute an observed effect to the exposure variable
under investigation.

Another consequence of the one-variable-at-a-time approach is the phenomenon that an association
we observe may vary according to the presence of other factors.  From our ready acceptance of
multicausation, we have little difficulty entertaining the idea that some disease processes involve the
simultaneous or sequential action of more than one factor or the absence of a preventive factor.
Indeed, with the growth of genetic knowledge all disease is coming to be regarded as a product of
the interaction of genetic and environmental (i.e., nongenetic) factors.

But from the one-variable-at-a-time perspective, our window into these interdependencies comes
largely from measures of association and impact for each particular risk factor-disease relationship.
Thus, if two factors often act in concert to cause disease, we will observe the risk difference for one
of the factors to differ depending upon the level of the other factor.  It may therefore be important
to control for factors that may modify a measure of effect of the exposure of primary interest.
Control may be necessary even if the susceptibility factor cannot itself cause the disease and so
would not qualify as a potential confounder.



_____________________________________________________________________________________________
www.epidemiolog.net, © Victor J. Schoenbach 12. Multicausality: Effect modification -  383
rev. 11/5/2000, 11/9/2000, 5/11/2001

Interdependent effects

The preceding chapters have largely dealt with situations involving a single exposure and a single
outcome. The chapter on standardization of rates and ratios and the chapter on confounding
concerned the need to control for a variable, such as age or a second exposure, so that comparisons
could focus on the exposure of primary interest.  We referred to the interfering variable as a
confounder or potential confounder – essentially a nuisance variable – that threatened to interfere
with our investigation of the primary relationship of interest.

We now want to consider another role for a second exposure variable.  That role is involvement in
the pathophysiologic process or in detection of the outcome in concert with or in opposition to the
study factor (an exposure of primary interest).  One of the factors may be regarded as a co-factor, a
susceptibility factor, a preventive factor, or something else whose effect is entwined with that of the
study factor.

Confounding, as we saw in the preceding chapter, results from an association between the exposure
and the confounder.  But the effects of these two exposures on the disease can be independent of
one another.  In fact, in the (hypothetical) Type A example, the exposure had no effect at all.  In this
chapter we are interested in exposures whose effects on the outcome are interdependent.

There are innumerable scenarios we can think of where such interdependence occurs.  One entire
category of interdependence involves genetic diseases whose expression requires an environmental
exposure.  For example, favism is a type of anemia that is caused by consumption of fava beans in
people with reduced glucose-6-phosphate dehydrogenase (GPDH) activity.  The anemia develops
only in response to a constituent of fava beans, but people with normal GPDH activity are
unaffected.

Another category of interdependence is that between exposure to infectious agents and immune
status.  Measles occurs only in people who have not already had the disease and rarely in people who
have received the vaccine.  People whose immune systems have been weakened by malnutrition or
disease are more susceptible to various infectious agents, and HIV infection can render people
vulnerable to a variety of infections called "opportunistic" because they occur only in
immunocompromised hosts.

Causal chains that involve behaviors provide many illustrations of interdependency in relation to
outcomes.  Condoms reduce STD risk only when the sexual partner is infected.  Airbags provide
lifesaving protection to adult-size passengers involved in frontal crashes but can harm small
passengers and provide less protection to persons not wearing a lap belt.  Handguns are probably
more hazardous when in the possession of people with poor anger management skills.

Since very few exposures cause disease entirely by themselves (rabies virus comes close), nearly every
causal factor must modify the effect of other causal factors and have its effect modified by them.
When these other factors are unidentified, they are generally regarded as part of the background
environment, assumed to be uniformly distributed, and hence disregarded.  Part of the challenge of
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epidemiologic research is to identify major modifying factors that are not uniformly distributed, so
that differences in findings across studies can be understood.

The terminology thicket

Even more than other areas of epidemiology, learning about how epidemiologists approach
interdependent effects is complicated by a two decades old controversy about definitional,
conceptual, and statistical issues and by a terminology that is as heterogeneous as the enrollment in a
large class in introductory epidemiology! The terms epidemiologists have used to discuss
interdependent or "joint" effects include: "synergy", "synergism", "antagonism", "interaction",
"effect modification" (and "effect modifier"), and most recently "effect measure modification".

"Synergy" or "synergism" is the term applied to a situation in which the combined effect of two
(or more) factors is materially greater than what we would expect from the effect of each factor
acting alone.  "Antagonism" refers to the reverse situation, where the joint effect is materially less
than what we would expect.  Synergism and antagonism are both types of "interaction".

The factors involved in an interdependent relationship can be regarded as having their effects
modified by each other, which gives rise to the terms "effect modification" and "effect modifier".
Sometimes the adjectives "quantitative" and "qualitative" are employed to distinguish between
situations where the modifying variable changes the direction of the effect of the primary exposure
or changes only the magnitude of effect.  In quantitative effect modification, the modifier may
strengthen or weaken the effect of the primary exposure, but the direction of effect does not change.
In qualitative effect modification, the exposure either (1) increases risk in the presence of the
modifier but reduces risk in its absence or (2) increases risk in the absence of the modifier but
reduces risk in its presence.   Although I first heard this distinction in a seminar presented by Doug
Thompson, he more recently has referred to qualitative effect modification as a crossover effect
(Thompson 1991).

Somewhere I picked up (or made up) the term "absolute effect modification" to refer to situations
where the effect of at least one factor occurs only in the presence (or absence) of another factor.  In
such cases the first factor has no independent effect.  In contrast, "relative effect modification"
refers to situations where both factors have independent effects on risk regardless of the presence or
absence of the other, but their joint effect is different from what one expects from their individual
effects.

[Since more than two factors are generally involved, that means that, for example, variable A can be
an absolute modifier of the effect of variable B (B has no effect without A) and a relative modifier of
the effect of variable C (C has an effect without A, but its effect is stronger [weaker] in the presence
of A).  Whether B and/or C are absolute or relative modifiers of depends, in turn, on whether or
not A has an (independent) effect on risk without B and/or C.  But we are getting ahead of
ourselves here.]

All of this terminology would be simply a matter of memorization were it not for one central
difficulty.  That difficulty arises in operationalizing the above concepts through the use of
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epidemiologic data.  Put simply, there is no simple connection between the concepts expressed
above and the epidemiologic measures we have been using.  Partly because of this disconnect, the
terms "interaction" and "effect modification" have been employed with different meanings at
different times by different authors (and sometimes by the same author).  Thompson (1991:p221)
says that the two terms have different "shades of meaning" but (wisely) uses the two terms
interchangeably.

Previous editions of this chapter attempted to reduce terminology confusion by following the usage
in the first edition of Rothman's text Modern Epidemiology.  Rothman used the term "biological
interaction" to refer to synergy or antagonism at the level of biological mechanisms, such as that in
the favism example.  He used the term "effect modification" to refer to data that give the
appearance of joint effects that are stronger or weaker than expected (statistical interaction falls into
this category).  The second edition of Modern Epidemiology introduces a new term, "effect measure
modification", with the purpose of reducing the tendency to link data and biology through the use
of the same word.  Kleinbaum, Kupper, and Morgenstern used the terms "homogeneity" and
"heterogeneity" to indicate similarity or difference in a measure across two or more groups.  These
neutral terms, which carry no connotation of causation, may be the safest to use.

Statistical interaction

The term "interaction" has an established and specific meaning in statistics, where it is used to
characterize a situation where effects are not additive. (Statisticians have the significant advantage of
being able to use the term "effects" without a causal connotation.)  For example, analysis of
variance is used to compare the means of one variable (e.g., blood pressure, BP) between two or
more populations.  If we are concerned that BP is influenced by another variable (e.g., body mass
index, BMI) and that the two populations have different BMI distributions, we may want to adjust
the BP comparison for BMI.  (The idea is similar to our computation of a standardized rate
difference to compare mortality rates in two populations.)  If the relationship between BP and BMI
is linear, then the method of adjustment is called analysis of covariance and can be illustrated as
two lines on a pair of axes (see left side of figure).

The vertical distance between the lines represents the adjusted difference in mean BP between the
two populations.  Unless the two lines are parallel, however, the distance between them will vary
with the level of BMI.  The lines will be parallel when the slope of the relationship between BP and
BMI is the same in the two populations, i.e., the strength of the association between blood pressure
and BMI is the same in the two populations.

When the two lines are parallel, the blood pressures in the two populations can be represented by an
equation with three terms on the right-hand side – a constant (a), a variable (POP) indicating the
population in which the relationship is being estimated, and BMI, e.g.,

BP = a + b1 POP + b2 BMI

in which a, b1, and b2 will be estimated through a procedure called "linear regression".
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Since the indicator variable (POP) is usually coded as 0 for one population and 1 for the other, the
equations representing blood pressures are:

BP = a + 0  + b2 BMI           (POP=0)

in one population and:

BP = a + b1 + b2  BMI           (POP=1)

in the other.

b1 is then the vertical distance between the two lines, which corresponds to the adjusted difference
in mean blood pressure between the populations. b2 is the slope of the relationship between BP and
BMI, i.e. the number of units increase in BP associated with a one-unit increase in BMI.  This term
accomplishes the adjustment needed for BMI.  "a" is a constant that is usually needed to move the
lines to their correct vertical position.

In the right side of the figure, the two lines are not parallel – there is interaction.  Since the distance
between the lines varies according to the level of BMI, the distance cannot be stated as a single
number.  In the presence of interaction, the linear model for blood pressure requires the addition of
an "interaction term" to represent the varying distance between the lines:

BP = a + b1 POP + b2 BMI + b3 (POP) (BMI)

With POP coded as 0 or 1, the first population will still have its blood pressures modeled by:
BP = a + b2 BMI.  However, the data in the second population will be modeled as:

BP = a + b2 + b2 BMI + b3 BMI      (POP=1)

b3 represents a further adjustment to account for the lack of parallelism and thus the inability of b1
alone to represent the distance between the lines. The difference between the two populations will
be stated as (b1 + b3 BMI), so that it will be different for different levels of BMI.
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Illustration of statistical interaction

These two lines are 
para llel; they do not 
exhibit interaction. 

These two lines are not 
para llel; they exhibit 
interaction. 

Men 

Women  

O lder 

Y ounger 

BMI BMI 

BP 

0 

BP 

0 

If the figure on the left represents the relationship between blood pressure (BP) and body mass
index (BMI) in men (upper line) and women (lower line), then the graph shows that the association
of body mass and blood pressure is equally strong in both sexes – a one-unit increase in body mass
index in men and a one-unit increase in women both are associated with the same increase in blood
pressure.  Therefore there is no (statistical) interaction.

In contrast, if the figure on the right represents the relationship in older people (upper line) and
younger people (lower line), then the graph indicates an interaction between body mass index and
age – a one-unit increase in body mass index in older people is associated with a larger increase in
blood pressure than is a one-unit increase in younger people.

Statisticians use the "interaction" to refer to the latter situation, where the equations for different
groups differ by a variable amount on a given scale (e.g., interaction may be present on the ordinary
scale but not on the log scale).

Biological interaction

Epidemiologists are more interested in what Rothman and Greenland call "biological interaction".
Biological interaction refers to interdependencies in causal pathways, such as those discussed at the
beginning of this chapter.  Such interdependencies – situations where one factor may potentiate or
inhibit the effect of another – have implications for understanding of disease etiology or
effectiveness of treatments or interventions.  Laboratory researchers can readily observe such
interdependencies, but epidemiologists must content ourselves with analyzing clinical or population
data.
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Over two decades ago (Causes, Am J Epidemiol, 1976), Rothman introduced a diagrammatic
representation of multicausality in this biological or other mechanistic sense.  He has continued to
elaborate this schematic model and uses it to illustrate and explain relationships between
epidemiologically-perceived relationships and "biological relationships".

Rothman's model envisions causal pathways ("sufficient causes") as involving sets of "component
causes".  A  "sufficient cause" is any set of component causes that simultaneously or sequentially
bring about the disease outcome.  "Component causes" are the individual conditions, characteristics,
exposures, and other requisites (e.g., time) that activate the available causal pathways.  Since there are
always causal components that are unknown or not of interest for a particular discussion, sufficient
causes include a component to represent them.  Let us explore the way Rothman's model works.

"Cause" - (1) an event, condition or characteristic that plays an essential role in producing the
occurrence of the disease (this is a "component cause"); or (2) a constellation of components
that act in concert.

"Sufficient cause" - Set of "minimal" conditions and events that inevitably produce a disease;
none of the conditions is superfluous; most of the components are unknown.

"Necessary cause" - A causal component that must be present for the disease to occur.

The circle below represents a sufficient cause, e.g., a pathway, chain, or mechanism that can cause a
particular disease or other outcome.  If all components are present, then the disease occurs (on
analogy with the game Bingo).  A and B represent component causes.  For this sufficient cause to
come into play, both A and B must be present.  {U} represents the unknown background factors
that also must be present for this sufficient cause to operate.

A B 

{U} 

If this diagram (model of biological, chemical, physical, psychological, etc. reality) represents the
primary or only pathway to the outcome, then component causes A and B have interdependent
effects.  Each component cause must be present for the other to have its effect.  We could say that
they are synergistic.  The favism situation could be represented in this way, with A representing fava
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bean intake and B representing genetically-determined reduced glucose-6-phosphate dehydrogenase
activity.  If this sufficient cause is the only causal pathway by which the disease can occur, then this
synergism is absolute:  without A, B has no effect; with A, B does if the remaining components {U}
are present; without B, A has no effect; with B, A does (when {U} are present).  (If either factor is
preventive, then A or B represents its absence.)

If there were additional causal pathways containing B but not A, then the absence of A would not
completely eliminate the effect of B.  The latter situation, illustrated below, might be characterized as
intermediate, partial, or relative synergism.  B can now affect disease risk even in the absence of A.

A  B  B  C  

{U 2}  {U 1}  

A has thus become a relative modifier of the effect of B.  B, however, remains an absolute modifier
of the effect of A, because A has no effect in the absence of B.  We may also note that component
cause B is a necessary cause, since there is no sufficient cause (causal pathway) that can operate
unless B is present.
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In this diagram, G and H exhibit absolute synergy, since neither has an effect in the absence of the
other.  B and C exhibit partial synergy with respect to each other, since their combined effect
exceeds what would be expected from knowledge of their separate effects.

Applying Rothman's model to epidemiologic concepts (induction period)
and measures

In our discussion of natural history of disease, we defined the induction period as the time between
initial exposure and the development of the disease.  Since causal pathways involve multiple
component causes, though, in Rothman's model the concept of induction period applies to
component causes, rather than to the disease.  The induction period in respect to a particular
component cause is the time usually required for the remaining component causes to come into
existence.  If necessary, one component cause can be defined as a period of time (e.g., for a
microbial pathogen to multiply).  By definition, the induction period for the last component cause to
act has length zero.

Another and even more fundamental issue is that in multicausal situations, disease occurrence,
extent, association, and impact all depend upon the prevalence of the relevant component causes in
the populations under study.   While we have previously acknowledged that the incidence and/or
prevalence of a disease or other phenomenon depends upon the characteristics of the population,
we have not examined the implications of this aspect for other epidemiologic measures.  For
example, we have generally spoken of strength of association as though it were a characteristic of an
exposure-disease relationship.  But though often treated as such, strength of association is
fundamentally affected by the prevalence of other required component causes, which almost always
exist.

Rothman's model helps to illustrate these relationships in situations where biological
interdependency (used as a general term to signify any causal interdependency) is present.  A  basic
point is that disease incidence in persons truly unexposed to a study factor indicates the existence of
at least one sufficient cause (causal pathway) that does not involve the study factor.  If exposed
persons have a higher prevalence of the component causes that constitute this sufficient cause, their
disease rate will be higher.  This process is the basis for confounding to occur.

Second, since very few exposures are powerful enough to cause disease completely on their own, the
rate of disease in exposed persons will also depend upon the prevalence of the other component
causes that share pathways (sufficient causes) with the exposure.  Measures of association and
impact will therefore also depend upon the prevalence of other component causes, since these
measures are derived from incidence rates.

Third, if two causal components share a causal pathway, then the rarer of the two component causes
will appear to be a stronger determinant of the outcome, especially if the remaining component
causes are common.  As in economics, the limiting factor in production experiences the strongest
upward pressure on price.
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Fourth, proportion of disease attributable to a component cause (i.e., its ARP) depends upon the
prevalence of the other component causes that share the causal pathway(s) to which it contributes.
This result is so because if the strength of association depends upon prevalences, then so must the
ARP.  However, the ARP's for the various component causes are not additive and will often sum to
more than 1.0.  For example, if two component causes are in the same causal pathway, then the
entire risk or rate associated with that pathway can be attributed to each of the two components.
The absence of either component prevents the occurrence of the outcome.

Phenylketonuria example

An example of these relationships, from the article referred to earlier (Causes, Am J Epidemiol 1976;
104:587-92), is the causation of phenylketonuria (PKU), a condition that, like favism, is linked to a
dietary factor (phenylalanine, an amino acid) and a genetic defect.  Infants with the PKU gene who
ingest more than a minimal amount of phenylalanine develop serious neurologic effects including
mental retardation.  The "causal pie" for this example would be the same as the first one in this
chapter, with A representing the PKU gene and B representing dietary phenylalanine.

Since Western diets typically contain phenylalanine, in the absence of specific preventive measures
(universal screening of newborns and institution of a special diet) nearly all infants with the PKU
gene develop clinical manifestations.  The risk ratio for the PKU gene is therefore enormous; the
PKU gene is a "strong" cause.  In contrast, phenylalanine is a "weak" cause, since nearly all infants
are exposed to it and only a tiny proportion develop clinical PKU.  However, in a society in which a
large proportion of the population have the PKU gene and infant diets rarely contain phenylalanine,
then dietary phenylalanine will appear as the strong cause and the PKU gene as the weak cause!
(Recall:  "any measure in epidemiology is a weighted average . . .".).

Numerical example - favism

To explore these ideas further, let us construct a numerical example.  Suppose that in a population
of size 10,000,000, there are two sufficient causes of favism, one that involves both GPDH
deficiency and fava bean intake, and a second that involves neither of these factors.  Assume:

! 1% of the population (100,000 persons) have GPDH deficiency;

! 20% (2,000,000) of the population consume fava beans;

! These two factors are distributed independently of one another, so that 20,000 people have
both factors (20,000 = 1% of the 2,000,000 fava bean = 20% of the 100,000 GPDH deficient
persons).

! All remaining component causes {U} needed to lead to favism through the first sufficient
cause are simultaneously present in 10% of persons, independent of their other risk factors;

! The sufficient cause that does not involve fava beans or GPDH deficiency occurs in 0.03%
of the population, again independent of other factors/component causes.  (We are assuming that
the definition of favism does not require involvement of fava beans themselves.)
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In this situation, the first sufficient cause will act in the expected 1% x 20% x 10% = 0.02% of the
population in whom all these components are present, i.e., 2,000 cases.  The second sufficient cause
will operate in 3,000 persons, regardless of GPDH deficiency and/or fava beans.  The table below
shows what we can expect to observe in various subsets of the population.

Incidence of favism by population subgroup

Sub-population      N Incidence Cases

People who do not eat fava beans and do not
have GPDH deficiency;
   [N = 80% x 99% x 10,000,000;
cases come only from the 2nd pathway]

7,920,000 0.03% 2,376

People who eat fava beans but do not have
GPDH deficiency
     [N = 20% x 99% x 10,000,000;
cases come only from the 2nd pathway]

1,980,000 0.03% 594

People with GPDH deficiency who do not eat
fava beans [N = 1% x 80% x 10,000,000;
cases come only from the 2nd pathway]

80,000 0.03% 24

People with GPDH deficiency who eat fava
beans N= 1% x 20% x 10,000,000;
10% (2,000 cases) occur in the 10% with the
remaining component causes; also, 0.03% of
the 20,000 (6 cases) get favism through the
second pathway; (0.6 people would be
expected to have both pathways acting so are
subtracted from the above total)]

20,000 10.03% 2,005.4

Total 10,000,000 0.05% 4,999.6

From this table we can compute (crude) incidences and incidence ratios for each exposure:
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Incidence and incidence ratios of favism (crude)

GPDH deficiency
Present 2.03%
(2,030 cases / 100,000 people)

Absent 0.03%
(2,970 / 9,900,000 people)

Incidence ratio 67.67

Eat fava beans
Yes 0.13%
(2,600 cases / 2,000,000)

No 0.03%
(2,400 / 8,000,000)

Incidence ratio 4.33

So indeed, the scarcer factor (GPDH deficiency) has the greater incidence ratio.  If we increase the
prevalence of GPDH deficiency without changing other parameters, the incidence ratio for fava
bean consumption will rise.  A spreadsheet is a convenient way to see the effect on incidence ratios
from varying the prevalences (check the web page for a downloadable Excel spreadsheet).

Bottom line – what we observe as strength of association is greatly dependent upon prevalence of
other component causes.

The above example also illustrates the non-additivity of the attributable risk proportion
[ARP=(RR-1)/RR]):

67.67  –  1
ARP for GPDH deficiency –––––––––– = 98.5 %

67.67

4.33  –  1
ARP for Fava bean consumption –––––––––– = 76.9 %

4.33

Clearly, these ARP's do not sum to 100%, nor, when we think about it, should they.

Before continuing with Rothman's diagrams, we need to revisit an old friend, weighted averages.
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Crude rates as weighted averages

Recall the example of Type A behavior and CHD incidence with which we began the chapter on
Confounding.  In that example, smokers had a much higher incidence of CHD than did
nonsmokers.  Since the Type A group consisted mainly of smokers, its CHD incidence was greater
than the Type B group, which consisted mainly of nonsmokers.  If there were three smoking status
groups, then the Type A incidence would be a weighted average of the rates for each of the three
smoking status groups (see diagram).

Incidence
of Observed (crude)

CHD rate in Type A
subjects

Non-
smokers

Light smokers Heavy
smokers

So whenever we compare groups, it is important to pay attention to their distributions of risk
factors.  In the chapter on confounding, though, we considered only subgroups defined by other
(independent) risk factors.  We will now see that we must widen our view to include subgroups
defined by variables that may influence the effect of the exposure even if those variables have no
effect in its absence.

Since every rate we observe in some population is a weighted average of the rates for its component
subgroups, this principle must apply to a group of exposed persons as well.  Thus, the incidence in
the exposed group depends on the composition of the group in regard to factors that are in the
same causal pathways as the exposure.  A prominent example is genetic factors, which thanks to the
molecular biological revolution we are learning a great deal more about.

For example, it has been asserted that susceptibility to impairment of red blood cell production by
low-level lead exposure varies according to the genetically-controlled level of the enzyme amino
levulanate dehydratase.  If that is the case, then in a group of children with a given level of blood
lead (e.g., 20 micrograms/dL), the proportion with evidence of impaired red blood cell production
would reflect a weighted average of the proportions in each subgroup defined by enzyme level:
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%
with evidence
of impaired

red blood cell Observed (crude)
production at % of subjects

20 μg/dL affected
blood lead

Low Intermediate High
      Level of Amino Levulanate Dehydratase

Another example is that LDL cholesterol levels reflect both dietary intake of saturated fat and
cholesterol and ApoE genotype (from Shpilberg et al., 1997).  Compared to persons with the most
common allele (E3), those with the E2 allele have lower average cholesterol and those with the E4
allele have higher levels.  Therefore, serum cholesterol levels associated with a given population
distribution of dietary fat intake will depend on the distribution of these three genotypes.

Yet another example is incidence of venous thromboembolism.  A strong effect of oral
contraceptives (OC) on venous thromboembolism was one of the first hazards to be recognized for
OC.  Recent data from Vandenbroucke et al. (Factor V Leiden: should we screen oral contraceptive
users and pregnant women? Bio Med J 1996;313:1127-1130) show an overall incidence of 0.8 per
10,000 women-years that rises to 3.0 per 10,000 women years with OC use.  But among OC users
who are also carriers of factor V mutation (associated with activated protein C (APC) resistance), the
incidence rises to 28.5 per 10,000 women years (from Shpilberg et al., 1997).  So the incidence of
venous thromboembolism in a population and the effects of OC will be greatly influenced by the
population prevalence of factor V mutation.

So whatever phenomenon we are investigating, we need to take account of both independent risk
factors for it and factors that may only appear to modify the effect of an exposure of interest (which
we will subsequently refer to as an "effect modifier").  This is one reason why we typically stratify
data by sociodemographic factors.  Factors that affect susceptibility may well covary with
demographic characteristics such as age, sex, geographic region, and socioeconomic resources, even
if they do not have a role of their own in causation.

Since the distribution of effect modifiers may affect disease rates, it will also affect comparisons
between rates in exposed and nonexposed subjects.  But if the effect modifier is not itself a risk
factor for the disease – i.e., if in the absence of the exposure of interest the effect modifiers is not
associated with disease risk – then the modifier can confound associations only among groups with
different levels of exposure, not between an exposed and an unexposed group.

Several examples will help to clarify these points.  Assume for the moment, that asbestos has no
effect on lung cancer incidence independent of smoking, but that smoking has an effect both alone
and synergistically with asbestos.  A study of the two factors might produce the following data:
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Lung cancer rates by smoking and asbestos exposure
(per 100,000 person years)

Smokers
Exposed to asbestos 602
Not exposed to asbestos 123

Nonsmokers
Exposed to asbestos 11
Not exposed to asbestos 11

From these data we would conclude (leaving aside all issues of statistical significance, bias, and so
on) that (a) smoking increases lung cancer risk and (b) asbestos does so only in smokers.  Smoking
emerges as a risk factor, and asbestos as a modifier of the effect of smoking.  Smoking could also be
said to be an absolute modifier of the effect of asbestos, since the effect of the latter is null without
smoking and dramatic in its presence.  The rate ratios for lung cancer in smokers versus nonsmokers
are 55 among those exposed to asbestos and 11 among those not exposed.

If we had not analyzed our data separately according to asbestos exposure, the lung cancer rate in
nonsmokers would still be 11 per 100,000 person-years.  But the rate in smokers would be
somewhere between 123 and 602.  The actual value would depend on the proportion of smokers
exposed to asbestos.  Similarly, the rate ratio for lung cancer and smoking would range between 11
and 55.  So the crude rate ratio for lung cancer and smoking would always lie within the range of the
stratum specific rate ratios.

The fact that the crude rate ratio differs from the stratum-specific rate ratios does not mean that
confounding is present.  Regardless of the proportion of subjects exposed to asbestos, the
relationship between smoking and lung cancer cannot be due to asbestos exposure, though the
strength of that relationship will depend on the degree of asbestos exposure.  If the crude rate ratio
can be expressed as a weighted average of the stratum-specific ratios, then confounding is not
present.

The above results will always hold when the effect modifier has no effect in the absence of the
exposure and the comparison of interest is between exposed and unexposed groups.   A point of
theoretical interest is that it was the above type of situation that led us in our discussion of
confounding to focus on the question of an association between the potential confounder variable
and the disease among the unexposed.  An association among the exposed could reflect effect
modification rather than independent causation (i.e., among exposed persons, disease rates are
higher among those also exposed to a modifier, even if that is not the case among unexposed
persons).

Since an effect modifier with no independent effect on the outcome does alter the risk or rate in the
presence of exposure, however, an effect modifier can confound comparisons between groups
exposed to different degrees.  Suppose, for example, that we have divided the smokers in the
previous table into light smokers and heavy smokers.  Suppose further that most light smokers are
exposed to asbestos and most heavy smokers are not.  Then we might well observe a higher lung



_____________________________________________________________________________________________
www.epidemiolog.net, © Victor J. Schoenbach 12. Multicausality: Effect modification -  397
rev. 11/5/2000, 11/9/2000, 5/11/2001

cancer rate among the light smokers (due to their greater asbestos exposure) than among the heavy
smokers (where the rate has not been increased by asbestos).  The following table gives a numerical
illustration of such a situation.

Lung cancer rates by level of smoking and asbestos exposure
(per 100,000 person years)

Heavy smokers - overall (200-1,000)
Exposed to asbestos 1,000
Not exposed to asbestos 200

Light smokers - overall (100-500)
Exposed to asbestos 500
Not exposed to asbestos 100

Nonsmokers - overall (11)
Exposed to asbestos 11
Not exposed to asbestos 11

Here, asbestos alone has no effect, heavy smoking in the absence of asbestos has rates twice that for
light smoking, and asbestos increases lung cancer rates in smokers fivefold.  If 60% of light smokers
but only 10% of heavy smokers are exposed to asbestos, then the overall lung cancer rate in light
smokers (340 = {500 x .60 + 100 x .40}) will exceed that in heavy smokers (280 = {1,000 x .10 +
200 x .90}).]

While the above situations may at first appear to be complex, they simply reflect different aspects of
weighted averages, so with some practice the mystery evaporates.  Additional complexity does enter
the picture, however, when we turn to effect modification by a variable that has an effect on the
outcome by a pathway that does not involve the exposure of interest, i.e., an independent effect.
Compare these two causal schema:
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where {B0}, {B1}, {B2}, and {B3} are probably overlapping sets of (unidentified) background
factors that are needed because (1) people exposed to neither cigarette smoke nor asbestos do get
lung cancer, albeit at a low rate; (2) not all people who smoke get lung cancer; etc.  [Note: these are
the same as Rothman's {U}.  I prefer to use different subscripts to make clear that different causal
pathways generally involve different required background factors.  Otherwise all persons susceptible
to developing the disease through a causal pathway involving an exposure (e.g., smoking) would get
the disease regardless through the "unexposed" pathway even if not exposed, so the exposure could
not be associated with an increased rate of disease.]

The three-pathway configuration represents the situation we have just seen, where asbestos has no
effect in nonsmokers.  If we apply the data from the preceding numerical example into the upper
configuration of causal pathways, we see that the rate that corresponds to the first causal pathway
({B0}) is 11/100,000 py.  The rate that corresponds to the second causal pathway (Smk|{B1}) is
112/100,000 py (123 - 11: the incidence density difference, since people who smoke and can
therefore get disease through the second causal pathway are also at risk of developing the disease
through the first causal pathway).  Similarly, the rate that corresponds to the third causal pathway
(Smk|Asb|{B2}) is (602-112-11)/100,000 py (since we observe 602 for people who have both
exposures, but they could have developed disease from either of the first two causal pathways).
These different disease rates presumably correspond to the prevalences of {B1}, B2}, and {B3}.

The four-pathway configuration does show an independent effect of asbestos.  In this configuration,
we see that confounding by asbestos can occur, since the risk in nonsmokers may be elevated by the
effect of asbestos.  Moreover, it now becomes more difficult to assess effect modification as "a
combined effect greater than we expect from the effects of each variable acting alone".  The
problem is: if each variable has an effect on its own, what do we expect for their combined effect so
we can say whether we have observed something different from that?

Consider, for example, actual data on the relationship of smoking and asbestos to lung cancer death
rates (from E. Cuyler Hammond, Irving  J. Selikoff, and Herbert Seidman.  Asbestos exposure,
cigarette smoking and death rates.  Annals NY Acad Sci 1979; 330:473-90).
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Age standardized lung cancer rates by smoking and asbestos exposure
(per 100,000 person years)

Smokers Nonsmokers
Exposed to asbestos 602 58
Not exposed to asbestos 123 11

When we calculate the disease rates that correspond to each of the four causal pathways in the lower
configuration of causal "pies" above, the two leftmost pathways have the same rates as in the upper
configuration.  The rate corresponding to the rightmost pathway (Asbestos|{B3}) is 58-11 =
47/100,000 py.  The rate that corresponds to the third causal pathway (Smk|Asb|{B2}) is now
reduced since some of cases with both exposures could be due to the effect of asbestos.  So the rate
that corresponds to the third pathway is now (602-112-11-47)/100,000 py = 410/100,000 py.

We might take these rates and reason as follows:

Increase due to smoking 123 - 11 = 112
Increase due to asbestos  58 - 11 =  47
Total increase expected due to both 112 + 47 = 159
Total observed increase 602 - 11 = 591 !

Since the increase due to the combined effect greatly exceeds that expected from our (additive)
model, we would conclude that the effect is synergistic.

Alternatively, we might reason in relative terms:

Relative increase due to smoking 123 / 11 = 11.2
Relative increase due to asbestos  58 / 11 =  5.3
Total increase expected due to both 11.2  x  5.3 = 59.4
Total observed increase 602 / 11 = 54.7

This time the observed increase and that expected from our (multiplicative) model are quite close, so
we conclude that there is no effect modification.  We are thus faced with a situation where the
decision about effect modification depends upon what model we employ to arrive at an expected
joint effect to compare with the observed joint effect (or equivalently, upon the scale of
measurement, hence the term "effect measure modification").

Before pondering this dilemma further, we should first state the additive and multiplicative models
explicitly.  To do so we introduce a notation in which "1" indicates presence of a factor, a "0"
indicates absence of a factor, the first subscript represents the first risk factor, and the second
subscript represents the second risk factor (see below).
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Notation for joint effects

 R1 risk or rate in the presence of a factor, ignoring the presence or absence of other
identified factors

 R0 risk or rate in the absence of a factor, ignoring the presence or absence of other
identified factors

 R11 risk or rate when both of two factors are present

 R10 risk or rate when the first factor is present but not the second
 R01 risk or rate when only the second factor is present

 R00 risk or rate when neither of the two factors is present (i.e., risk due to background
factors)

RD11 difference between the risk or rate when both factors are present and the risk or
rate when neither factor is present

RD10 difference between the risk or rate when only the first factor is present and the risk
or rate when neither factor is present

RD01 difference between the risk or rate when only the second factor is present and the
risk or rate when neither factor is present

RR11 ratio of the risk or rate when both factors are present divided by the risk or rate
when neither factor is present

RR10 ratio of the risk or rate when only the first factor is present divided by the risk or
rate when neither factor is present

RR01 ratio of the risk or rate when only the second factor is present divided by the risk
or ratio when neither factor is present

The use of two subscripts implies a stratified analysis.  The first subscript indicates presence or
absence of the first factor; the second subscript, presence or absence of the second factor.  For
example, R10 refers to the rate for persons exposed to the first factor but not to the second.  That
rate can be referred to as the rate for the exposed (to factor 1) in the stratum without factor 2;
equivalently, R10 can be referred to as the rate for the unexposed (to factor 2) in the stratum where
factor 1 is present.  In contrast, a single subscript (R1) means the factor is present, with other factors
present or not present (i.e., crude with respect to other factors).  "Background" factors and the risk
R00 associated with them are assumed to be uniformly distributed across all strata.

Additive model

Under an additive model, the increase in rate or risk from a combination of factors equals
the sum of the increases from each factor by itself.  We can express this statement algebraically,
using the rate (or risk) difference:
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R11 –  R00 = R10 –  R00 + R01 –  R00 (A1)

RD11 = RD10 + RD01 (A2)

Using elementary algebra and the definition of the rate difference, we can also write the additive
model as:

R11 = R00 + RD10 + RD01 (A3)

i.e., the expected rate where both factors are present is the baseline rate (R00, neither factor present)
plus the rate difference associated with the first factor plus the rate difference associated with the
second factor.  Another equivalent expression is:

R11 = R10 + R01 – R00 (A4)

Since RR11 = R11/R00, RR10 = R10/R00, and RR01=R01/R00, we can express the additive model in
terms of the risk (or rate) ratio, by dividing each term in expression A1 by the baseline risk, R00.

RR11 –  1 = RR10 –  1 + RR01 –  1 (A5)

An advantage of this formulation is that we can use it even when we do not have estimates of
specific risks or risk differences.  The expression (R1-R0)/R0, or RR – 1, is sometimes referred to as
the (relative) excess risk.  The additive model, expressed in terms of excess risk, is therefore:

Excess risk for A and B together = Excess risk for A + Excess risk for B

i.e., the joint excess risk equals the sum of the excess risk for each factor alone.  With this expression
we can evaluate the additive model even from case-control data.

More than two factors

Where there are three factors, we have, analogously:

RR111 –  1 = RR100  –  1 + RR010  –  1 + RR001  –  1 (A6)

RD111 = RD100 + RD010 + RD001 (A7)
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R111 = R000 + RD100 + RD010 + RD010 (A8)

and

R111 = R100 + R010 + R001 – 2 R000 (A9)

So the additive model can be regarded as based on 1) additivity of excess risks, 2) additivity of risk
differences, and/or 3) additivity of the risks themselves.  The reason that we need to subtract the
baseline risk in the last of these forms is that risk in the presence of any of the factors includes,
necessarily, the ever-present background risk.  So when we add the risk for one factor to the risk for
another factor, the background risk is added twice.  Thus, when we refer to Rijk as the risk (or rate)
for a factor "by itself", the "by itself" really means "with no other specified factors", since the
baseline risk is, by definition, always present.

Multiplicative model

In parallel fashion, the multiplicative model assumes that the relative risk (risk ratio, rate ratio) for
the factors operating together equals the product of their relative risks:

RR11 = RR10 × RR01 (M1)

Multiplying through by baseline risk (R00) gives:

R11 = R00 × RR10 × RR01 (M2)

and

R11 = R10 × R01 / R00 (M3)

i.e., the joint risk equals the product of 1) the baseline risk multiplied by the relative risk for each
factor and/or 2) the individual risks and the reciprocal of the baseline risk.  For three factors, the
model becomes:

RR111 = RR100 × RR010 × RR001 (M4)

and

R111 = R000 × RR100 × RR010 × RR001 (M5)
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and

R111 = R100 × R010 × R001 / (R000)2 (M6)

Again, there is a baseline risk or rate in the denominator of each relative risk, so when the relative
risks are converted to risks, the R000 in the numerator eliminates one of the resulting three R000's,
leaving two remaining in the denominator.  As before, "by itself" means without other specified
factors, but including baseline risk.

Note, however, that the multiplicative model can also be written as an additive model on the
logarithmic scale (because addition of logarithms is equivalent to multiplication of their arguments):

ln(R111) = ln(R100) + ln(R010) + ln(R001) – 2 × ln(R000) (M7)

For this reason, the difference between the additive and multiplicative models can be characterized
as a transformation of scale.  So "effect modification" is scale-dependent.

Optional aside – It can also be shown that a multiplicative model can be expressed as an
additive model on the natural scale plus an interaction term.  For two factors: (R10 –
R00)(R01 – R00)/R00, or equivalently, (R00)(RR10–1)(RR01–1) – essentially, we add a "fudge
factor".

Additive model:

      R11  =  R10  +  R01  –  R00

Additive model with interaction term:

      R11  =  R10  +  R01  –  R00   +  R00  ×  (RR10–1)  ×  (RR01–1)

Multiplying out the interaction term:

      R11  =  R10  +  R01  –  R00   + R00 × RR10 × RR01 – R00 × RR10 – R00 × RR01 + R00

Dividing both sides by R00:

      RR11  =  RR10  +  RR01  –  1  + RR10 × RR01 – RR01 – RR10 + 1

Simplifying:
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RR11 = RR10 × RR01 =  the multiplicative model

[End of aside]

The choice of model – additive, multiplicative, or other – is not a settled affair and involves a variety
of considerations.  One consideration is to choose the simplest model that can represent the data.
Recall the example from an earlier lecture:

Relative versus Absolute Effects example Incidence of myocardial infarction (MI)
in oral contraceptive (OC) users per 100,000 women-years

__
Age Cigarettes/day OC*  OC*   RR**    AR***

30-39 0-14 6 2 3 4
15 + 30 11 3 19

40-44 0-14 47 12 4 35
15 + 246 61 4 185

Notes:
 * Rate per 100,000 women-years
 ** RR=relative risk (rate ratio)
*** AR=attributable risk (rate difference)
Source:  Mann et al. (presented in a seminar by Bruce Stadel)

Here, we saw that the rate ratio was a more stable index of the strength of association between OC
and MI across the various combinations of age and smoking.  In fact, the MI rates for many
combinations of the three risk factors – age, smoking, and OC – are not far from those expected
based on the multiplicative model.  To see this, use the additive and multiplicative models just
presented with the data in the above table to fill in the rightmost two columns of the following table.
If we write the rates for the three risk factors as R100, R010, and R001, with the background rate
defined as R000, then joint rates for several combinations of risk factors would be:

First and third factors present (row 6):

R101  =  R100  +  R001  –  R000             (additive model)

R101  =  R100  ×  R001 / R000             (multiplicative model)

First and second factors present (row 7):

R110  =  R100  +  R010  –  R000             (additive model)
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R110  =  R100  ×  R010 / R000             (multiplicative model)

All three factors present (row 8):

R111  =  R100  +  R010  +  R001  –  2 R000    (additive model)

R111  =  R100  ×  R010  ×  R001 / (R000)2   (multiplicative model)

where the three factors are 1) age, 2) cigarette smoking, and 3) oral contraceptives.  For example,
suppose R101 is the rate of MI in women who are in the older age group, smoke less than 15
cigarettes/day or not at all, and use oral contraceptives.  The multiplicative model says that the rate
for any combination of the three factors (with cutpoints defined as in the table) equals the product
of the rates for each of the three factors when neither of the other two is present, divided by the
square of the rate for those who have none of the three factors (i.e., only unidentified background
factors are present).  Here is a "test" of the model (one line is left incomplete, to give you the
satisfaction of figuring it out):

Home-made multiplicative model of Incidence of myocardial infarction (MI) in oral
contraceptive (OC) users per 100,000 women-years

Observed Expected Expected
Row Age Cigarettes

/day
OC* Rate (Multiplic) (Additive)

1 R000 0: 30-39 0: 0-14 0: no 2 - -

2 R001 0: 30-39 0: 0-14 1: yes 6 - -

3 R010 0: 30-39 1: 15 + 0: no 11 - -

4 R100 1: 40-44 0: 0-14 0: no 12 - -

5 R011 0: 30-39 1: 15 + 1: yes 30 ___ ___

6 R101 1: 40-44 0: 0-14 1: yes 47 36 16

7 R110 1: 40-44 1: 15 + 0: no 61 66 21

8 R111 1: 40-44 1: 15 + 1: yes 246 198 25

Notes:  0: and 1: indicate the coding for each risk factor level.  Rates for single factors in the absence
of the other two are shown in bold.

[Thanks to Jim McDougal (1996) for spotting my longstanding errors in the 3-factor interaction in
this table and its explanation.]

Certainly the multiplicative model yields expected rates that are closer to the observed rates for
various combinations of the factors than does the additive model.  The better fit for the
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multiplicative model supports the use of the rate ratio as the measure of association for each risk
factor and each risk factor combination in these data.  If Mann et al. want a summary measure for
the effect of OC on MI rates, controlling for age and smoking, a weighted average of the rate ratios
(3, 3, 4, 4) for OC use across the four age and smoking categories would be a good choice.  But then
what happened to effect modification?

The "natural" scaling

The additive model has been put forth by Rothman as the "natural" scaling.  Risks are probabilities,
and the probability that either of two independent and mutually exclusive events will take place (e.g.,
smoking causes MI or OC causes MI) is the sum of the probabilities for each.  Therefore if the risk
(probability of disease) in people with both exposures exceeds the sum of the risks for each
exposure separately, then some non-independence (i.e., interaction) must exist between these two
disease events.  Rothman's proposition appears to have become the consensus in terms of evaluating
impact on public health and/or individual risk (see below).  Our earlier suggestion that the risk or
rate difference serves more often as a measure of impact than as a measure of strength of
association in respect to etiology is distinctly parallel.

When our interest is the relationship of the mathematical model or scaling to possible biological
mechanisms, however, the issue becomes more problematic.  Kupper and Hogan (Interaction in
epidemiologic studies. Am J Epidemiol 108:447-453, 1978) demonstrated how two factors having
biologically equivalent modes of action, so that either factor can be regarded as a different
concentration of the other, can appear to be synergistic in their joint effect if the dose-response
curve is nonlinear.  (This example harks back to the fact that additivity on the logarithmic scale is
equivalent to multiplicativity on the natural scale.)  Therefore, a departure from additivity can occur
even in the absence of biological interaction.

Data from a study published in that year provides an illustration.  Bradley DD, et al. (Serum high-
density-lipoprotein cholesterol in women using oral contraceptives, estrogens and progestins.  New
Engl J Med 299:17-20, 1978) suggested that smoking and oral contraceptives (OC) may each increase
myocardial infarction risk by reducing levels of HDL cholesterol.  The effects of smoking and oral
contraceptives on HDL appear to be additive.  But if the relationship between HDL level and
myocardial infarction risk is exponential, with the logarithm of risk increasing in linear fashion with
declining HDL, then the effects of the two behavioral risk factors on myocardial infarction risk will
be multiplicative.

In the figure below, the natural logarithm of heart attack risk is a linear function of HDL level, so
that risk rises exponentially as HDL decreases.  The risk function comes from Bradley et al.'s paper.
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If smoking causes a reduction in HDL of 6 mg/dL, and oral contraceptives cause a reduction of 2
mg/dL, then the changes in ln(risk) [from the formula in the figure] and in the RR's for smoking and
oral contraceptives separately and for both together are shown in the following table:

Factors HDL
reduction

Increase in
ln(risk)

RR

Smoking 6 1.044 2.84
OC only 2 0.348 1.42
Smoking and OC 8 1.392 4.02

Smoking is associated with a 6 mg/dL lower HDL level, corresponding to an increase in ln(risk) of
1.044, which in turn corresponds to a relative risk of 2.84.  Although (in this conceptual model) the
biological effects of smoking and OC on HDL are additive, because the dose-response curve is not
linear, this additivity of dose does not imply additivity of response.

This point has been elaborated by Thompson (1991), who makes the point that pathogenetic
processes are likely to include factors that intervene between the variables in our simplified causal
models.  Such intervening factors are generally unknown or unmeasured by epidemiologists.  Yet as
illustrated above, the form of the functional relation between two variables can change the
appearance of a risk function.  The actions of two factors may be additive on their immediate target,
but their effect on risk of a downstream effect could be additive, multiplicative, or anything else.
Only in the case of a crossover effect (a.k.a. qualitative interaction, which to be certain that it exists
should be demonstrated by confidence intervals that lie wholly below the null value in one stratum
and wholly above the null value in the other stratum – see Thompson 1991) do we have a basis for
inferring that something of biological interest is occurring (after excluding other non-mathematical
explanations).  Another situation where interpretation is unambiguous – what I have called "absolute
effect modification", where one factor has no effect in the absence of the other – is in practice just
as problematic as other non-crossover situations, since it is rarely possible to exclude the presence of
at least a weak effect (Thompson 1991).
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Effect modification as a reflection of information bias:

Another consideration that arises in interpreting apparent effect modification in epidemiologic data
relates to the question of the actual dosage received by subjects.  Suppose that data from a study of
lung cancer and smoking yielded these results:

Lung cancer rates per 100,000 person-years

Males   Females
Smokers 300 500
Nonsmokers 50 50

The rate ratios for males and females are 6 (300/50) and 10 (500/50), respectively, which might
suggest that women are more susceptible to the carcinogenic properties of tobacco smoke.  But
what if women smokers inhale more deeply and therefore receive a larger dose of carcinogenic
substances, the actual exposure?  So whereas effect measure modification in epidemiologic data may
suggest the need for a more detailed understanding of the phenomenon under study, an
interpretation in terms of biological synergism involves causal inference and needs to be approached
from that perspective.

Consensus

Rothman, Greenland, and Walker (1980) presented four perspectives on the concept of interaction:

1. The biologic perspective is concerned with elucidating how various factors act at the
biological (mechanistic) level.

2. The statistical perspective treats interaction as "leftovers", i.e., the nonrandom variability in
data that is not accounted for by the model under consideration.  Statisticians often try to
reformulate the model to eliminate these leftovers, i.e., to find the simplest model that fits
the data adequately.

3. The public health perspective should regard interaction is a departure from additivity, if one
assumes that costs are proportional to the number of cases.  If effects are more than
additive, then a greater than proportional payoff can be obtained by intervening against a
factor involved in an interaction.

4. The individual decision-making perspective should also regard interaction as a departure
from additivity, again assuming a linear relationship between costs and, in this case, risk.  For
example, if the combined effect of smoking and hypertension on CHD risk is greater than
additive, someone with hypertension can reduce his risk even more by quitting smoking than
someone with normal blood pressure.

These perspectives appear to be widely accepted.  The term "effect modification" is generally used
to refer to a meaningful departure from a given mathematical model (i.e., additive, multiplicative, or
whatever) of how risks or rates combine.  ("Meaningful" means that the departure is large enough to
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have clinical or public health significance and thought not to be due to random variability,
measurement inadequacy, or confounding.)  The additive model appears to be accepted as the
indicator of "expected joint effects" for policy or decision-making considerations.

Summary

In view of the foregoing, we may attempt to summarize the relevance of interaction and effect
modification in terms of four implications:

1. Increasing the precision of description and prediction of phenomena under study;

2. Indicating the need to control for the factors that appear as modifiers;

3. Suggesting areas for developing etiologic hypotheses; and

4. Defining subgroups and factor combinations for special attention for preventive approaches.

Elaboration

1. Increasing precision of description:

In our smoking in men and women illustration, the different strength of the smoking-lung cancer
association between men and women may lead to an appreciation of the need to be more precise in
the measurement and specification of the exposure variable.

2. Indicating the need to control for modifiers:

Since an effect modifier changes the strength of the association under study, different study
populations may yield different results concerning the association of interest.  Unlike potential
confounders, modifying variables cannot create the appearance of an association (for exposed versus
unexposed) where none exists.  But the proportion of the study population that has a greater
susceptibility will influence the strength of the association.  Therefore, to achieve comparability
across studies, it is necessary to control for the effect of the modifying variables, generally by
carrying out a separate analysis at each level of the modifier.

3. Developing etiologic hypotheses:

Attention to interactions in the data may lead to the formulation of etiologic hypotheses that
advance our understanding of the pathogenetic processes involved.  Although the linkage between
mechanisms and relationships in data is uncertain, a strong interaction might suggest that a shared
mechanism is involved.  For example, the interaction of smoking and asbestos might suggest a
scenario such as impairment of lung clearing processes and/or of mechanical injury from asbestos
particles increases susceptibility to carcinogens in cigarette smoke.
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4. Defining subgroups for preventive approaches:

To observe that the OC-MI association is particularly strong among smokers and/or women over
35 carries evident preventive implications in terms of health education warnings, contraindications
to prescribing, targeting of messages, and so forth.  The synergistic relationship between smoking
and asbestos in the etiology of lung cancer suggests the value of extra efforts to convince asbestos
workers not to smoke.  If the cost of helping a smoker to quit smoking is the same for asbestos
workers and others, then the benefit-cost ratio will be greater for a cessation program with smokers
who work with asbestos because more cases of lung cancer will be avoided for the same number of
quitters.

The rationale for viewing effect modification as a departure from an additive model of disease risks,
at least for public health purposes, is that if an additive model holds, then removal of one agent can
only be expected to eliminate the risk that arises from that agent but not the risk from other agents.
If there is positive interaction, however, removal of any one of the agents involved will reduce some
risk resulting from the other as well.  In such a situation, the impact of removing a risk factor is
greater than that expected on the basis of its effect on baseline risk.

A "real-life" example

The following table comes from a randomized, controlled trial of a self-help smoking cessation
intervention using brief telephone counseling.  Quit rates for smokers in the intervention group and
the other groups suggested that participants with certain baseline characteristics were more or less
likely to benefit from the telephone counseling intervention.  For example, the telephone counseling
intervention was associated with a 14 percentage point (31%–17%) higher quit rate for participants
who were not nicotine dependent but with only a 3 percentage point (17%–14%) higher quit rate for
participants who were nicotine dependent.  The intervention was associated with a 12 percentage
point (29%-17%) higher quit rate for participants who had not previously undergone an intensive
cessation program but with only a 2 percentage point (17%–15%) higher quit rate for participants
who had.  The observed differences appeared to be consistent with the fact that the intervention was
a minimal treatment (so would not be of much help to a smoker who had already experienced an
intensive treatment program) that incorporated nicotine-fading/brand-switching (which has limited
applicability for a smoker who is already smoking a low-nicotine brand).
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Baseline Characteristics Associated with a Significantly Different Telephone Counseling
Effect on 7-day Abstinence at 16-months Follow-up in 1,877 Smokers at Group Health

Cooperative of Puget Sound, Washington, 1985-1987

Quit rate
with characteristic without characteristic

Baseline characteristic Counseling
No

Counseling Counseling
No

Counseling
Nicotine dependent 17 14 31 17
Intensive treatment 17 15 29 17
Brand nicotine > 0.7 mg 24 12 22 20
VIP better role model 28 15 19 16
Close friends/relatives 21 17 29 14
Nonsmoking partner 19 19 25 14

Note:  For each characteristic, the difference in quit rates between counseling and no-counseling
groups among those with the characteristic is significantly (p<0.05) greater or less (by about 10
percentage points) than the quit rate difference among those without the characteristic.  Bolding
denotes the greater telephone counseling effect.

Reference: Schoenbach VJ, Orleans CG, Wagner EH, Quade D, Salmon MAP, Porter CQ.
Characteristics of smokers who enroll and quit in self-help programs.  Health Education Research
1992;7:369-380, Table 3.
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Multicausality:  Effect modification - Assignment
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A. Synergism apparently exists in these data because the joint effect of smoking and asbestos
exposure is greater than the effect of smoking alone or of asbestos alone.

B. Smoking appears to have a synergistic effect and also to be a confounder, since smoking is
associated with asbestos exposure and is a proven risk factor for lung cancer.

C. Smoking appears to have a synergistic effect because the rate ratio of lung cancer among
smoking asbestos workers is greater than what would be expected on the basis of the
individual rate ratios of smoking alone and of asbestos alone.

D. Smoking appears to have synergistic effect because the excess rate (RR-1) for smoking and
asbestos together is greater than the sum of the excess rates for smoking alone and asbestos
alone.

E. From these data, it is not possible to evaluate synergism since we do not know the
distribution of smoking habits among smokers who are exposed to asbestos and among
those who are not.

 3. Consider the following data based on the Royal College of General Practitioners Oral
Contraceptive Study (1977).

Mortality rates per 100,000 women-years from cardiovascular
disease (ICD 390-458) by smoking habit at entry and oral

contraceptive use (Standardized by age, social class, and parity).

Oral Contraceptive Status
Cigarette

smoking status User Non User

Non-Smoker 13.8 3.0

Smoker 39.5 8.9

a. Formulate an expression for the joint effect of oral contraceptive use (OC) and smoking on
cardiovascular disease mortality, based on an additive model, and determine whether the
rates in the above table fit such a model (do not do any statistical tests).

b. Formulate an expression for the joint effect of oral contraceptive use and smoking on
cardiovascular disease mortality, based on a multiplicative  model, and determine whether
the rates in the above table fit such a model (do not do any statistical tests).

c. In commenting on the mortality rates for OC and smoking, a prominent epidemiologist
remarked that "the relative risk for oral contraceptive users, compared to non-users, is the
same for smokers and non-smokers."  Other observers have characterized the relationship as
synergistic.  Briefly discuss the issues underlying the assessment of synergism in the above
data.
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 4. Several studies have shown a synergistic effect between smoking and drinking in their relation to
oral cancer.  Consider these hypothetical data:

Yearly Incidence Rates per 100,000 at Risk

Drinker Non-Drinker

Smoker 100 40

Non-smoker  15 10

a. Draw a diagram using Rothman's "causal pies" to show pathways by which oral cancer
occurs.

b. Assuming that there are 100,000 smoker/drinkers, 100,000 smoker/non-drinkers, 100,000
drinker/non-smokers and 100,000 non-drinker/non-smokers, how many cases of oral
cancer would be prevented in one year if (only) smoking were eliminated?

c. How many cases of oral cancer would be eliminated if (only) drinking were eliminated?

d. How many cases of oral cancer would be prevented if both smoking and drinking were
eliminated?

e. How many cases of oral cancer can be attributed to each causal pathway you have identified
in part a.?

f. Explain why the answers to b. and c. do not sum to the answer in d.
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 5. Walker (International Journal of Epidemiology 1980; 10:81) suggests a measure to estimate the
proportion of cases due to the synergism between two factors, which he calls the etiologic
fraction due to interaction EF(AxB).

Observed rate for
A and B together –

Expected rate if
there were no

synergy
EF(AxB) = –––––––––––––––––––––––––––––––––––

Observed rate for A and B together

a. For the data in question 9, what is the observed rate for oral cancer among the smokers and
drinkers?

b. What rate would you expect to see if there is no synergism between smoking and drinking?

c. Calculate the EFAxB).

d. Suggest a public health application for this result.

(Thanks to Stephen Kritchevsky, Ph.D., for questions 4 and 5.)
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Multicausality:  Effect modification - Assignment solutions

 1. 

a. C - because it is a component of all three sufficient causes of "incidensititis."  C is a
necessary cause since "incidensititis" cannot occur in the absence of C.

b. A and B - Modification implies that two component causes are members of the same
sufficient cause for "incidensititis."  Independence implies that two component causes are
members of different sufficient causes for "incidensititis."  Both A and B fulfill these
requirements.

c. F will appear as the stronger cause.  Since C will be present in most people, and the
prevalence of B is greater than the prevalence of A, people with F will be more likely to
develop incidensititis than will people with E.

d. The most important implication for our purposes is the need to control the other factors
when studying the effect of A.  If our A and not-A groups differ with respect to B, C, and E,
then the disease rates observed could be due to the latter factors, rather than to A.
Moreover, the effect of A will appear to differ from study to study unless these other factors
are taken into account.

It is also interesting to note that the multiplicity of sufficient causes imply different "etiologic
routes" to incidensititis.  So, for example, a person could acquire incidensititis through the
first sufficient cause and never have either component cause E or F.  Thus, cases of
incidensititis will be heterogenous with regard to the etiology of their disease.  The only
common (necessary) cause is C, which must be present for disease occurrence.

 2. D. Smoking appears to have synergistic effect because the excess rate (RR-1) for smoking and
asbestos together is greater than the sum of the excess rates for smoking alone and asbestos
alone.

 3. 
a. Under an additive model, we expect that the joint effect of the two factors will be equal to

the sum of the excess risk from each factor separately, i.e.,

Expected Rate Difference (RD) of OC and SMK together =
                                                    ___         __
Expected RDOC,SMK = RDOC,SMK + RDOC,SMK
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(or equivalently, the rate for persons exposed to both factors together is expected to be equal
to the rate for those exposed to neither plus the increase associated with the first factor
alone plus the increase associated with the second factor alone):

                                                                   ___                           __
Expected ROC,SMK  =  Rneither + (ROC,SMK  –  Rneither) + (ROC,SMK  –  Rneither)

                                ___         __
                 =    ROC,SMK  +  ROC,SMK  –  Rneither

In the data from the table,

Expected ROC,SMK  =  13.8  +  8.9 - 3.0 = 19.7

Observed ROC,SMK = 39.5 per 100,000 women-years.

Or,
13.8 8.9

Expected excess risk (RR – 1) = ( –––– – 1 ) + ( –––– – 1 )
(of OC alone + SMK alone) 3.0    3.0

39.5
Observed excess risk (RR – 1) = ( –––– – 1 )
(of OC alone + SMK alone) 3.0

The large discrepancy between expected and observed rates indicates that the data do not fit
an additive model.

b. Under a multiplicative model, we expect the joint effect of the two factors to be equal to the
product of the risk (or rate) ratios for each factor separately, i.e.:

Expected Rate Ratio (RR) for OC and SMK together,

                                 ___        __
RROC,SMK = (RROC,SMK) (RROC,SMK)

or equivalently, the risk or rate (R) for OC and SMK together is:
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___     __
(ROC,SMK)(ROC,SMK)

Expected ROC,SMK = ––––––––––––––––––––––––
                    __  ___

ROC,SMK

In these data,
(13.8) (9.9)

Expected RROC,SMK = –––––––––– = 40.9
3.0

Observed RROC,SMK = 39.5

or,

          ___       __
Expected RROC,SMK = RROC,SMK × RROC,SMK

13.8 8.9
= –––––––– × –––––––– = 13.6

3.0 3.0

39.5
Observed RROC,SMK = –––––– = 13.2

3.0

The very close agreement for the observed rate and that expected under a multiplicative
model suggests that the relationship among OC, SMK, and cardiovascular mortality is
multiplicative.

c. Both positions can be supported.  It is correct that the relative risk for OC users is the same
for smokers and nonsmokers, indicating that the data fit a multiplicative model.  An analysis
stratified by smoking status will show no effect modification of the association between OC
and CVD.

On the other hand, the additive model is more appropriate for assessing public health impact
(and individual decision-making).  The fact that the joint effect of OC and smoking
substantially exceeds the sum of the effects (risk differences) for OC and smoking
individually indicates that there the relationship is synergistic in terms of public health
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impact.  Synergism in this sense implies that if per-person intervention costs are equal, a
greater reduction in disease rates will result from focusing on women who both smoke and
use OC.

The multiplicative nature of the relationship might suggest that smoking and OC operate on
some common element in the pathogenetic process, so that the effects of the one potentiate
the effects of the other.  However, assessment of biological synergism requires knowledge of
biological mechanisms beyond that generally obtainable from epidemiologic data.

 4.

a. I II III IV

SMK 

U1 

ALC U2 SMK U3 U4 

ALC 

b. In the Non-drinking group the number of cases would be expected to drop from 40 to 10
(the rate among the non-smokers).  The number of cases among the drinkers would be
expected to drop from 100 to 15 cases.  Thus, (100 - 15) + (40 - 10) = 115 cases would be
expected to be prevented through smoking cessation.

c. In the Non-smoking group the number of cases would be expected to drop from 15 to 10
cases, and in the smoking group the number of cases would be expected to drop from 100
to 40 cases.  Thus, (15 - 10) + (100 - 40%) = 65 cases could be prevented by abstinence.

d. If both drinking and smoking were eliminated then each cell could be expected to have the
same number of cases as in the non-smoking and non-drinking cell.  So, (100 - 10) + (40 -
10) + (15 - 10) = 125 cases are prevented by the elimination of smoking and drinking.

e. Ten cases can be attributed to unidentified background factors in pathway IV.  For the
Smokers-Nondrinkers, 30 cases can be attributed to smoking (pathway III) since 10 of the
40 cases would have occurred in the absence of smoking.  Similarly, 5 cases can be attributed
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to drinking in the absence of smoking (pathway II).  For the Smoker-Drinkers, of the 100
cases, 45 would have been expected to occur either from smoking alone, drinking alone or
through unidentified causes (the background rate).  Therefore, 55 cases can be attributed to
the synergy between smoking and drinking represented by pathway I.

f. In removing either drinking or smoking we prevent not only those cases attributable to the
factor alone but also those cases caused by the synergy between the two.  Therefore, by
removing smoking we prevent 55 of the deaths due to synergy and by removing drinking we
prevent the same 55 deaths due to synergy.  Of course if we remove both factors we do not
prevent the same 55 cases twice.  What you have worked through above is an example of
non-additivity of attributable risks, which is equivalent to interaction on an additive scale.

5.

a. 100 cases per 100,000 per year.

b. This would be the rate due to smoking + the rate due to drinking + the rate due to
unidentified factors.  There were 30 cases due to smoking (40 due to the combination of
smoking and unidentified factors), 5 due to drinking (15 due to the combination of drinking
and unidentified factors), and 10 due to unidentified factors.  The expected rate would be:
30 + 5 + 10 = 45 cases per 100,000 people per year.  [Note that Rothman's model is based
on (or implies) an additive model for combining risks.]

c. EF(Smoking x Drinking) = [(100 - 45) / 100]= .55

d. Since there is such a strong synergism between smoking and drinking health education,
physician counseling, and warning labels on both substances should give some attention to
the combined effect.
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13.  Multicausality – analysis approaches

Concepts and methods for analyzing epidemiologic data involving more than two
variables; control of confounding through stratified analysis and mathematical modeling.

Multivariable analysis

In the preceding two chapters we delved into the kinds of issues and situations that arise in a
multivariable context.  We introduced the additive and multiplicative models for joint effects of
multiple exposure variables and employed stratified analysis to examine the effects of one variable whle
controlling for the values of others.  In this chapter we consider analytic approaches for examining the
relationships between an outcome and multiple explanatory variables.  The latter may consist of a study
factor and potential confounders, a study factor and potential modifiers, or several exposures all of
which are of interest.

Confounding:

To restate briefly, confounding is a situation where a factor or combination of factors other than the
study factor is responsible for at least part of the association we observe for the association between the
study factor and the outcome.  If we do not control for confounding, then we may misattribute an
effect to the study factor when the association really reflects the effect of another variable.  In a
situation of confounding, the crude data give us the wrong picture of the relationship between the
exposure and outcome.  Other factors may be exaggerating the strength of the relationship or
obscuring some or all of it.  To see the correct picture, we need to take into account the effects of other
factors.

In a law enforcement analogy, the exposure is the suspect in a bank robbery and the other factors are
known offenders with whom he associates.  We need to establish the suspect's guilt.  The suspect may
be completely innocent, may have had some role in the crime, or may have had a greater role than at
first appears.  In order to determine the suspect's guilt, we need to examine the total picture of the
actions of all of the individuals.  In this analogy, confounding would occur if we charge the suspect
with a crime he did not commit or with a role in the crime greater or smaller than accords with his
actions.  For example, it would be confounding to charge the suspect with bank robbery if he was just
passing by and one of the robbers called him in.  Confounding would also occur if we charged the
suspect as an accomplice when in fact he was the principal organizer of the robbery.

The most common method of deciding whether or not confounding exists is to compare the crude
(uncontrolled) results with the controlled results.  If these two sets of results are meaningfully different,
if they send a different "message" or suggest a different conclusion about the association under study,
then confounding is present; the crude results are "confounded".  The conclusion about the presence
of confounding, however, is secondary to our main purpose, which is to obtain a valid estimate of the
existence and strength of association between the exposure of interest and the disease outcome.  When
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we determine that confounding is present, we either present the stratum-specific findings or compute
an adjusted measure of association (e.g., a standardized rate ratio) that controls for the effects for the
confounding variables.

Effect modification

Effect modification is a situation where neither the crude and nor the adjusted measure provides an
adequate picture of the relationship under study.  The picture is not wrong, but it could nevertheless
mislead.  We may not have fulfilled our responsibility to present the full picture.   Effect modification
means that there are important differences between groups (or at different levels of some modifying
variable) in the relationship between the exposure and the disease on our scale of measurement.  Where
effect modification is present, then the relationship between exposure and disease is not susceptible to
being stated in such a simple formulation as "D and E are associated with a relative risk of about 2".
Rather, an answer to the question "what is the relative risk for D given E?", must be "It depends."  For
example, any discussion of the heart disease risks for women talomg oral contraceptives would be
seriously incomplete if it did not explain that the situation is quite different for women who smoke
cigarettes or not, especially at ages above 35 years.

Where effect modification is present, the summary measure is an average of disparate components, so
that the summary is too uninformative by itself.  If Carlos is 90 cm tall, Shizue is 120 cm tall, and
Rhonda is 150 cm tall, it may be useful to know that their average height is 120 cm, but probably not a
good idea to buy three medium size (120 cm) school uniforms.

Analytic approaches

There are two primary approaches to analyzing data involving more than two variables:  stratified
analysis and modeling.  We have already encountered both.  In stratified analysis we divide the
observations into one group for each level or combination of levels of the control variables.  We
analyze the association between the study factor and outcome separately within each group.  In this way
we may be able to observe the association involving the study factor without interference from the
stratification variables.

Comparison of the crude measure of association to the stratum-specific measures or their weighted
average will disclose whether the crude measure of association is confounded.  Examination of the data
within the individual strata will reveal if the measure of association varies so greatly that a summary
measure by itself may mislead.  For a fuller exploration we can stratify by each of the covariables and by
various combinations of them.  Stratified analysis gives us a full picture that we can examine in detail.

At some point, however, detail becomes an obstacle instead of an advantage.  Modeling is a strategy for
submerging the detail and focusing on relationships.  Viewing the data through the framework of the
model we gain analytic power and convenience.  Rather than confuse ourselves and our audience by
presenting a plethora of tables, we employ the elegant simiplicity of the model and its parameters,
through which we can estimate the measures of association we seek.  If we have chosen our model well
and evaluated its suitability, we can obtain an optimal analysis of the data.  But just as a pilot can fly
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very far on instruments but needs to see the runway when landing, a modeling analysis should be
supplemented with some stratified analyses.  On the other hand, in a stratified analysis, computation of
summaries across strata generally involves at least an implicit model framework.

Whichever approaches we use, there's no escaping the fact that how we proceed and how we interpret
the results we observe depend on our conceptual model of the relationships among outcome, exposure,
and stratification variables.  If nothing is known about the factors under study, we may have to proceed
in a completely empirical manner.  But if there is some knowledge, it will serve as a guide.  For
example, suppose we see an association involving our study factor and outcome, but when we control
for another factor the association disappears.  Whether we conclude "confounding" and dismiss the
crude association as an artifact or not depends upon whether or not we think of the stratification
variable as a "real" cause of the outcome rather than the study factor.  If the stratification variable is an
intermediate factor in the causal pathway between the study factor and the outcome, then the situation
is not one of confounding even though it can be numerically identical.

Stratified analysis — interpretation

Stratified analysis is conceptually simple.  It involves disaggregating a dataset into subgroups defined by
one or more factors that we want to control.  For example, in studying the effect of reserpine use on
breast cancer risk, we could stratify by obesity.  Analyses within each strata can then be regarded as
unconfounded by that risk factor, to the degree that the strata are sufficiently narrow.  (If the strata are
broad, e.g., "body mass index of 2.2 through 3.2" or "blood pressure greater than 95 mmHg", we may
have "residual confounding" due to heterogeneity of the stratification variable within one or more
strata.)

We have already encountered stratified analyses, notably in the chapters on confounding and effect
modification.  In this chapter we will gain a more indepth understanding of stratified analysis and how
it relates to other concepts we have learned.  We will also see when and how to obtain an overall
summary measure that takes account of the stratification.

Example

Suppose that four case-control studies have investigated a possible association between reserpine and
breast cancer (a question that arose in the 1970s) and that each controlled for obesity by dividing the
data into two strata.  The table below shows the crude and stratum-specific odds ratios from these four
(hypothetical) studies.  How would we describe the results of each study?
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Association between reserpine and breast cancer
controlling for body weight (odds ratios)

Hypothetical data

Summary Total
Study Obese Nonobese (adjusted) (crude)

A 2.0 2.2 2.1 4.0

B 4.0 2.2 3.1 3.0

C 2.0 2.2 2.1 2.0

D 4.0 2.2 3.1 1.5

In study A, we see that the OR within each body weight category is about 2.0, whereas the crude OR is
4.0.  Study A, therefore, illustrates a situation of confounding: the crude measure of association lies
outside the range of the stratum-specific measures.  The crude OR is meaningfully different than the
adjusted OR and no other method of adjustment would change that, since any weighted average of the
stratum-specific OR's would have to lie between 2.0 and 2.2.

In studies B and C, on the other hand, the crude OR could equal (or nearly equal) a weighted average of
the stratum-specific measures (as is in fact the case for the adjusted OR's shown), because it (nearly) lies
within the range of those measures.  Therefore, confounding is not a feature of the data in either of
these studies.  In study B, if the numbers of participants in each stratum are large enough for us to
regard the difference between the stratum-specific OR's as meaningful (not simply due to "noise"), then
the difference indicates effect modification of the OR.  It was important for the study to report the
stratum-specific OR's and not rely completely on the crude or adjusted measures.

If the strata were large enough and the OR's were regarded as reasonably free of bias, we might wonder
whether in some way obesity could potentiate the effect of reserpine (at least on the odds ratio scale).
If the relationship is judged to be causal and these OR's the best estimates of the strength of
relationship, then the stronger OR for obese patients suggests that they especially should avoid taking
reserpine if they cannot lose weight (the usual criterion for "public health interaction" and "individual
risk management interaction" are departure from the additive model of expected joint effect.  However,
if the observed association is "supra-multiplicative" [stronger than that expected from multiplicative
model], it will also be "supra-additive" [stronger than expected form an additive model]).  In study C,
on the other hand, the slight difference between the two strata, even if not attributable to random
variation, is insufficient to warrant attention.  Any weighted average of the two stratum-specific
measures would be a satisfactory summary.

Study D illustrates both confounding and effect modification, since the crude OR lies outside the range
of the stratum-specific ORs and therefore could not equal any weighted average of the two.  At the
same time, the stratum-specific ORs appear to be importantly different (assuming adequate stratum
sizes).  It would not be sufficient to provide only a summary measure (on the OR scale).
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Summarizing the relationships

Often we are interested in obtaining an overall assessment of the role of the study factor, controlling
for other risk factors.  The usefulness of an overall measure of association will obviously differ in these
four studies.  In studies A and C, a single overall measure could adequately summarize the OR's in the
two strata so that it would not be essential to present them as well.  In studies B and D, however, we
clearly need to present the stratum-specific OR's, though for some purposes a summary measure may
also be useful.

The most convenient overall estimate, if it is not confounded, is the measure based on the aggregate
data, the crude estimate.  The stratified analysis in study C above indicates no confounding by obesity.
If that is the only variable we need to control for, then we can use the crude OR to summarize the
relationship.

In both study A and study D, however, confounding is present.  Relying on the crude OR as the
summary of the stratified results will clearly mislead.  Therefore, we require a summary measure that
"adjusts for" obesity.  The summary measure we derive is a weighted average of the stratum-specific
measures.  The summary measures we encountered in the chapter on standardization (the SMR and the
SRR) are examples of such summary measures.

Relationship between stratified analysis and models for joint effects

The additive and multiplicative models introduced earlier express the joint incidence or effect of two
(or more) factors in terms of the separate incidence or effect of each.  The multiplicative model, for
example, expresses the joint RR as:

RR11  =  RR10  ×  RR01

and the joint risk (or rate) as:

R10 × R01

R11 = —————

R00

where the first and second subscripts indicate presence (1) or absence (0) of the first and second
factors, respectively.  It turns out that if the data fit this model, then in a stratified analysis controlling
for either factor the stratum-specific RR's for the other factor will be equal to each other.

To see this, simply divide both sides of the second form of the model by R01:
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R11 R10  ×  R01 R10
—— = ————— = ——
R01 R00  ×  R01 R00

Let's examine the term on the left and the term on the right.  In both of these terms, the first factor is
present in the numerator rate but absent from the denomator rate.  Thus, each of these terms is a rate
ratio for the effect of the first factor.

RR for 1st factor   RR for 1st factor

(2nd factor present) (2nd factor absent)

Meanwhile, the second factor is present in both numerator and denominator rates on the left, and
absent from both rates on the right.  Since each rate requires a number of cases and a person or person-
time denominator, then each RR must come from a 2 x 2 table containing exposed cases, unexposed
cases, exposed noncases or person-time, and unexposed noncases or person-time.

Thus, these two RR's correspond to a stratified analysis that controls for the second factor as present
vs. absent.  Their equality means that the RR for the outcome with respect to the first factor is the same
in both strata of the second factor.  Had we originally divided by RR01, instead of RR10, we would have
found that the RR for the second factor is the same in both strata of the first factor.

To see the relationship with some familiar numbers, here is a portion of the Mann et al. data presented
earlier:

Incidence of myocardial infarction (MI) in
oral contraceptive (OC) users age 40-44 years,

per 100,000 women-years
__

Cigarettes/day OC*   OC*   RR**    AR***
__________________________________________________________

0-14   47 (R01) 12 (R00) 4  35

15 + 246 (R11) 61 (R10) 4 185
__________________________________________________________

* Rate per 100,000 women-years

** RR=relative risk (rate ratio)

*** AR=attributable risk (rate difference, absolute difference)
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We saw in the chapter on effect modification that the full table conformed quite closely to a
multiplicative model.  If we look back at the table we see that the RR's for the first two rows (3) were
the same and those for the second two rows (4, shown above) were the same.

Suppose we let the four rates in the table be represented by R00, R10, R01,and R11, with the first
subscript denoting smoking and the second denoting OC.  Then we can write:

R10 × R01
R11 = —————

R00

and

61  ×  47
246 ≈ —————

12

The above equality is only approximate, but then the rate ratios weren't exactly the same (3.92 versus
4.03).  Therefore, the statement that the RR is the same in all strata is equivalent to saying that the data
conform to a multiplicative model.

We could equally well have demonstrated this fact by using the OR (try it!).  Had we instead used the
rate or risk difference as the parameter of interest, we would find (by subtraction, rather than division)
that equality of the stratum-specific difference measures is equivalent to having the data conform to an
additive model (try this, too!).

R11  =  R10 + R01 - R00

R11 - R01  =   R10 + R01 - R00 - R01  =   R10 - R00

This relationship between the multiplicative and additive models on the one hand and stratified analysis
on the other is fundamentally trivial, but also fundamental, so it is worth a little more time.

Stratified analysis as "tables" or "columns"

A stratified analysis involving a dichotomous outcome, a dichotomous exposure, and a dichotomous
stratification variable involves two 2 x 2 tables, each with two columns of cases and noncases (or
person-time).  If we look at the data as columns, rather than as tables, we can almost "see" the
multiplicative or additive model structure in the stratification.  For example, here are two 2 x 2 tables
created with hypothetical numbers that produce rates similar to those in the Mann et al. data above and
presented in the form of our earlier stratified analyses.
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Hypothetical data on incidence of myocardial infarction (MI)
in oral contraceptive (OC) users per 100,000 women-years,

controlling for smoking (after Mann et al.)
      ______________________________________________________

Cigarettes 15+ 15+ 0-14 0-14
/day __ __

OC use OC OC OC OC
                                  ______________                         ______________

CHD 49 11 19 8

Women-years* 20 18 40 66
      ______________________________________________________

Rate** 245 61 48 12

R11 R10 R01 R00

  * (in thousands)

** per 100,000  (some differ slightly from Mann et al.'s)

The lefthand 2 × 2 table shows the relationship between OC and CHD among women who smoke 15+
cigarettes/day; the righthand table shows the relationship among women who smoke less than 15
cigarettes/day.  Equivalently, the four columns show the number of cases, women-years of risk, and
CHD rate in, from left to right:

 15+ cigarette/day OC users (R11, = 49/20,000 = 245/100,000wy)

 15+ cigarette/day OC nonusers (R10, = 11/18,000 = 61/100,000wy)

0-14 cigarette/day  OC users (R01, = 19/40,000 = 48/100,000wy)

0-14 cigarette/day  OC nonusers (R00, = 8/66,000 = 12/100,000wy)

Similarly, all of the relevant RR estimates can be obtained by forming ratios of the appropriate rates,
e.g.:

Rate ratios

Both factors (versus neither)     RR11 = R11 / R00 = 245/12 = 20

Smoking (1st factor) acting alone   RR10 = R10 / R00 =  61/12 =  5

Smoking (1st factor) in presence of OC (2nd factor)  RRS|O = R11 / R01 = 245/48 =  5

OC (2nd factor) acting alone   RR01 = R01 / R00 =  48/12 =  4

OC (2nd factor) in presence of smoking (1st factor)  RRO|S = R11 / R10 = 245/61 =  4
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So the multiplicative model for joint effects, introduced in the chapter on effect modification, is
equivalent to stratified analyses in which the ratio measure is the same in all strata.  The same can be
shown for the additive model and the difference measure, though not with these data since they do not
fit an additive model.

"Homogeneity" and "heterogeneity" vs. "synergy" or "antagonism"

In the terminology used when discussing summary measures of association, stratum-specific measures
are said to be "homogeneous" when they are the same and "heterogeneous" when they are
meaningfully different.  Obviously, a summary measure works best in a situation where the measure
being summarized is homogenous across strata.  In the usual case, for a ratio measure of effect,
homogeneity across strata is equivalent to rates, odds, or ratios that conform to a multiplicative model
of joint effects.  In the case of difference (absolute) measures, homogeneity is equivalent to an additive
model of joint effects.  "Effect modification" (or "effect measure modification", in Greenland and
Rothman's new terminology) signifies heterogeneity for that measure.

Typically, epidemiologic analyses of risk factors employ ratio measures of effect.  On the ratio scale,
summary measures from stratified analysis (and as we will soon see, from mathematical models) are
derived on the premise of homogeneity of effects across strata, equivalent to a multiplicative model of
expected joint effects, and also generally inconsistent with an additive model.  So the term "effect
modification" is most commonly applied to situations where the ratio measure of effect is
heterogeneous across strata – even if it should happen (admittedly as the exception) that the data do
conform to an additive model!  In contrast, "synergism" from a public health perspective is now
generally regarded as an observed effect greater than expected from an additive model.  So when there
is "effect modification of the relative risk" there is generally "interaction from a public health
perspective".

Such inconsistency is undoubtedly an indication that these concepts were designed by mortals, rather
than by a higher power, and also underlines the point that "effect modification" is relative to the scale
of measurement or expected model for joint effects.  We can hope that as the discipline evolves, a new
synthesis will develop that will avoid this "schizophrenic" approach.  In the meantime, perhaps the
following summary table will help.
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Homogeneity, heterogeneity, and effect modification
in relation to additive and multiplicative models

Public health impact
perspective Summary measure perspective

1. Data conform to an
additive model
(homogeneity of the
difference measure
across strata)

No interaction
(no synergism)

No effect modification (of
difference measure), summary
difference measure is adequate
Effect modification (of ratio
measure), summary ratio measure
is not adequate

2. Joint effect exceeds
expectation under an
additive model ("supra-
additive" – may or may
not equal or exceed
multiplicative model)

Public health interaction
(synergistic effect)

Effect modification (of difference
measure, perhaps also ratio
measure), summary difference
measure is not adequate (perhaps
also summary ratio measure)

3. Data conform to
expectation under a
multiplicative model
(homogeneity of ratio
measure across strata)

Public health interaction
(synergistic effect)

No effect modification (of ratio
measure), summary ratio measure
is adequate

4. Joint effect exceeds
expectation under a
multiplicative model
("supra-multiplicative")

Public health interaction
(synergistic effect)

Effect modification (of difference
and ratio measures), summary
difference and ratio measures are
not adequate

Types of overall summary measures

When the crude and stratum-specific measures are all similar, then the crude measure serves as a fully
satisfactory summary measure.  When there is meaningful heterogeneity, then we will need to present
the stratum specific measures themselves.  There remains the situation where the stratum-specific
measures are sufficiently homogenous that a summary measure of some kind is of interest but, due to
confounding, the crude measure cannot serve this roll.  In such cases the crude measure is outside the
range of the stratum-specific measures or so far from the middle of the range that it would be a
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misleading summary.  These circumstances call for an adjusted measure, generally some form of
weighted average of the stratum-specific measures.

Suppose that all of the stratum-specific measures are close together (i.e., homogeneous), so that we are
inclined to regard all of them as estimates of the same population parameter (the "true" measure of
association) plus or minus some distortion from sampling variability (if we want to quantify the
compatibility of the data with this supposition, we can employ a statistical test, such as the Breslow-Day
homogeneity chi-square, to assess the expected range of chance variability).  If there is a "true"
underlying value, how can we best estimate it?  Obviously some sort of weighted average is called for,
but what kind?

If there is only one "true" measure of association and each of the strata provides an estimate of that
true measure, then we will want to pay more attention to strata that provide "better" (i.e., more precise)
estimates.  So the averaging procedure we employ should give more weight to the estimates from such
strata.  We can meet this objective by using as weights the estimated precision of each stratum-specific
estimate.  Such a weighted average provides the best estimate of the "true" measure of association,
under the assumptions on which we have been proceeding.  (Rothman refers to summary estimates
derived in this way as "directly pooled" estimates.  However, the term "pooled" is sometimes used to
refer to the crude total over a set of strata or studies.)

[Note: the calculation of summary measures of association as explained below is NOT a required part
of EPID 168.  The only things from this discussion of summary measures that EPID 168 students are
expected to know concern: (1) summary measures are typically weighted averages; (2) if the crude
measure of association falls comfortably within the range of the stratum-specific measures, then it is
not confounded and may serve as a summary measure; (3) if the crude measure is outside the range of
the stratum-specific measures, then confounding is present and the crude measure is not an adjusted
measure of association must be used to summarize the relationship; (4) if stratum-specific measures are
meaningfully different from each other, then any summary measure (crude or adjusted) provides an
incomplete picture of the relationship, so the investigator should report the stratum-specific results and
take that heterogeneity into account in interpreting a summary measure.  The following discussion is
provided for the more advanced or adventurous.  Others may wish to come back to this section during
or after their next course in epidemiologic methods.]

Precision-based weighted summary measure estimates – optional topic

The imprecision of an estimate can be defined as the width of the confidence interval around it.
Since we are used to estimating 95% confidence intervals by adding and subtracting 1.96 times
the standard error of the estimate, the total width is 2 x 1.96 × standard error.  Since all of these
width's will include the 2 x 1.96, all of the variability in precision is contained in the standard
errors.  The smaller the standard error, the greater the degree of precision, so weights
consisting of the receiprocals of the standard errors will accomplish precision-weighting.  In
fact, the weights used are the squares of these reciprocals and are called "inverse variance
weights".
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Difference measure – the CID

The variance of the CID is an easy one to derive, since the CID is simply a difference of two
proportions.  When there are at least 5 "successes", the variance of a proportion (p) can be
estimated simply as p(1-p)/n, where n is the size of the sample.  The variance of a sum or
difference of two independent random variables is the sum of their variances.  So the variance
(square of the standard error) of the CID is:

    var(CID)   =    var(CI1)  +   var(CI0)

CI1 (1-CI1) CI0 (1-CI0)
[s.e.(CID)]2 = —————— + ——————

n1 n0

Using the notation from our 2 × 2 tables, where "a" represents exposed cases and "b"
represents unexposed cases, we can write this formula as:

a/n1 (c/n1) b/n0 (d/n0)
[s.e.(CID)]2 = —————— + ——————

n1 n0

ac bd n03ac + n13bd
[s.e.(CID)]2 = —— + —— = ——————

n13 n03 n13 n03

whose reciprocal (and the stratum-specific weight) is:

1 n13 + n03

w = ————— = ——————
[s.e.(CID)]2 n03ac + n13bd

This value is computed for each stratum and used as the weight for the CID for that stratum.
For two strata (indicated by subscripts 1 and 2):
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w1 CID1 + w2 CID2
Summary CID = ————————

w1 + w2

Since we have just derived the variances of the stratum-specific CID estimates and since the
variance of the summary CID estimate is simply their sum, the variance of this summary CID
estimate is simply 1/w1 + 1/w2 , and a 95% confidence interval for the summary CID estimate
is:

                                                                         ____________
95% CI for (summary) CID  =  CID ± 1.96 \/ 1/w1 + 1/w2

Ratio measures

A uniform random variable that is a proportion has a symmetric distribution, since its possible
values lie between 0 and 1, and the mean of the distribution (0.5) is the same as its median.
Similarly, the distribution of the CID, based on the difference in two uniform random
proportions, is symmetric, since it lies between -1 and 1 and has its mean and median at its null
value, 0.

Distribution of a proportion:

0 0.5 +1
Mean and
median

Distribution of a difference of two proportions:

–1 0 +1
Mean and
median

Because of this symmetry, variance estimates based on an approximate normal distribution
could be used.  Ratio measures, however, do not have symmetric distributions.  The CIR (a
ratio of two proportions) and the OR (a ratio of odds, which are in turn ratios of two non-
independent proportions) both have a lower limit of 0, a median (and null value) at 1.0, and no
upper limit.
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Distribution of CIR, IDR, OR

0 +1
Mean and
median

This asymmetry makes the use of a normal approximation more problematic.  However, the
logarithm of a ratio measure does have a symmetric distribution, so that the normal
approximation can be used.

Distribution of ln(CIR), ln(IDR), ln(OR):

–1 0 +1
Mean and
median

Therefore, variances for the CIR, IDR, and OR are estimated using a logarithmic
transformation.

Ratio measures – CIR:

The natural logarithm of the CIR is:

                            CI1
ln(CIR)   =   ln [ —— ]  =  ln(CI1)  –  ln(CI0)
                            CI0

If each stratum-specific CI is an independent random proportion, then the variance of the
logarithm of the estimate of the stratum-specific CIR is the sum of the variances of the
logarithms of the estimates of the statum-specific CI's.

Var(ln(CIR))  =  Var(ln(CI1))  +  Var(ln(CI0))

The variance of these logarithms is obtained using a Taylor's series approximation as
(Kleinbaum, Kupper, and Morgenstern; Rothman and Greenland):
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c d bcn0 + adn1
Var(ln(CIR)) ≈ —— + —— = ——————

an1 bn0 abn1n0

so that the stratum-specific weights are:

1 abn1n0
w = ————— = ——————

Var(ln(CIR)) adn1 + bcn0

For two strata, then, the precision-weighted summary ln(CIR) is:

w1 ln(CIR1) + w2 ln(CIR2)
Summary (ln(CIR)) = ——————————

w1 +  w2

In order to obtain the summary estimate for the CIR, the summary ln(CIR) must now be
converted to the natural scale by exponentiation:

      Summary CIR   =   exp (summary ln(CIR))

Again, we can use the wi to obtain the variance of the overall CIR estimate, though again a
transformation of scale will be needed.  The variance of the summary ln(CIR) estimate is simply
1/w1 + 1/w2, so the 95% confidence interval is:

                                                                                       __________
95% confidence interval for ln(CIR) = ln(CIR) ± 1.96\/1/w1 + 1/w2

                                                                                         ___________
95% confidence interval for CIR = exp[ln(CIR) ± 1.96\/1/w1 + 1/w2]

Ratio measures – OR:

An approximate variance estimate for the ln(OR) in the ith stratum is:

1 1 1 1
Var(ln(OR)) = — + — + — + —

ai bi ci di

so that the weight for the ith stratum is:
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1
wi = –––––––––––––––––––––––––––

1 1 1 1
(––– + — + — + ––– )

ai bi ci di

 (Notice that a small number in any cell makes the variance large and, therefore, the weight
small.)   The overall ln(OR) is then estimated as:

w1 OR1 + w2 OR2
ln(OR) = ——————————

w1 +  w2

and the overall OR as:

OR  =  exp(ln(OR))

The variance of the ln(OR) is 1/Σwi and can be used to obtain a 95% confidence interval for
the ln(OR), which can then be exponentiated to obtain a confidence interval for the OR, as for
the CIR.

Mantel-Haenszel summary measures:

Nathan Mantel and William Haenszel, in their classic 1959 paper, introduced a summary OR
that is particularly easy to calculate:

Σ[aidi/ni]
ORMH = ————————————

Σ[bici/ni]

Rothman shows that the ORMH is a weighted average, with stratum-specific weights of bici/ni.
These weights are also precision-based, since they are inversely proportional to the variance of
the logarithm of the stratum-specific OR's.  The difference between these weights and the ones
in the previous formula is that for the ORMH the weights are based on variances that apply on
the assumption that the OR's are 1.0, whereas the previous weights did not require that
assumption.  However, the two summary measures produce similar results and are essentially
equivalent when the stratum-specific OR's are not far from 1.0.  An advantage of the ORMH is
that it can be used with sparse data including an "occasional" zero cell (see Rothman).

Formulas for the these and other summary measures of association (IDD, IDR), confidence
intervals, and overall tests of statistical significance can be found in the textbooks by
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Kleinbaum, Kupper, and Morgenstern; Hennekins and Buring; Schlesselman; and Rothman.
The Rothman text includes discussion of maximum likelihood methods of estimating summary
measures.

Although the discussion here has emphasized the usefulness of summary measures in analyses
where there is little heterogeneity across strata, at times an investigator may wish to present a
summary measure even when substantial heterogeneity is present.  Standardized (rather than
adjusted) measures are used in these situations (see Rothman and/or Kleinbaum, Kupper, and
Morgenstern).

[Note:  Time to tune back in if you skipped through the section on weighting schemes for
summary measures of association.  On the other hand, if you are already familiar with
mathematical models you may wish to skim or skip this section.]

Matched designs

As we saw in the chapter on confounding, when the study design uses matching, it may be
necessary to control for the matching variables in the analysis.  In a follow-up study, analyzing
the data without taking account of matching may not yield the most precise estimates, but the
estimates will not be biased.  A case-control study with matched controls, however, can yield
biased estimates if the matching is not allowed for in the analysis.  Thus, the matching variables
should always be controlled in analyzing matched case-control data.  If the result is no different
from that in the unmatched analysis, then the unmatched analysis can be used, for simplicity.

The most straightforward way to control for matching variables is through stratified analysis, as
presented above.  If matching was by category (i.e., frequency matching, e.g., by sex and age
group) was employed, then the analysis procedure is a stratified analysis controlling for those
variables.  If individual matching (e.g., pair matching, matched triples, etc.) was employed, then
each pair or "n-tuple" is treated as a strata.

Suppose that the data from a case-control study using pair matching are as shown in the
following table.

Pair Case Control Type

6 n n A

9 n n A

10 n n A

1 Y n B

2 Y n B
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5 Y n B

3 n Y C

8 n Y C

4 Y Y D

7 Y Y D

If each pair is a stratum, then the stratified analysis of the above data consists 10 tables, each
with one case and one control.  There will be 3 tables like table A, 3 like table B, 2 like table C,
and 2 like table D.

Exp Unexp Exp Unexp Exp Unexp Exp Unexp

Case 0 1 1 0 0 1 1 0

Control 0 1 0 10 1 0 1 0

Type A B C D

Although we cannot compute any stratum-specific measures of association, we can compute a
Mantel-Haenszel summary odds ratio using the formula:

Σ[aidi/ni]
ORMH = ————————————

Σ[bici/ni]

where ai, bi, ci, di are the cells in table i, and ni is the number of participants in table i.  This
general formula becomes much simpler for pair-matched data, because all of the ni are 2 and
many of the terms disappear due to zero cells.  When we remove these terms and multiply
numerator and denominator by 2 (ni), we are left with (a) a one (aidi) in the numerator for each
table where the control is exposed and the case is not (table type B); and (b) a one (bici) in the
denominator for each table where the case is exposed and the control is not (table type C).  For
the above data:
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1 + 1 + 1 3
ORMH = ————— = —— = 1.5

1 + 1 2

So the formula becomes simply OR=B/C, where B is the number of discordant pairs in which
the case is exposed and C is the number of pairs in which the control is exposed.  Note that the
concordant pairs (types A and D) have no effect on the OR.

Mathematical models

Earlier in this chapter we showed that when the RR is the same in all strata of a stratified analysis, then
data conform to a multiplicative model, and vice-versa.  We also stated that for difference measures,
equality of the stratum-specific difference measures is equivalent to having the data conform to an
additive model.  In fact, these simple models can serve as a jumping off point for understanding
mathematical models used to control confounding.

Returning to the topic of breast cancer in relation to obesity and/or reserpine use, suppose that the
following table shows data from a cohort study.  (Note that this is hypothetical - reserpine was at one
time suspected of being related to breast cancer risk, but that evidence has since been discounted.)

Ten-year risk of breast cancer, by obesity and use of reserpine
(hypothetical data)

Risk factors Numeric (illustrative) Algebraic

None (background risk) .01 R00

Obesity only .03 R10

Reserpine only .02 R01

Both reserpine and obesity .04 R11

Thus:

R00 indicates background risk (no reserpine, non-obese)

R10 indicates risk for obesity (without reserpine)

R01 indicates risk for reserpine (without obesity)

R11 indicates risk both reserpine and obesity

In this example, the joint risk conforms to an additive model:

RD11  =  RD10  +  RD01    (Risk differences are additive)
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R11 – R00   =   (R10 – R00)  +  (R01 - R00)

(.04 – .01) =  (.03 – .01) + (.02 – .01)

0.03   =    0.02   +    0.01

or, equivalently:

          R11   =   R10  +  R01  -  R00

         0.04  =  0.03 + 0.02  -  0.01

We can also express the various risks in terms of the baseline risk and the "effect" of the risk factors:

R10  =  R00  +  RD10    (.03 = .01 + .02)   (Obesity "effect")

R01  =  R00  +  RD01    (.02 = .01 + .01)   (Reserpine "effect")

R11  =  R00  +  RD01  +  RD10   (.04 = .01 + .02 + .01)   (Both)

Note that the word "effect" is used here by convention and for convenience, rather than to suggest
causality.

Another way we might think about these various risk equations is to try to put them all into a single
equation with "switches" for which effects are "turned on".  The baseline risk R00 is always present, so
we require only two "switches", one for the obesity effect and one for the reserpine effect:

Risk = R00 +
Obesity
effect

Obesity
"switch" +

Reserpine
effect

Reserpine
"switch"

Risk = R00 + RD10 × + 0.01 ×

Risk = 0.01 + 0.02 × + 0.01 ×

When a "switch" is on (=1) then the 0.02 (obesity effect) or 0.01 (reserpine effect) comes into play,
making the Risk from the model larger.
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Risk = R00 + Obesity
effect

Obesity
"switch"

Reserpine
effect

Reserpine
"switch"

Risk = 0.01 + 0.02 × 0 + 0.01 × 0 = 0.1

Risk = 0.01 + 0.02 × 1 + 0.01 × 0 = 0.03

Risk = 0.01 + 0.02 × 0 + 0.01 × 1 = 0.02

Risk = 0.01 + 0.02 × 1 + 0.01 × 1 = 0.04

We now have a "model" that we can use to compute the risk for any combination of the two risk
factors.  Although this example is trivial, as well as contrived, the model structure is the same as in
multiple linear regression.  To see our model in a more sophisticated form, we have merely to replace
the "switches" by indicator variables that can take the value of 0 or 1.

Linear models:

If we let:

B = 1 if the woman is obese and 0 if she is not

E = 1 if the woman uses reserpine and 0 if she does not

then our model becomes:

R(B,E)   =   R00   +  (RD10)B   +  (RD01)E

Substituting values from the table:

R(B,E)   =   .01   +  (0.02)B   +  (0.01)E

Our two dichotomous variables (B=1 or 0, E=1 or 0) yield four possible combinations of reserpine use
and obesity, just as did our switches model.  We now have a professional-looking linear model for
breast cancer risk in terms of baseline risk, presence or absence of each of two dichotomous risk
factors, and the risk difference (or increase in risk) attributable to each factor.  The risk differences
(0.02, 0.01) are called "coefficients" and are often represented by the Greek letter β; the baseline risk is
often represented by the Greek letter α.
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You may well wonder what is the value of the above machinations, since we have no more information
from our model than we had in our table of risks (i.e., in our stratified analysis).  The accomplishment
lies in the ability to estimate risk differences for each factor, controlling for the other(s), by estimating
the coefficients in the model.  The power of modeling is the ability to use the study data to estimate
model coefficients by using a statistical technique known as regression analysis.  The estimated
coefficients yield epidemiologic measures that are adjusted for the effects of the other variables in the
model.

We can make our model more complex and professional-looking by adding a third variable and
introducing additional notation:

Risk  =  Pr(D=1|X1,X2,X3)  =  a + β 1X1 + β 2X2 + β 3X3

Here, we express risk as the probability that the disease variable equals 1 (as opposed to 0) based on the
values of X1,X2,X3.  Each β represents the risk difference, or increase in risk, for the corresponding
factor (X).  The estimate of each β would be based on the observed risk difference across each stratum
of the other variables.

This model, of course, is just like the one we developed, except that to make it more impressive, α's and
β's are used instead of RD's, X's are used instead of more familiar letters, and a third term has been
added.  For example, if X1 is obesity, X2 reserpine, and X3 parity (also coded as a dichotomous variable,
e.g., nulliparous vs. parous) then the coefficient for X1 will be a weighted average of the risk difference
for obesity use among the four subgroups defined by the other two risk factors:

1. no reserpine-nulliparous women

2. no reserpine-parous women

3. reserpine-nulliparous women

4. reserpine-parous women.

Therefore, each coefficient (risk difference) will be adjusted for the effects of the other variables in the
model, more or less as if we had computed an adjusted overall measure in a stratified analysis.

Just as in stratified analysis, the suitability of the coefficient as an adjusted risk difference depends on
whether the risk difference for reserpine is essentially the same across the four groups.  The model is
designed to handle random variability in the risk differences, but not biological (or sociological,
artefactual, etc.) reality.  So as with any summary measure, the suitability of the linear regression
coefficient (i.e., the estimate of the overall risk difference) can be compromised by meaningful
heterogeneity of the risk difference across strata of the other variables (i.e., on the extent of statistical
interaction or effect modification of the risk difference).

If necessary, the model can accomodate some heterogeneity with the help of an "interaction" term to
represent the "difference in risk differences".  Interaction terms are usually created as a product of the
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two (or more) factors that "interact", since such a term is zero if either of the factors is absent and one
only when both are present.  For the price of one more Greek letter (γ , gamma) we can write the
model:

Risk = Pr(D=1|X1,X2,X3) = α + β1X1 + β2X2 + β3X3 + γ1X1X2

provides for the effect of X1 to depend upon whether X2 is present or absent (as well as for the effect
of X2 to depend upon whether X1 is present or absent).  But if we incorporate interaction terms for all
possible pairs, triplets, . . ., of variables, we will find ourselves right back where we started from – a
fully-stratified analysis and no summary measure to use.

The linear model we have just seen has many attractive features, not unimportantly its simplicity and
the ease with which statistical estimation of its coefficients can be carried out.  Moreover, although we
have developed and illustrated the model using only dichotomous, or "binary" variables, the model can
readily accomodate count and continuous variables, and with some caution, ordinal variables.  (For a
nondichotomous variable, the coefficient is the risk difference for a one-unit increase in the variable.)

But linear models also have several drawbacks.  First, of course, the data may not conform to an
additive model, perhaps to an extent beyond which a single interaction term will suffice to "fit" the
data.  Second, it is possible to obtain estimates of coefficients that will result in "risks" that are less than
zero or greater than one.  The linear model in the homework assignment will do that for certain
combinations of risk factors, though this is more of a technical objection.  Third, linear regression
estimates risk differences, but epidemiologists are usually interested in estimating ratio measures of
association.

Logistic models:

More widely used in epidemiologic analysis is the logistic model (also referred to as the multiple logistic
model or the logit analysis model).  In our linear model, above, we chose to model risk as a linear
function of two risk factors.  In the logistic model, we model the "logit" as a linear function of the risk
factors:

Logit(D=1|X1,X2,X3)  = α + β1X1 + β2X2 + β3X3

The logit is the natural logarithm of the odds, ln(odds) or ln[p/(l-p)].  It may seem a bit farfetched to
work with the logit, rather than risk, but recall our explanation for the use of a logarithmic
transformation in order to estimate the variance of a ratio measure.

Whereas risk ranges from 0 to 1, a confining situation for mathematicians, the logit has no bounds.
Whereas the risk ratio and the OR have their null value (1.0) way to one side of the range of possible
values (zero to infinity), the log(OR) has an unlimited range, with its null value (zero) right in the
middle (i.e., it has a symmetrical distribution).  We generally use Naperian or "natural" logarithms (base
e), abbreviated as ln.
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Moreover, the logistic model, we will see, corresponds to a multiplicative model, which we saw earlier is
the model that is implied by stratified analysis based on the OR or the risk ratio.  Furthermore, the
coefficients that we estimate using logistic regression can be converted into OR's, so that we now have
a ratio measure of association.

It is easy to discover what the logistic coefficients are.  Since the logit is the logarithm of the odds, then
the difference of two logits is the logarithm of an OR (because subtraction of logs corresponds to
division of their arguments – see the appendix to the chapter on Measures of Frequency and Extent).

Suppose that X3 is a dichotomous (0-1) variable indicating absence (0) or presence (1) of an exposure.
First write the model with the exposure "present" (X3=1), and underneath write the model with the
exposure "absent" (X3=0).

logit(D=1|X1,X2,X3=1)  =  α + β1X1 + β2X2 + β3    (X3 =1, present)

       –   logit(D=1|X1,X2,X3=0)  =  α + β1X1 + β2X2 + 0     (X3 = 0, absent)
_______________________________________________________

When we subtract the second model from the first, all the terms on the right are removed except the
coefficient for X3.  On the left, we have the (rather messy) difference of the two logits, one for X3

present and the other for X3 absent:

  logit(D=1|X1,X2,X3=1) –  logit(D=1|X1,X2,X3=0)  = β3

Spelling out the logits:

  ln(odds(D=1|X1,X2,X3=1)) –  ln(odds(D=1|X1,X2,X3=0))  =  β3

and, since a difference of logarithms is the logarithm of a ratio:

             odds(D=1|X1,X2,X3=1)
   ln [ ———————————— ]  =  β3

             odds(D=1|X1,X2,X3=0)

A ratio of odds is simply an OR, in this case, the OR for the disease with respect to the exposure
represented by X3:

ln [ OR ]  =  β3

              exp (ln [ OR ] )  =  exp(β3)
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                                OR  =  exp(β3)

β3 is the difference of the logits, hence the log of the OR for the exposure represented by X3.
Therefore exp(β3) is the OR for a one-unit change in X3.

Note:  exp(β1) means the anti-logarithm:  e, the base for Naperian logarithms, raised to the β1 power.
Since the coefficients are on the logarithmic scale, to see the result on the OR scale, we needed to take
the anti-logarithm.  For example, a logistic model coefficient of 0.7 corresponds to an OR of about 2.0
for a dichotomous variable or 2.0 for a one-unit increase in a measurement variable.

So the coefficient of a dichotomous explanatory variable is the log of the OR of the outcome with
respect to that explanatory variable, controlling for the other terms included in the model.  The
constant term (α) in a model with only dichotomous risk factor variables is the baseline logit (log odds)
for the outcome – the log of the disease odds for a person who has none of the risk factors
(ln[Pr(CI0/(1-CI0)]).

For a nondichotomous risk factor, we can compare the odds at two different levels.  For example, if
age is expressed by a continuous variable X1 for the number of years, then exp(β1) gives the OR per
year of age and exp(10 β1) gives the OR per decade of age.

The logistic model can also be written in terms of risk (i.e., probability) by taking anti-logs (exponents)
and employing some algebra.  The tranformation is left as an optional exercise for those of you who are
interested.  The result is:

                                                           1
Pr(D=1|X1,X2,X3)  =   —————————————

                                        1 + exp(-α - β1X1 - β2X2 - β3X3)

or, if we let L = logit = α + β1X1 + β2X2 + β3X3

                                                          1
Pr(D=1|X1,X2,X3)  =  —————

                                                  1 + exp(-L)

From the risk formulation we can readily see that the logistic function must range between zero and
one, a desirable property for modeling risk.  When L (the logit) is "infinitely negative", then exp(-L) is
"infinitely large" and the probability estimate is zero.  When L is "infinitely large", then exp(-L) is also
"infinitely small" and the probability estimate is one.  When L is zero, then exp(-L) is 1, and the
probability estimate is one-half.
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Key epidemiologic assumptions in the logistic model

1. the log odds of disease are linearly related to each of the risk factors (X variables), or
equivalently, the disease odds are exponentially related to each of the risk factors, or
equivalently, the disease risk is related to each of the risk factors by the logistic (sigmoidal)
curve;

2. the joint effects of the risk factors are multiplicative on disease odds (e.g., if a one-unit increase
in X1 alone multiplies incidence odds two-fold and a one-unit increase in X2 alone multiplies
incidence odds three-fold, then a simultaneous one-unit increase in both X1 and X2 multiplies
incidence odds six-fold) (Greenland, AJPH, 1989; Rothman, Modern epidemiology).

In addition, to estimate the coefficients using regression procedures, it must be assumed that the
subjects are a random sample of independent observations from the population about which inferences
are to be drawn (Harrell, Lee, and Pollock, 1988).

Thus the logistic model corresponds to the multiplicative model for the stratified analysis we
considered above.  The true OR is assumed constant across all strata.  As with the linear model, it is the
assumption of homogeneity that permits us to estimate coefficients that are simple to interpret.

We can relax the assumption by including product terms, as illustrated above for the linear model.  But
then the coefficients are more difficult to interpret.  In addition, carried too far that tactic will return us
toward a fully-stratified situation and will exhaust our sample size, computer resources, and
imagination.

Though we have illustrated both of these models with dichotomous (zero-one) variables, they can
readily accomodate continuous variables.  Again, the model structure is based on an assumption – that
the relationship of the dependent variable (risk, for the linear model, or the logit, for the logistic model)
with the independent variable is linear.

For some relationships, this assumption is readily tenable, e.g., CHD risk and number of cigarettes
smoked.  For others, e.g., mortality risk and body weight, the relationship is U-shaped, so that a simple
linear or logistic model will not be suitable (more complex forms of the linear and logistic models are
available for U-shaped variables through such techniques as the incorporation of squares of variable
values).

Other limitations of the logistic model are that ORs are not the preferred epidemiologic measure of
association, and where the outcome is not rare, the proximity of the OR to the risk ratio does not hold.
Also, the model cannot provide what the study cannot.  Although the logistic model in the above form
can be used with case control data, estimates of risk require follow-up data.  Mathematics can substitute
for data only to a point.
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Other regression models  [Optional for EPID 168]

Two other mathematical model forms that epidemiologists commonly use to control for
confounding and to obtain adjusted measures of effects are the proportional hazards and
Poisson models.

For an outcome with an extended risk period, especially an outcome that is not rare, it is
frequently desirable to use an analysis approach, such as incidence density or survivorship, that
takes into account time to the occurrence of the event.  The proportional hazards model,
developed by David R. Cox, is a widely-used mathematical model for analyzing epidemiologic
data where "time to occurrence" is important.  The "hazard" (conventionally represented by the
Greek letter lambda, λ) is essentially the same concept as instantaneous incidence density.

For three independent variables, the proportional hazards model can be written:

log[ID(t|X1,X2,X3)]  =  log[ID0(t)] + β1X1 + β2X2 + β3X3

(i.e., the natural log of incidence density as a function of time is the sum of the log of a
background or underlying incidence density plus an increment for each predictor variable).

The model can also be formulated in terms of survivorship:

S(t|X1,X2,X3)  =  [S0(t)] exp(β1X1 + β2X2 + β3X3)

where S(t) is the probability that the event has not occurred by time t.

The coefficient of a dichotomous predictor is the logarithm of the incidence density ratio
[ln(IDR)] for that predictor:

log[ID(t|X1,X2,X3=1)]  =  log[ID0(t)] + β1X1 + β2X2 + β3X3    (X3 present)

      – log[ID(t|X1,X2,X3=0)]  =  log[ID0(t)] + β1X1 + β2X2 +   0        (X3 absent)

_____________________________________________________________

                     log[IDR(t)]  = β3

                         IDR(t)  =  exp(β3)

In addition to the assumptions required for the logistic model, the Cox proportional hazards
model requires that the hazard ratio (the IDR) be constant over time, though more complex
survivorship models employing "time-dependent covariates" relax this assumption.

The Poisson model is similar to the logistic model and the proportional hazards model in that
the three involve a logarithmic transformation of the risk function (i.e., odds, hazard) being
estimated and have a linear combination (i.e., an expression of the form:
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a + b1X1 + b2X2 + b3X3 + …) on the right-hand side.  The Poisson model is of particular
interest when outcomes are very rare.

Key points  [EPID 168 students please tune back in here.]

Some guiding principles for multivariable analysis are:

1. Keep in mind that our principal objectives are to describe and interpret the data at hand, using
informed judgment, insight, and substantive knowledge as well as technique.

2. Stratified analysis is a very powerful approach.  Although it does not hold when we try to
analyze many variables simultaneously, we can control for two or three at a time, using different
subsets, and let judgment help to fill the gaps.  It is always possible that an observed association
that is not eliminated when we control for smoking, cholesterol, blood pressure, and Type A
behavior pattern individually could still be due to some combined effect of all of these.  But
how likely is it, especially if we have controlled for each pair of these risk factors and still found
the association?

3. In carrying out a stratified analysis for a variable or a combination of variables, we are asking
the question "is that combination of variables responsible for the observed result?"  The
question must be a reasonable one for us to ask.  If a few principal risk factors individually do
not account for an observed finding, the probability that some combination of them would do
so appears less likely.  [But no one has demonstrated that proposition empirically.]

4. Mathematical modeling is a very powerful approach to data analysis.  But in all cases, a key
question is whether the form of the model is appropriate for the data, and the underlying
relationships, at hand.  Using an inappropriate model can produce biased results.  There are
statistical techniques for assessing the statistical appropriateness of the models employed ("ask
your statistician").

(It is recommended (see Greenland, AJPH, 1989; 79(3):340-349 and Vanderbroucke JP: Should we
abandon statistical modeling altogether? Am J Epidemiol 1987; 126:10-13) that before embarking on
modeling exercises that cannot be directly validated against the results of stratified analyses, one should
first perform parallel analyses with the same variables in order to validate model choices and results
against the stratified data.)

Expectations for EPID 168

! Know the relationship between the multiplicative model and stratified analysis, and (only) basic
concepts of linear regression models and logistic regression models.  Expectations for your
understanding of mathematical modeling are modest:

! Know advantages and disadvantages of modeling (compared to, for example, stratified analysis),
as presented in the chapter on confounding.
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! Know the epidemiologic meaning of the coefficient of an exposure term in a linear regression
model and how the linear regression model relates to stratified analysis and the additive model
discussed in the Effect Modification chapter.

! Know the epidemiologic meaning of the coefficient of an exposure term in a logistic model and
how that model relates to stratified analysis and the multiplicative model.

! Know the epidemiologic meaning of the coefficient of an exposure term in a proportional
hazards model and that that model is used for analyses in terms of incidence density
[survivorship]

! For all three models, the coefficients in a model with several variables are all "adjusted" for the
effects of the other variables in the model.
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14. Data analysis and interpretation

Concepts and techniques for managing, editing, analyzing and interpreting data from
epidemiologic studies.

Key concepts/expectations

This chapter contains a great deal of material and goes beyond what you are expected to learn for
this course (i.e., for examination questions).  However, statistical issues pervade epidemiologic
studies, and you may find some of the material that follows of use as you read the literature.  So if
you find that you are getting lost and begin to wonder what points you are expected to learn, please
refer to the following list of concepts we expect you to know:

! Need to edit data before serious analysis and to catch errors as soon as possible.

! Options for data cleaning – range checks, consistency checks – and what these can (and can
not) accomplish.

! What is meant by data coding and why is it carried out.

! Basic meaning of various terms used to characterize the mathematical attributes of different
kinds of variables, i.e., nominal, dichotomous, categorical, ordinal, measurement, count,
discrete, interval, ratio, continuous.  Be able to recognize examples of different kinds of
variables and advantages/disadvantages of treating them in different ways.

! What is meant by a "derived" variable and different types of derived variables.

! Objectives of statistical hypothesis tests ("significance" tests), the meaning of the outcomes
from such tests, and how to interpret a p-value.

! What is a confidence interval and how it can be interpreted.

! Concepts of Type I error, Type II error, significance level, confidence level, statistical
"power", statistical precision, and the relationship among these concepts and sample size.

Computation of p-values, confidence intervals, power, or sample size will not be asked for on
exams. Fisher's exact test, asymptomatic tests, z-tables, 1-sided vs. 2-sided tests, intracluster
correlation, Bayesian versus frequentist approaches, meta-analysis, and interpretation of multiple
significance tests are all purely for your edification and enjoyment, as far as EPID 168 is concerned,
not for examinations.  In general, I encourage a nondogmatic approach to statistics (caveat: I am not
a "licensed" statistician!).
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Data analysis and interpretation

Epidemiologists often find data analysis the most enjoyable part of carrying out an epidemiologic
study, since after all of the hard work and waiting they get the chance to find out the answers.  If the
data do not provide answers, that presents yet another opportunity for creativity!  So analyzing the
data and interpreting the results are the "reward" for the work of collecting the data.

Data do not, however, "speak or themselves".  They reveal what the analyst can detect.  So when the
new investigator, attempting to collect this reward, finds him/herself alone with the dataset and no
idea how to proceed, the feeling may be one more of anxiety than of eager anticipation. As with
most other aspects of a study, analysis and interpretation of the study should relate to the study
objectives and research questions. One often-helpful strategy is to begin by imagining or even
outlining the manuscript(s) to be written from the data.

The usual analysis approach is to begin with descriptive analyses, to explore and gain a "feel" for the
data. The analyst then turns to address specific questions from the study aims or hypotheses, from
findings and questions from studies reported in the literature, and from patterns suggested by the
descriptive analyses. Before analysis begins in earnest, though, a considerable amount of preparatory
work must usually be carried out.

Analysis - major objectives

 1. Evaluate and enhance data quality

 2. Describe the study population and its relationship to some presumed source (account for all
in-scope potential subjects; compare the available study population with the target
population)

 3. Assess potential for bias (e.g., nonresponse, refusal, and attrition, comparison groups)

 4. Estimate measures of frequency and extent (prevalence, incidence, means, medians)

 5. Estimate measures of strength of association or effect

 6. Assess the degree of uncertainty from random noise ("chance")

 7. Control and examine effects of other relevant factors

 8. Seek further insight into the relationships observed or not observed

 9. Evaluate impact or importance

Preparatory work – Data editing

In a well-executed study, the data collection plan, including procedures, instruments, and forms, are
designed and pretested to maximize accuracy.  All data collection activities are monitored to ensure
adherence to the data collection procotol and to prompt actions to minimize and resolve missing
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and questionable data.  Monitoring procedures are instituted at the outset and maintained
throughout the study, since the faster irregularities can be detected, the greater the likelihood that
they can be resolved in a satisfactory manner and the sooner preventive measures can be instituted.

Nevertheless, there is often the need to "edit" data, both before and after they are computerized.
The first step is "manual" or "visual editing".  Before forms are keyed (unless the data are entered
into the computer at the time of collection, e.g., through CATI - computer-assisted telephone
interviewing) the forms are reviewed to spot irregularities and problems that escaped notice or
correction during monitoring.

Open-ended questions, if there are any, usually need to be coded.  Codes for keying may also be
needed for closeed-end questions unless the response choices are "precoded" (i.e., have numbers or
letters corresponding to each response choice).  Even forms with only closed-end questions having
precoded responses choices may require coding for such situations as unclear or ambiguous
responses, multiple responses to a single item, written comments from the participant or data
collector, and other situations that arise.  (Coding will be discussed in greater detail below.)  It is
possible to detect data problems (e.g., inconsistent or out of range responses) at this stage, but these
are often more systematically handled at or following the time of computerization.  Visual editing
also provides the opportunity to get a sense for how well the forms were filled out and how often
certain types of problems have arisen.

Data forms will usually then be keyed, typically into a personal computer or computer terminal for
which a programmer has designed data entry screens that match the layout of the questionnaire.  For
small questionnaires and data forms, however, data can be keyed directly into a spreadsheet or even
a plain text file. A customized data entry program often checks each value as it is entered, in order to
prevent illegal values from entering the dataset.  This facility serves to reduce keying errors, but will
also detect illegal responses on the form that slipped through the visual edits.  Of course, there must
be some procedure to handle these situations.

Since most epidemiologic studies collect large amounts of data, monitoring, visual editing, data
entry, and subsequent data checks are typically carried out by multiple people, often with different
levels of skill, experience, and authority, over an extended period and in multiple locations.  The data
processing procedures need to take these differences into account, so that when problems are
detected or questions arise an efficient routing is available for their resolution and that analysis staff
and/or investigators have ways of learning the information that is gained through the various steps
of the editing process.  Techniques such as "batching", where forms and other materials are divided
into sets (e.g., 50 forms), counted, possibly summed over one or two numeric fields, and tracked as a
group, may be helpful to avoid loss of data forms.  Quality control and security are always critical
issues.  Their achievement becomes increasingly complex as staff size and diversity of experience
increase.

Preparatory work – Data cleaning

Once the data are computerized and verified (key-verified by double-keying or sight-verified) they
are subjected to a series of computer checks to "clean" them.
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Range checks

Range checks compare each data item to the set of usual and permissible values for that variable.
Range checks are used to:

 1. Detect and correct invalid values

 2. Note and investigate unusual values

 3. Note outliers (even if correct their presence may have a bearing on which statistical methods
to use)

 4. Check reasonableness of distributions and also note their form, since that will also affect
choice of statistical procedures

Consistency checks

Consistency checks examine each pair (occasionally more) of related data items in relation to the set
of usual and permissible values for the variables as a pair.  For example, males should not have had a
hysterectomy.  College students are generally at least 18 years of age (though exceptions can occur,
so this consistency check is "soft", not "hard").  Consistency checks are used to:

 1. Detect and correct impermissible combinations

 2. Note and investigate unusual combinations

 3. Check consistency of denominators and "missing" and "not applicable" values (i.e., verify
that skip patterns have been followed)

 4. Check reasonableness of joint distributions (e.g., in scatterplots)

Preparatory work – Data coding

Data coding means translating information into values suitable for computer entry and statistical
analysis.  All types of data (e.g., medical records, questionnaires, laboratory tests) must be coded,
though in some cases the coding has been worked out in advance.  The objective is to create
variables from information, with an eye towards their analysis.  The following questions underlie
coding decisions:

 1. What information exists?

 2. What information is relevant?

 3. How is it likely to be analyzed?

Examples of coding and editing decisions

! A typical criterion for HIV seropositivity is a repeatedly-positive ELISA (enzyme linked
immunosorbent assay) for HIV antibody confirmed with a Western blot to identify the
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presence of particular proteins (e.g., p24, gp41, gp120/160).  Thus, the data from the
laboratory may include all of the following:

a. An overall assessment of HIV status (positive/negative/indeterminant)

b. Pairs of ELISA results expressed as:

 i. + +  /  + –  /  – –  /  indeterminate

ii. optical densities

c. Western Blot results (for persons with positive ELISA results) expressed as:

 i. (+ / – / indeterminant)

ii. specific protein bands detected, e.g., p24, gp41, gp120/160

How much of this information should be coded and keyed?

! How to code open-ended questionnaire items (e.g., "In what ways have you changed your
smoking behavior?", "What are your reasons for quitting smoking?", "What barriers to
changing do you anticipate?", "What did you do in your job?")

! Closed-end questions may be "self-coding" (i.e., the code to be keyed is listed next to each
response choice), but there can also be:

a. Multiple responses where only a single response is wanted – may be

1. Inconsistent responses (e.g., "Never" and "2 times or more")

2. Adjacent responses indicating a range (e.g., "two or three times" and "four or five
times", by a respondent who could not choose among 2-5 times).

b. Skipped responses – should differentiate among

1. Question was not applicable for this respondent (e.g., age at menarche for male
respondents)

2. Respondent declined to answer (which respondents sometimes may indicate as
"N/A"!)

3. Respondent did not know or could not remember

4. Respondent skipped without apparent reason

It is necessary to achieve a balance between coding the minimum and coding "everything".

! Coding is much easier when done all at once.

! One can always subsequently ignore coded distinctions not judged as meaningful.

! Information not coded will be unavailable for analysis (e.g., date questionnaire received,
which questionnaires were randomly selected for 10% verification survey).

! More detail means more recodes for analysis means more programming means more
opportunities for error.
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! Decisions deferred have to be made sometime, so why not decide up front (e.g., When a
respondent circles adjacent response choices, such as "3. Once or twice" and "4. Two to five
times", what should be coded – 3?, 4?, 3.5? a missing value code? a code to be replaced at a
later date when a decision is made?)

It is important to document how coding was done and how issues were resolved, so that consistency
can be achieved and the inevitable questions ("How did we deal with that situatiion?") answered.

Types of variables - levels or scales of measurement

Constructs or factors being studied are represented by "variables".  Variables (also sometimes called
"factors") have "values" or "levels".  Variables summarize and reduce data, attempting to represent
the "essential" information.

Analytic techniques depend upon variable types

Variables can be classified in various ways.  A continuous variable takes on all values within its
permissible range, so that for any two allowable values there are other allowable values in between.
A continuous variable (sometimes called a "measurement variable") can be used in answer to the
question "how much".  Measurements such as weight, height, and blood pressure can, in principle,
be represented by continuous variables and are frequently treated as such in statistical analysis. In
practice, of course, the instruments used to measure these and other phenomena and the precision
with which values are recorded allow only a finite number of values, but these can be regarded as
points on a continuum.  Mathematically, a discrete variable can take only certain values between its
maximum and minimum values, even if there is no limit to the number of such values (e.g., the set
of all rational numbers is countable though unlimited in number). Discrete variables that can take
any of a large number of values are often treated as if they were continuous. If the values of a
variable can be placed in order, then whether the analyst elects to treat it as discrete and/or
continuous depends on the variable's distribution, the requirements of available analytic procedures,
and the analyst's judgment about interpretability.

Types of discrete variables
 1. Identification – a variable that simply names each observation (e.g., a study identifying

number) and which is not used in statistical analysis;

 2. Nominal – a categorization or classification, with no inherent ordering; the values or the
variable are completely arbitrary and could be replaced by any others without affecting the
results (e.g., ABO blood group, clinic number, ethnicity).  Nominal variables can be
dichotomous (two categories, e.g., gender) or polytomous (more than two categories).

 3. Ordinal – a classification in which values can be ordered or ranked; since the coded values
need only reflect the ranking they can be replaced by any others with the same relative
ranking (e.g., 1,2,5; 6,22,69; 3.5,4.2, 6.9 could all be used in place of 1,2,3).  Examples are
injury severity and socioeconomic status.
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 4. Count – the number of entities, events, or some other countable phenomenon, for which
the question "how many" is relevant (e.g., parity, number of siblings); to substitute other
numbers for the variable's value would change its meaning.  In epidemiologic data analysis,
count variables are often treated as continuous, especially if the range is large.

Types of continuous variables
 1. Interval – differences (intervals) between values are meaningful, but ratios of values are not.

That is, if the variable takes on the values 11-88, with a mean of 40, it is meaningful to state
that subject A's score of 60 is "twice as far from the mean" as subject B's score of 50.  But it
is not meaningful to say that subject A's score is "1.5 times the mean".  The reason is that
the zero point for the scale is arbitrary, so values of the scores have meaning only in relation
to each other.  Without loss of information, the scale can be shifted: 11-88 could be
translated into 0-77 by subtracting 11.  Scale scores can also be multipled by a constant.
After either transformation, subject A's score is still twice as far from the mean as is
subject B's, but subject A's score is no longer 1.5 times the mean score.  Psychological scales
(e.g., anxiety, depression) often have this level of measurement.  An example from physics is
temperature measured on the Fahrenheit or Celsius scale.

 2. Ratio – both differences and ratios are meaningful. There is a non-arbitrary zero point, so it
is meaningful to characterize a value as "x" times the mean value.  Any transformation other
than multiplying by a constant (e.g., a change of units) will distort the relationships of the
values of a variable measured on the ratio scale.  Physiological parameters such as blood
pressure or cholesterol are ratio measures.  Kelvin or absolute temperature is a ratio scale
measure.

Many variables of importance in epidemiology are dichotomous (i.e., nominal with two levels) – case
vs. noncase, exposed vs. unexposed.  For an apparently ordinal or continuous variable, the
phenomenon itself may not warrant treatment as such.  It is necessary to ask such question as:  "Is
"more" really more?" and "Are thresholds or discontinuities involved?"  Again, the underlying reality
(or, rather, our conceptual model of it) determines the approach to quantification.  Variable values
are often collapsed into a small number of categories for some analyses and used in their original
form for others.

Preparatory work – Data reduction

Data reduction seeks to reduce the number of variables for analysis by combining single variables
into compound variables that better quantify the construct.  Variables created during coding attempt
to faithfully reflect the original data (e.g., height, weight).  Often these variables can be used directly
for analysis, but it is also often necessary to create additional variables to represent constructs of
interest.  For example, the construct overweight is often represented by a variable derived from the
values for height and weight. Data reduction includes simplifying individual variables (e.g., collapsing
six possible values to a smaller number) and deriving compound variables (e.g. "socioeconomic
status" derived from education and occupation).

In general:
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! Simpler is better

! Avoid extraneous detail

! Create additional variables, rather than destroy the original ones (never overwrite the raw
data!).

! Inspect detail before relying on summaries

! Verify accuracy of derived variables and recodes by examining crosstabulations between the
original and derived variables.

! Take into account threshold effects, saturation phenomena, and other nonlinearities

! Categorize based on the nature of the phenomenon (e.g., a study of Down's syndrome can
collapse all age categories below 30 years; a study of pregnancy rates will require a finer
breakdown below 30 years and even below 20 years).

Types of derived variables

Scales - In a pure scale (e.g.,  e.g., depression, self-esteem) all of the items are intended as individual
measures of the same construct.  The scale score is usually the sum of the response values for the
items, though items with negative valence (e.g., "I feel happy" in a depression scale) must be
inverted.  The purpose of deriving a scale score by having multiple items is to obtain a more reliable
measure of the construct than is possible from a single item.  Scale reliability (internal consistency) is
typically assessed by using Cronbach's coefficient alpha, which can be thought of as the average of
all of the inter-item correlations.  If the items did indeed measure the same construct in the same
way and were indeed answered in an identical manner, then the only differences in their values
should be due to random errors of measurement.  Cronbach's alpha gives the proportion of the total
variation of the scale scores that is not attributable to random error.  Values of 0.80 or greater are
considered adequate for a scale that will be used to analyze associations (if the scale is used as a
clinical instrument for individual patients, its alpha should be at least 0.90 – see Nunally's textbook,
Psychometrics).  When the scale consists of separate subscales, internal consistency may be more
relevant for the individual subscales than for the scale as a whole.  Analyses of relationships between
individual items (inter-item correlation or agreement), between each item and the remaining items
(item-remainder correlation), between each item and the total scale (item-scale correlation), and
among groups of items (factor analysis) are standard methods of analyzing item performance.

Indexes - An index consists of a group of items that are combined (usually summed) to give a
measure of a multidimensional construct.  Here, each of the items measures a different aspect or
dimension, so that internal consistency measures like Cronbach's alpha are either not relevant or
require a different interpretation. Examples of indexes derived from several variables include
socioeconomic status (e.g., occupation, income, education, neighborhood), social support (e.g.,
marital status, number of close family members, number of close friends), sexual risk behavior
(number of partners, types of partners, use of condoms, anal intercourse).  Items may have different
weights, depending upon their relative importance and the scale on which they were measured.
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Algorithms - A procedure that uses a set of criteria according to specific rules or considerations,
e.g., major depressive disorder, "effective" contraception (I have not seen this term used to designate
a type of variable before, but I am not aware of any other term for this concept).

Preparatory work – Exploring the data

Try to get a "feel" for the data – inspect the distribution of each variable.  Examine bivariate
scatterplots and cross classifications.  Do the patterns make sense?  Are they believable?

! Observe shape – symmetry vs. skewness, discontinuities

! Select summary statistics appropriate to the distribution and variable type (nominal, ordinal,
measurement)

Location - mean, median, percentage above a cut-point

Dispersion - standard deviation, quantiles

! Look for relationships in data

! Look within important subgroups

! Note proportion of missing values

Preparatory work – Missing values

Missing data are a nuisance and can be a problem. For one, missing responses mean that the
denominators for many analyses differ, which can be confusing and tiresome to explain. Also,
analyses that involve multiple variables (e.g., coefficient alpha, crosstabulations, regression models)
generally exclude an entire observation if it is missing a value for any variable in the analysis (this
method is called listwise deletion).  Thus, an analysis involving 10 variables, even if each has only
5% missing values, could result in excluding as much as 50% of the dataset (if there is no overlap
among the missing responses)!  Moreover, unless data are missing completely at random (MCAR
– equivalent to a pattern of missing data that would result from deleting data values throughout the
dataset without any pattern or predilection whatever), then an analysis that makes no adjustment for
the missing data will be biased, because certain subgroups will be underrepresented in the available
data (a form of selection bias).

Imputation for missing values - optional topic

As theory, methods, and computing power have developed over the years, analytic methods
for handling missing data to minimize their detrimental effects have improved.  These
methods seek to impute values for the missing item responses in ways that attempt to
increase statistical efficiency (by avoiding the loss of observations which have one or a few
missing values) and reduce bias.  Earlier methods of imputation, now out of favor, include
replacing each missing value by the mean or median for that variable.  Even though such
practices enable all observations to be used in regression analyses, these methods do not



_____________________________________________________________________________________________
www.sph.unc.edu/courses/EPID 168, © Victor J. Schoenbach 14. Data analysis and interpretation  – 460
rev. 11/8/1998, 10/26/1999, 12/26/1999

reduce bias and tend to introduce additional distortion.  More sophisticated methods reduce
bias from missing data while minimizing distortion from imputation.  These methods derive
imputations that make use of the values of variables for which data are present and which
are related to the variable being imputed.

Typically, complete data cases (observations that have no missing values for the variables
of interest) serve as the raw material for the imputations.  Factors that are theoretically
related to the variables to be imputed and with which they are associated in the complete
data cases are used to develop "predictive" models for the imputed variables.  These models
are then applied to the remaining observations, providing predicted ("imputed") values for
their missing responses.  The resulting imputations are said to be conditioned on the
variables in the model.

For example, suppose the available data show a positive correlation between blood pressure
and age.  By conditioning imputations on age, we impute (on average) higher blood
pressures to older subjects with missing blood pressure data and lower blood pressures to
younger subjects missing blood pressure data.  This technique preserves the relationship
between age and blood pressure that exists in the complete data cases.  Moreover, if older
subjects are more likely to be missing a blood pressure reading, then the conditioning
reduces the bias from analyzing only the complete data cases.

If the process that led to the missing data is uniformly random except for being positively
related to identifiable factors (e.g., subject's age), then the missing data process is called
missing at random (MAR), rather than MCAR.  In such a situation, the overall mean
blood pressure for the complete data cases is biased downwards (due to underrepresentation
of older subjects), but the overall mean based on imputations conditioned on age is not.

If predicted values are simply substituted for missing values, however, then although bias
will be reduced so will standard errors.  The reason is that the imputation models were
created based on (imperfect) associations between the conditioning variables and the
variables being imputed. In contrast, the predicted values are directly computed from the
model as if, in our example, blood pressure were completely determined by age.  In effect,
the model functions as a "self-fulfilling prophecy".  To avoid this problem a source of
random variability is introduced into the imputation process. For example, rather than
substituting the predicted values themselves for the missing data, the imputed values may be
sampled from distributions whose means are the predicted values (e.g., if the estimated mean
for a yes-no response were 0.30 [where 1="yes" and 0="no"], then the imputed value would
be generated randomly from a binomial distribution with a proportion of "successes" of
0.30).

In addition, by using multiple imputations (typically five), the analyst can adjust the standard
errors to reflect the uncertainty introduced by the imputation process.  Carrying out multiple
imputations means repeating the imputation process to create multiple versions of the
dataset (one for each imputation), analyzing each dataset separately, and combining the
results according to certain procedures.
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Imputation causes the least distortion when the proportion of missing data is small, and data
are available for variables that are strongly associated with the variable being imputed.
Perversely, however, imputation is most needed when the proportion of missing data is
large.  Also, unfortunately, the available data may provide little guidance about whether the
missing process is MCAR, MAR, or "nonignorable".  Attention to causes of missing
responses during data collection can be helpful (Heitjan, 1997).

[I would like to thank Michael Berbaum and Ralph Folsom for their patient explanations of
imputation and for reading over earlier versions of this section.]

Descriptive analyses

Exploration of the data at some point becomes descriptive analysis, to examine and then to report
measures of frequency (incidence, prevalence) and extent (means, survival time), association
(differences and ratios), and impact (attributable fraction, preventive fraction).  These measures will
be computed for important subgroups and probably for the entire study population.
Standardization or other adjustment procedures may be needed to take account of differences in age
and other risk factor distributions, follow-up time, etc.

Evaluation of hypotheses

After the descriptive analyses comes evaluation of the study hypotheses, if the study has identified
any.  Here there will be a more formal evaluation of potential confounding, other forms of bias,
potential alternative explanations for what has been observed.  One aspect of both descriptive
analysis and hypothesis testing, especially of the latter, is the assessment of the likely influence of
random variability ("chance") on the data.  Much of the field of statistics has grown up to deal with
this aspect, to which we will now turn.

Evaluating the role of chance - inference

Whether or not we believe, in Albert Einstein's words, that "the Lord God doesn't play dice with the
universe", there are many events in the world that we ascribe to "chance".  When we roll a die, the
resulting number is generally unpredictable and does not (or at least, should not) follow any evident
pattern.  Similarly, when we draw five cards from a freshly-shuffled, unmarked deck, we know that
some outcomes are more or less likely than others (e.g., a pair is more likely than three of a kind),
but we cannot predict what cards we will draw.  The theories of probability and statistics were born
in the gaming parlors of Monte Carlo and came of age in the fields of the British countryside.  The
computer revolution put their power, for good or for whatever, into the hands of any of us who can
click a mouse.

The basis for the incorporation of the fruits of the theory of probability and statistics into medical
and epidemiologic research has been recounted by Austin Bradford Hill as follows:

"Between the two world wars there was a strong case for emphasizing to the clinician and other
research workers the importance of not overlooking the effects of the play of chance upon their
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data.  Perhaps too often generalities were based upon two men and a laboratory dog while the
treatment of choice was deduced from a difference between two bedfuls of patients and might
easily have no true meaning.  It was therefore a useful corrective for statisticians to stress, and to
teach the need for, tests of significance merely to serve as guides to caution before drawing a
conclusion, before inflating the particular to the general."  (pg 299 in The environment and
disease: association or causation.  Proceedings of the Royal Society of Medicine, 1965: 295-300)

From this innocent and commonsensical beginning, statistical procedures have (like kudzu?? – just
kidding!) virtually engulfed the thinking of researchers in many fields.  Hill continues:

"I wonder whether the pendulum has not swung too far – not only with the attentive pupils but
even with the statisticians themselves.  To decline to draw conclusions without standard errors
can surely be just as silly?  Fortunately I believe we have not yet gone so far as our friends in the
USA where, I am told, some editors of journals will return an article because tests of significance
have not been applied.  Yet there are innumerable situations in which they are totally
unnecessary - because the difference is grotesquely obvious, because it is negligible, or because,
whether it be formally significant or not, it is too small to be of any practical importance.  What
is worse the glitter of the t table diverts attention from the inadequacies of the fare. . . . "

He admits that he exaggerates, but he suspects that the over-reliance on statistical tests weakens "our
capacity to interpret data and to take reasonable decisions whatever the value of P."  Hill is referring
to tests of significance, which are probably the most common procedures for assessing the role of
chance, or perhaps more precisely, the amount of numerical evidence that observed differences
would not readily arise by chance alone.

Illustration of a statistical test

Consider the following data, from the first study to report an association between adenocarcinoma
of the vagina and maternal use of diethylstilbestrol (DES).  During the 1960's, a handful of cases of
adenocarcinoma of the vagina were observed in young women, a highly unusual occurrence.
Investigation into the histories of the affected women revealed that in most cases the girl's mother
had taken diethylstilbestrol (DES) while she was carrying the girl in her uterus.  At that time DES
had been prescribed in the belief that it might prevent premature delivery in women who had lost
pregnancies.  In how many patients would this history have to emerge for it before the investigators
could be confident that it was not a chance observation?  This question is usually answered by
means of a statistical test.
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Prenatal exposure to diethylstilbestrol (DES)
among young women with adenocarcinoma of the vagina

Exposed to
diethylstilbesterol?

Yes No Total
Cases 7 1 8
Controls 0 32 32
Total 8 33 40

Source:  Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina.  Association of
maternal stilbestrol therapy with tumor appearance in young women.  New Engl J Med 1971;
284:878-881. [From Schlesselman JJ.  Case-Control Studies.  New York, Oxford, l982: 54]

All but one of the cases had a positive history for intrauterine exposure to DES.  In contrast, not
one of 32 controls did.  The relative risk from this table cannot be calculated directly, because of the
zero cell, but adding 0.5 to all four cells yields a relative risk (OR) of 325, a stronger association than
most of us will ever encounter in our data.  However, this study has only eight cases.  Could these
results be due to chance?

A statistical test of significance is a device for evaluating the amount of numerical data on which an
observed pattern is based, to answer a question like, "How often could such a strong association
arise completely by chance in an infinite number of analogous experiments with the same number of
subjects and the same proportion of cases (or of exposed)?"  This question is not quite the same as
"How likely is it that chance produced the association in the table?" nor as "How much of the
association is due to chance?".  But if such a strong association would arise only very infrequently by
chance alone, then it is reasonable to suppose that at least some potentially identifiable factor has
contributed to the observed association.  That factor could be bias, of course, rather than the
exposure, but at least it would be something other than chance.  Conversely, it is also possible that
much stronger associations could readily arise by chance and yet the one we observed might reflect a
causal process.  The significance test simply evaluates the strength of numerical evidence for
discounting chance as a likely sufficient explanation.

In order to conduct a test of significance, we need to operationalize the concept of "analogous
experiment".  There's the rub.  What kind of experiment is analogous to an epidemiologic study, all
the more so an observational one?  For the above table, the significance test that would be used is
Fisher's Exact Test.  The analogous experiment (probability model) here is equivalent to the
following:

Suppose that you have 40 pairs of socks – 7 pairs of red socks, and 33 pairs of blue socks.  You
want to pack 8 pairs of socks in your travel bag, so without looking you take 8 pairs at random
and put them in your bag.  How many red pairs have you packed for your trip?
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When this "analogous experiment" is repeated a sufficient number of times, the proportion of trials
in which the bag has 7 red pairs will provide the probability that chance alone would produce a
situation in which you had packed 7 pairs of red socks.  This probability is the "p-value" for the
significance test of the relationship between adenocarcinoma of the vagina and maternal DES in the
above table.

Fortunately, the distribution of the number of red pairs in the bag has already been worked out
theoretically, so that the exact probability can be computed without having to carry out what in this
case would be a VERY large number of trials.  The formula for the (hypergeometric) distribution is:

n1 n0C j C
(m1 – j) n1!n0!m1!m0!

= –––––––––––––––––––––––– = –––––––––––––––––––––––––––Pr(A=j)
n n! j! (n1 – j)! (m1 – j)! (n0 – m1 –j)!C
m1

where Pr(A=j) is the probability of obtaining j red pairs of socks in the travel bag and m0, m1, n0, n1,
and n are the row and column totals in the table:

Color
Red Blue Total

Travel bag j m1 – j m1
In drawer n1 – j n0 – m1 – j m0

Total n1 n0 n

Here is how the formula is applied:

Red
(DES) Blue Total

Packed (cases) 7 1 8
In drawer (controls) 0 32 32
Total 8 33 40
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Possible outcomes
(Colors of pairs of

socks in travel case)
Red Blue

Probability of
each outcome

0 8 .181
1 7 .389
2 6 .302
3 5 .108
4 4 .019 7! 33! 8! 32!
5 3 .0015 ––––––––––––
6 2 .00005

{
40! 5! 2! 3! 30!

7 1 4.3 x 10-7
8 0 0 } p-value

1.0000

Comments on the "red socks" model:
 1. A model is a system or structure intended to represent the essential features of the structure

or system that is the object of study.  The above model is a very simplified representation!

 2. The model is derived on the basis of certain constraints or assumptions (e.g., in this case, 8
cases, 7 DES-exposed mothers, and 40 subjects in all – "fixed marginals" – as well as "all
permutations are equally likely').

 3. The model underlying hypothesis testing assumes a repeatable experiment and an a priori
specification of the "hypothesis" being tested – a "null" hypothesis [this is embodied in the
model of "equally likely" permutations] and an "alternative hypothesis" [this deals with what
results we would regard as inconsistent with the null hypothesis].

 4. The above model is tedious to compute for large tables, though computers have solved that
problem.

Concept of hypothesis testing (tests of significance)

What we really want to know is: "Is the observed association due to chance?", or "How likely is it
that the observed association is due to chance?".  This probability is sometimes referred to as the
"posterior [a posteriori] probability", the probability that the hypothesis is true given the observed
results.  (The "prior [a priori] probability" that the hypothesis is true is our belief in the hypothesis
before we have the results in question). The frequentist school of statistics, from which significance
testing derives, cannot answer this question directly.  Instead, significance tests and p-values attempt
to provide an indirect answer, by reformulating the question as:  "How often would an association as
strong as that observed occur by chance alone?".  The role of chance is played by a suitable
probability model, chosen to represent the probability structure of the data and the study design. But
most epidemiologic studies deviate rather markedly from the probability models on which statistical
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tests are based (e.g., see Sander Greenland, Randomization, statistics, and causal inference), so
although statistical theory is extremely precise, it must be thoughtfully applied and thoughtfully
interpreted.

A compromise version of the question that underlies a significance test is "How consistent are the
numerical data with what would be expected 'by chance' - as played by a suitable probability model".
The probability model is most often one that assumes no systematic difference between groups,
partly because such models are easier to derive and also because it is often convenient for the
hypothesis-testing framework.  The result of the significance test is a probability (the p-value),
which provides a quantitative answer to this compromise question.  (Note:  The statistical "null
hypothesis" is rarely of interest from a substantive perspective. A study hypothesis should be stated
in terms of no association only if that is indeed what the investigator hopes to demonstrate. In fact,
it is quite difficult to demonstrate the absence of association, since the evidence for no association is
related to the Type II error probability (1 – statistical power) for the study, which is generally
considerably greater than the significance level – see below).

The p-value itself can be regarded as a descriptive statistic, a piece of evidence that bears on the
amount of numerical evidence for the association under study.  When a decision is called for,
though, then some method of assigning an action to the result of the significance test is needed.
Decision-making entails the risk of making errors. Ideally the loss function (the costs of errors of
various types) is known explicitly.  Under broadly applicable assumptions, though, the theory of
decision-making provides a technique for decision-making based on the results of a statistical test.
That technique is statistical hypothesis testing.

As noted, the hypothesis to be tested is generally a "null hypothesis" (usually designated H0).  H0 is
the probability model that will play the role of chance (for example, the red socks model).  In the
present context, that model will be based on the premise that there is no association.  If there is
sufficient numerical evidence to lead us to reject H0, then we will decide that the converse is true,
that there is an association.  The converse is designated as the "alternate hypothesis" (HA).  The
decision-making rule is to reject H0, in favor of HA, if the p-value is sufficiently small, and to
otherwise accept H0.

Since we have a decision between two alternatives (H0 and HA) we can make two kinds of errors:

Type I error: Erroneously reject H0 (i.e., conclude, incorrectly, that data are not consistent
with the model)

Type II error: Erroneously fail to reject H0 (i.e., conclude, incorrectly, that data are
consistent with the model)

(The originator of these terms must have been more prosaic than the originators of the terms
"significance", "power", "precision", and "efficiency")  Traditionally, the Type I error probability has
received more attention and is referred to as the "significance level" of the test.
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In a strict decision-making mode, the result of the significance test is "Reject null hypothesis" or
"Fail to reject null hypothesis".  (Note that "fail to reject the null hypothesis" is not equivalent to
declaring that the null hypothesis is true.)  However, rarely must a decision be made based on a
single study, so it is preferable to report the calculated p-value (probability that the assumed
probability model would produce data as extreme or more so). The p-value gives more information
than the statement "results were significant at the 5% level", since it quantifies the degree to which
the data are incompatible with "chance" (as played by the probability model), allowing the reader to
apply his/her tolerance for a Type I error.  Note that the p-value is not a direct index of the strength
of an association in an epidemiologic sense nor of its biologic, clinical, or epidemiologic
"significance".  The p-value simply assesses the compatibility of the observed data with the assumed
probability model that serves to represent H0.

There are many methods for obtaining a p-value or conducting a test of statistical significance.  The
choice depends upon the level of measurement of the variables (dichotomous, nominal polytomous,
ordinal, continuous), the sampling design from which the data came, and other factors. The
statistical test illustrated above is an "exact" test (Fisher's exact test), since it is based on a model that
considers all possible outcomes and in how many ways each can occur.  In an exact test, the
probability model is readily apparent.

Illustration of an asymptotic test

More commonly-used, because they are much simpler to compute, are asymptotic tests (e.g., chi-
square, t-test). Asymptotic tests are approximations whose accuracy improves as the sample size
increases, and the underlying probability model on which they are based tends to be more abstract.
Typically, asymptotic tests are based on the "normal" (Gaussian) distribution.  Why the Gaussian
distribution?  Because it offers a number of analytic advantages and, most especially, because of the
Central Limit Theorem ("one of the most remarkable theorems in the whole of mathematics", Mood
and Graybill, 1963:149).  The Central Limit Theorem holds that if we take large enough random
samples from any distribution with a finite variance, the means of those samples will have an
approximately Gaussian distribution.

The general form for such a test is (see Rothman, Modern epidemiology, p. 139 or Kleinbaum, Kupper,
and Morgenstern, Epidemiologic research):

a – E(a)
Z = –––––––––

√var(a)

where "a" is the observed value (e.g., the number of exposed cases), E(a) is the expected value for
"a" under the null hypothesis (a.k.a. analogous experiment), and var(a) is the variance of "a" under
the null hypothesis.  Thus, Z is the number of standard deviations by which "a" differs from what
would be expected if there were no association and has an approximate unit normal distribution. (Z
is occasionally written as Χ. (called "chi", a unit normal distribution is the same as the square root of
a one-degree-of-freedom chi-square distribution).
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The probability associated with being "Z" standard deviations away from the mean of a normal
distribution can be computed and is readily available in statistical tables (see table excerpt below).
The value of a normally-distributed random variable is usually (i.e., probability 95%) less than two
standard deviations from its mean, so if Z exceeds 1.96 we say "p<.05", or more precisely, we take
the value we have calculated for Z, look it up in a table of the normal distribution and read off the
corresponding p-value.

The table excerpt below shows various probabilities derived from the unit normal distribution.  For
example, the probability associated with a distance of 1.645 standard deviations above the mean is
shown in column B (0.05) and is identical to the probability associated with a distance of 1.645
standard deviations below the mean (since the normal distribution is symmetrical).  The probability
associated with obtaining a value of z that is either above or below a distance of 1.645 standard
deviations from the mean is shown in column D (0.10).  So if using the formula above (or one of
those below) we obtain a value of Z equal to 1.645, then the p-value is either 0.05 or 0.10, depending
upon the alternative hypothesis.

Excerpt from a table of the Normal Distribution

z   h  A  B  C  D  E
0.00 0.3989 0.0000 0.5000 0.0000 1.0000 0.5000
0.01 0.3989 0.0040 0.4960 0.0080 0.9920 0.5040
0.02 0.3989 0.0080 0.4920 0.0160 0.9840 0.5080
. . . . . . . . . . . . . . . . . . . . .

0.8416 0.2800 0.30 0.20 0.60 0.40 0.80
. . . . . . . . . . . . . . . . . . . . .

1.282 0.1755 0.40 0.10 0.80 0.20 0.90
. . . . . . . . . . . . . . . . . . . . .

1.645 0.1031 0.45 0.05 0.90 0.10 0.95
. . . . . . . . . . . . . . . . . . . . .

1.960 0.0585 0.475 0.025 0.95 0.05 0.975
. . . . . . . . . . . . . . . . . . . . .

2.576 0.0145 0.495 0.005 0.99 0.01 0.995
. . . . . . . . . . . . . . . . . . . . .

3.090 0.0034 0.499 0.001 0.998 0.002 0.999
. . . . . . . . . . . . . . . . . . . . .

Legend:

z = number of standard deviations to the right of the mean

h = height of the normal curve for that number of standard deviations from the
mean

A = area between the mean and z

B = area to the right of z (or to the left of -z)
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C = area between -z and +z

D = area beyond |z| (i.e., to the left of -z and the right of +z)

E = area to the left of z

(Source:  National Bureau of Standards – Applied Mathematics Series–23, U.S.
Government Printing Office, Washington, D.C., 1953, as abstracted in Table A-4 in
Richard D. Remington and M. Anthony Schork, Statistics with applications to the
biological and health sciences.  Englewood Cliffs, NY, 1970.]

One-sided versus two-sided p-values

Recall that the p-value is the probability of obtaining an association as strong as (or stronger than)
the association that was observed.  It turns out, though, that the phrase "as strong as (or stronger
than)" is ambiguous, because it doesn't specify whether or not it is intended to include inverse
associations, i.e., associations in the opposite direction from the putative association that motivated
the study.  For example, if we observe a 2.5 relative risk, does "as strong" mean only relative risks of
2.5 or larger, or does it also mean relative risks of 0.4 or smaller?  If the former (only 2.5 and larger),
then the corresponding p-value is "one-sided" (or "one-tailed").  In contrast, if HA is "either greater
than or equal to 2.5 or [inclusive] less than or equal to 0.4", then a two-sided p-value is indicated.
[Only one-sided p-values can be interpreted as the "probability of observing an association as strong
or stronger under the chance model" (Rothman and Greenland,185).]

The issue of one-sided versus two-sided p-values can arouse strong emotions.  For a given calculated
value of Z, the one-sided p-value is exactly half of the two-sided p-value.  Proponents of two-sided
p-values argue that a one-sided p-value provides an inflated measure of the statistical significance
(low probability of obtaining results by chance) of an association.  Appropriate situations for using
one-sided p-values are sometimes characterized as ones where the investigator has no interest in
finding an association in the opposite direction and would ignore it even it occurred.  However, a
posting on the EPIDEMIOL-L listserv asking for situations of this sort produced very few
persuasive examples.

Here is a dramatical presentation of some of the issues in choosing between 1-sided and 2-sided
p-values:

The wife of a good friend of yours has tragically died from lung cancer.  Although she was a
life-long nonsmoker, your friend used to smoke quite heavily.  Before her death she had become
an anti-smoking activist, and her last wishes were that your friend bring suit against R.J. Morris,
Inc., the manufacturer of the cigarette brand your friend used to smoke.  Knowing that he
cannot afford expert consultation, your friend turns to you and prevails upon you to assist him
with the lawsuit.

In preparation for the trial, the judge reviews with both sides the standard of evidence for this
civil proceeding.  She explains that for the court to find for the plaintiff (your side) it must
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conclude that the association is supported by "a preponderance of the evidence", which she
characterizes as "equivalent to a 90% probability that R.J. Morris' cigarettes caused the disease".
The R.J. Morris attorney objects, declaring that, first of all, only the probability that cigarettes
can cause disease can be estimated, not the probability that cigarettes did cause the disease.  As
the judge is about to say that the judicial interpretation of probability permits such a conclusion,
the R.J. Morris attorney raises her second objection: since the plaintiff is basing his case on
scientific evidence, the plaintiff's case should be held to the conventional standard of evidence in
science, which requires a significance level of 5%.  [Recall that the significance level is the
probability of a Type I error, which in this case would mean finding the company responsible
even though your friend's lung cancer was really due to chance.  If the court were to fail to find
the tobacco company responsible, even though the company's cigarettes did cause the cancer,
that would be or a Type II error.]

Seeing an opportunity, you pass a note to your friend, who passes it on to his attorney.  Upon
reading it, his attorney says to the judge "Your Honor, my client is prepared to accept the
R.J. Morris' insistence on a 5% significance level, provided that it is based on a one-sided
alternative hypothesis."  Beginning to regret that she introduced the probability metaphor, the
judge turns to the R.J. Morris attorney, who is now hastily conferring with her biostatistician.
After a quick consultation, the R.J. Morris attorney charges indignantly that plaintiff's attorney is
trying, through deception, to obtain a lower standard of evidence.  A 5% one-tailed significance
level, she charges, is actually a 10% significance level, since everyone knows that two-tailed tests
are more appropriate. Your friend's attorney senses that this charge will be a telling point with
the judge and anxiously looks back to you for advice on how to respond.

With your coaching, your friend's attorney replies that a two-tailed test is warranted only when
the appropriate alternative hypothesis (HA) is two-sided. The question in this case is whether R.J.
Morris is or is not liable, i.e., whether their cigarettes did or did not cause the cancer. This
question corresponds to a one-sided HA, i.e., the court can (1) reject H0 (no causation) in favor
of the alternative that R.J. Morris is liable or (2) fail to reject H0, if the court finds the evidence
insufficient. "May it please the court," she continues, "there is no issue here that the cigarette
smoke could have acted to prevent the cancer from occurring, so requiring a two-tailed
alternative hypothesis is tantamount to imposing a significance level of 2.5%, which is closer to
the standard for a criminal, rather than a civil, trial".

With the benefit of further consultation, the R.J. Morris attorney "strenuously objects".
"Plaintiff may see this case as involving a one-sided HA, but notwithstanding the proposed
tobacco settlement, as far as the R.J. Morris Company is concerned the relationship between
smoking and cancer has not been proved.  Therefore a finding that cigarette smoking can in fact
prevent cancer is just as relevant as plaintiff's contention that the cigarettes were responsible."

You are naturally outraged by the R.J. Morris lawyer's assertion that the relationship between
smoking and cancer is not proved, but you have to put that aside as your friend's lawyer asks you
is it not correct that the significance level is simply a mechanism for deciding how many
standard deviations away from the mean are required to exclude chance as an explanation.
Usually, people exclude chance when the statistical test comes out two standard deviations from
the center of a normal distribution (actually, 1.96 standard deviations, which corresponds to a
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two-tailed 5% significance level).  If the judge does accept the one-tailed 5% significance level,
even with a good argument that because the appropriate HA is one-sided so that the Type I error
probability is really only 5%, a decision that meets the test of being only 1.65 standard deviations
from the mean (corresponding to a one-tailed 5% significance level) may be vulnerable on
appeal.  Since the scientific evidence is firm, would it be better to agree to the two-tailed test?

The judge looks at her watch, and you see beads of perspiration breaking out on your friend's
attorney's forehead. Meanwhile you're trying to sort through the issues. You've only just received
your epidemiology degree, and you aren't yet sure that it works.  It's true that an appeals court
might reject the idea of a one-tailed test, since appellate judges tend to be conservative, and R.J.
Morris will certainly appeal an adverse judgment. But then a dark thought jumps into your mind.
What if R.J. Morris has concocted evidence that will somehow make it appear that your friend is
responsible for his wife's death from lung cancer? You know that that is outlandish, but what if
they could? With a two-sided HA, the court could reject H0 and find your friend responsible,
thereby destroying him financially and emotionally. "One-sided!", you cry out …and then
suddenly you wake with a start.  The professor and your fellow students are looking at you with
puzzlement, wondering what question you thought that you were responding to.  As you emerge
from your daydream you hope that you have not slept through too much of the lesson and vow
to go to bed earlier in the future.

Significance testing in a two-by-two table

For a two-by-two table, the formula can be more easily expressed for computational purposes by
defining "a" as the contents of a single cell in the table, conventionally the "a" (upper left corner)
cell, so that E(a) is the value expected for "a" under the null hypothesis (n1m1/n), and Var(a) is the
variance of "a" under the null hypothesis {(n1n0m1m0)/[n2(n-1)], based on the hypergeometric
distribution.  The test statistic is then simply:

a – n1m1/n
Z = –––––––––––––––––––––––

√{ (n1 n0m1 m0) /[ n2 (n – 1)]}

An equivalent, but more easily remembered computation formula, is:

(ad –  bc)2 (n – 1)
Z = √ Χ2 = ––––––––––––––√

n1 n0m1 m0

[Note:  you may also see the above formula with n, instead of (n-1) [e.g., Hennekins and Buring,
p. 251 uses T instead of (n-1)].  The reason is that the above formula gives a Mantel-Haenszel chi-
square statistic (based on the hypergeometric distribution) instead of the Pearson chi-square statistic
(based on the normal distribution).  For large samples the two are essentially equivalent.  There are
parallel formulas for person-time data.]
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Exposed to
diethylstilbesterol?

Yes No Total
Cases a b m1
Controls c d m0

Total n1 n0 n

Whatever misgivings we may have about the statistical model and its application, results with as
small a p-value as that obtained in this study will be very satisfying to practically any investigator
who obtains them.  But to appreciate the dynamics of this procedure, and the problems of
interpretation that arise in more equivocal circumstances, let us analyze what underlies a small p-
value.

A small p-value (i.e., low probability that results similar to those observed would be produced by
"chance" [as played by a given statistical model]) reflects:

! a strong observed association (or a large observed difference)
or

! a large sample size (roughly speaking).

Therefore, when the p-value is not small, there are two possibilities (ignoring the possibilities of
systematic error, inappropriate statistical model, etc.):

 1. the observed association or difference is not strong.

 2. the observed association is of a respectable size but the study size was too small to judge it
"significant."

How we interpret a failure to obtain a low p-value depends upon our judgment of the magnitude of
the observed association and of the statistical power of the study to detect an important real
difference.

If the p-value is small (e.g., less than five percent [typical], ten percent [less common], or one percent
[for the demanding or rich in data]), the observed results are somewhat inconsistent with an
explanation based on chance alone, so we are inclined to view them as having some origin worth
inquiring about (e.g., systematic influences from the way the study was designed or conducted,
biological or psychosocial processes related to the factors under study, etc.).  If the observed
difference or association is too small to be scientifically or clinically significant (as opposed to
statistically significant), we will not care to pursue the matter regardless of the p-value.



_____________________________________________________________________________________________
www.sph.unc.edu/courses/EPID 168, © Victor J. Schoenbach 14. Data analysis and interpretation  – 473
rev. 11/8/1998, 10/26/1999, 12/26/1999

If the p-value is not small (i.e., the results are "not significant"), was an association observed?  If no
association was observed, then the appropriate characterization of the finding is "no association was
observed" (but see below).  If an association was observed, then we can say "an association was
observed but the data were insufficient to discount chance as an explanation" [not "there was no
association"!].

If no association was observed, then we also need to ask what were our chances of detecting a
meaningful association if one exists?  If statistical power was low, then we cannot say much.  If
statistical power was high, then we can say the data provide evidence (assuming, always, that bias is
not present) against the existence of a strong association.

If the observed association is strong enough to be important if it is not due to chance, then the only
conclusion we can draw is that the data do not provide sufficient evidence to discount an
explanation of chance alone – this is not equivalent to a conclusion that "an association was not
observed" [since one was] or that "the observed association is due to chance" [which no one knows].
Other characterizations often stated are also unfortunate:

"The observed association is not significant" [which tends to impugn it]

"The association did not reach statistical significance" [which implies that the association should
have been stronger – it may be as strong as it should be but be based on too few subjects.]

Better to say "an association of ____ was observed, but the data were too few to discount an
explanation based on chance" or some similar expression.  [Note: Any result can become
"nonsignificant" if we stratify enough.]

An alternate possibility is that the observed association was too weak to be meaningful even if it had
been associated with a small p-value.  Here our conclusion depends upon the size of the study, i.e.,
its statistical power to detect an association of some particular magnitude.  If the power was low, if
the study's ability to detect a difference we would regard as important is low, then there really is not
much we can say or conclude, except that our failure to find an association could well be due to
chance (i.e., we may well have made a "Type II error").  This inability is one of the reasons for
discouraging researchers from conducting small studies except as a pilot study to develop
procedures and instruments.  If the power was high, then we are in a better position to interpret our
results as evidence against the existence of a real association.

Statistical power and sample size

Statistical power refers to the ability to detect an association of interest in the face of sampling error.
Suppose that there is a true association of a certain type and degree, but that through the workings
of chance our studies will observe the association to be weaker or stronger.  In order to be
reasonably certain that our study will detect the association, the study has to be large enough so that
sampling error can be contained.
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For example, suppose that we are comparing a group of cases of Alzheimer's disease cases to a
group of controls to see whether the cases are different in respect to presence of a specific gene.
Suppose that this gene is actually present in 20% of cases and in 10% of the population from which
the cases arose (i.e., the OR in a large, unbiased case-control study would be 2.25).  If we study 20
cases and 20 controls, we may well find 4 cases with the gene and 2 controls with the gene, so that
we correctly estimate the prevalence of the gene in cases and in the population and the OR.

With such few subjects, however, we could very easily get only 3 cases with the gene and 3 controls
with the gene, completely failing to detect the difference in prevalence (OR = 1.0).  In fact, we might
even get 4 controls with the gene and only 2 cases with the gene, so that the gene appear to be
protective (OR = 0.44).  Of course, we would not want to react to a difference or an OR that may
readily be due to chance, so we will test whatever result we observe to make sure that it is greater
than is expected to occur by chance alone (i.e.,"significant").  That means that we will discount any
association we observe if it is less what we regard as within chance expectation.  (Or recalling our
courtroom fantasy, a "preponderance of the evidence", not merely suspicion.)

Therefore, in order to detect an association, we must both (1) observe it in our study and (2) decide
that chance would not likely have created it.  Each of these requirements places a demand on the
size of the study.  We need at least some minimum number of subjects so that (1) we have a
reasonable expectation of observing an association if one exists (i.e., that we will not make a type II
error), and (2) we will think it unlikely that chance could produce an association of that size.

                Statistical power to detect an OR ≠ 1.0 with a one-tailed significance test

Distribution of test statistic if true OR =1.0
(H0)

z=–1 z=0 z=1 Type I error prob. (alpha) →
zα→

←zβ
←  Type II error probability (beta) z=0 z=1

(HA)
Distribution of test statistic if OR is, e.g., 2.25

This diagram illustrates the overlap between the central portions of the distributions of a test
statistic (e.g., Z) expected under the null hypothesis (e.g.., true OR is 1.0) and alternate hypothesis
(e.g., true OR is 2.25).  When we obtain the results from the study we will compute the test statistic
(e.g., Z) and compare it to its distribution under the H0 (the upper of the two distributions in the
diagram).  If the calculated value of Z is smaller than zα, i.e., it falls to the left of the cutpoint we
have set (defined by the Type I error probability, alpha), then we will conclude that the data we
observed came from the upper distribution (the one for no association, true OR=1.0).  Even if the
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OR we observed was greater than 1.0 (which implies that Z was greater than 0), because Z was not
greater than our cutpoint we regard the observed OR as a chance deviation from 1.0.  If the unseen
truth is that there really is no association, then our conclusion is correct.  If instead the true OR is
really 2.25, so that the data we observed really came from the lower distribution, then our conclusion
represents a Type II error.  The area to the left of the cutpoint on the lower distribution represents
the probability of making a Type II error, "beta".  Statistical power – the probability of detecting a
true difference – is equal to one minus beta (i.e., 1 - beta).

Conversely, if we observe a value of Z to the right of the cutpoint, we will conclude that the data we
observed did not come from the upper distribution and that therefore the true OR is greater than
1.0.  If we are incorrect – if the association we observed was in fact simply a chance finding – then
our conclusion represents a Type I error.  The area to the right of the cutpoint on the upper
distribution represents the probability of making a Type I error, "alpha".

If we abhor making a Type I error, we can move the cutpoint to the right, which reduces alpha – but
increases beta.  If we prefer to reduce beta, we can move the cutpoint to the left – but that increases
alpha.  What we would really like to do is to reduce both alpha and beta, by making the distributions
narrower (so that more of the shading is located at the center of the each distribution, symbolizing
greater precision of estimation).  The width of the distribution is controlled by the sample size.
With a powerful light we can easily distinguish between, for example, a snake and a stick.  But with a
weak light, we cannot be certain what we are seeing.  We can elect to err on one side or the other,
but the only way to reduce our chance of error is to get a more powerful light.

Commonly used values for alpha and beta are, respectively, 0.05 and 0.20 (power=0.80), for a total
probability of error of 0.25.  If the study size is limited due to the low incidence of the disease, the
low prevalence of the exposure, or the low amount of the budget, then our study estimates will be
imprecise – the distributions in the above diagram will be wide.  The total error probability will be
below 0.25 only when the lower distribution is farther to the right, i.e., corresponds to a stronger
association.

In essence, intolerance for error (i.e., small alpha and beta) and desire to detect weak associations
must be paid for with sample size.  In our courtroom daydream, the better the chance we want of
winning the case against R.J. Morris (our power) and/or the more R.J. Morris can persuade the
judge to raise the standard of evidence (the significance level), the higher the price we will have to
pay for our legal representation (more study subjects).]  The Appendix contains a section that
translates these concepts into estimated sample sizes.

Small studies bias

In crude terms, big studies are powerful; small studies are weak.  The concept of "small studies bias"
illustrates the importance of having an understanding of statistical power when interpretating
epidemiologic studies.
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The idea behind small studies bias (Richard Peto, Malcolm Pike, et al., Br J Cancer 34:585-612, 1976)
is that since small studies are easier to carry out than large studies, many more are carried out.  Small
studies that do not find a "significant" result are often not published.  The journals tend not to be
interested, since as explained above, there is not much information in a negative study that had low
power.  In fact, the investigators may not even write up the results – why not just conduct another
study.  In contrast, large studies are expensive and involve many investigators.  Whatever the results
from a large study, there is more interest on everyone's part to publish it.

To the extent that this scenario describes reality, the body of published studies contains primarily
small studies with "significant" results and large studies with "significant" and "nonsignificant"
results.  However, if there are many small (i.e., easy, inexpensive) studies going on, then a 5%
probability of making a Type I error translates into a large number of positive findings and resultant
publications.  Thus, many of the small studies that appear in the literature are reporting Type I errors
rather than real associations.

The following example, based on randomized trials of new treatments, comes from the article by
Peto, Pike, et al.  Assume that there are 100 large and 1,000 small trials of treatments that are not
really different, and 20 large and 200 small trials of treatments which are really different.  The large
trials have statistical power of 95%; the small trials have statistical power of 25%.  The significance
level is 5%, and only trials reporting significant results are published.  These somewhat pessimistic,
but perhaps very realistic, assumptions lead to the following hypothetical scenario for the number of
treatment trials in progress that will be "statistically significant" (p<0.05):

True death rate in Expected number to findPlanned
trial size Control Treatment

Postulated
# of trials p>0.05 p<0.05

250 50% 50% 100 95 (TN)* 5 (FP)*
250 50% 33% 20 1 (FN) 19 (TP)
25 50% 50% 1,000 950 (TN) 50 (FP)
25 50% 33% 1,000 150 (FN) 50 (TP)

* TN, FP, FN, TP are for analogy with sensitivity and specificity (see below).

In this scenario, 100 small trials with "significant" results will be published, but only half of them will
reflect a real difference between treatments.  Peto, Pike et al.'s conclusion is to pay attention only to
large trials, particularly ones that are large enough to be published even if they do not find a
significant difference in treatments.

These results can be thought of in terms of the concepts of sensitivity, specificity, and predictive
value.  In this conceptualization, sensitivity corresponds to the statistical power to detect a true
difference (95% for large trials, 25% for small trials), specificity corresponds to one minus the
significance level – the probability of correctly identifying a chance result (95% specificity for a 5%
significance level), and positive predictive value is the probability that a "significant" result in fact
reflects a true difference in treatment effectiveness.
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Large trials (e.g., 250 deaths)

True death rate in
treatment group

(assuming 50% death
rate in control group)

P < 0.05 33% 50% Total
 Yes 19 5 24
 No  1 95   96

Total 20 100 120

Thus, the predictive value of a p < 0.05 = 19/24 = 79%

Small trials (e.g., 25 deaths)

True death rate in
treatment group

(assuming 50% death
rate in control group)

P < 0.05 33% 50% Total
 Yes 50 50 100
 No  150 950 1,100

Total 200 1,000 1,200

Predictive value of a P<.05 = 50/100 = 50%

Evaluating the role of chance - interval estimation

[EPID 168 students are responsible for these concepts, but not for the computations]

Statistical significance testing, with its decision-making orientation, has fallen somewhat out of favor
for reporting data from epidemiologic investigations.  On the premise that an epidemiologic study is
essentially a measurement process (see Rothman), it is argued that the more appropriate statistical
approach is one of estimation (e.g., of a measure of effect) rather than significance testing.  Of
course, there is still a need to quantify the role of chance, but in an estimation framework chance is
quanitified by a confidence interval or confidence limits about the point estimate.  Confidence limits
quantify the amount of uncertainty in an estimate by defining an interval which should cover the
population parameter being estimated (e.g., measure of effect) a known percentage of the time.
Various authors have argued that confidence intervals are superior to p-values as a means of
quantifying the degree of random error underlying an association.
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Confidence intervals address the question, "what possible values for a population parameter (e.g.,
incidence density ratio) are consistent with the observed results?"  Stated another way, "what is the
range of true values which, when distorted by haphazard influences, could well have produced the
observed results?"  Confidence intervals provide a statement about the precision of an estimate or
estimates based on the amount of data available for the estimate.  If a "significant" association was
not observed, then the confidence interval can give some idea of how large an association might
nevertheless exist but, due to the luck of the draw, not be observed.

The nature of a confidence interval and what it does and does not provide, however, is a little tricky
(judging from a discussion of confidence intervals on the STAT-L internet listserv that continued
for weeks and drew a host of responses and counter-responses).  The frequentist view is that a "95%
confidence interval" is an interval obtained from a procedure that 95% of the time yields an interval
containing the true parameter.  Ideally, a 95% confidence interval would be one that "contains the
parameter with 95% probability".  But frequentists argue that the interval is set by the data, and the
population parameter already exists in nature.  The parameter is either in the interval of it is not.
There is no probability about it.  All that can be said is that 95% of the time the procedure will yield
an interval that embraces the value of the parameter (and therefore 5% of the time the procedure
will yield an interval that does not).  In this view, a 95% confidence interval is like a student who
typically scores 95% – the probability that he/she will give the correct answer to a question is 95%,
but the answer he/she gave to any particular question was either correct or incorrect.
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Possible true values

Possible true values

Observed
result

Observed
result

Confidence interval

The concept behind the confidence interval
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Computing a confidence interval for a ratio measure of effect

Introductory biostatistics courses cover the method for obtaining a 95% confidence interval for the
estimate of a population proportion p.  If the sample is large enough so that np > 5 and n(1-p) > 5,
then the confidence limits are:

p ± 1.96 √ [var(p)]

p ± 1.96 √[p(1 – p)/n]

where p is the observed proportion, var(p) is the variance of the estimate of p (so √var (p) is the
standard error), and n is the number of observations.  For a proportion, var(p) equals p(1 – p)/n.

This method can be used to estimate confidence intervals for prevalence, cumulative incidence, and
other simple proportions.  Many epidemiologic measures, however, are ratios (e.g., CIR, IDR, and
OR).  Since ratio measures of effect have a highly skewed distribution (most of the possible values
lie to the right of the null value of 1.0), the usual approach is to first estimate the confidence interval
for the natural logarithm [ln(CIR), ln(IDR), or ln(OR)] and then take the anti-log (exponent) of the
confidence limits:

95% CI for ln(OR) = ln(OR) ± 1.96 √{var[ln(OR)]}

95% CI for OR = exp{ln(OR) ± 1.96 √([var[ln(OR)])}

              = OR exp{± 1.96 √([var([ln(OR)])}

To obtain the variance of the ln(OR), we use a simple formula (that has been derived by means of a
Taylor series approximation to the ln[OR]):

var{[ln(OR)] =  1/a + 1/b + 1/c + 1/d}

which works well if a, b, c, d are all at least 5.

The 95% confidence interval for the ln(OR) is therefore:

ln(OR) + 1.96 √[(1/a + 1/b + 1/c + 1/d)]

and the 95% confidence interval for the OR is:

OR exp{+ 1.96 √ (1/a + 1/b + 1/c + 1/d)}

or

OR  e+ 1.96 √ (1/a + 1/b + 1/c + 1/d)
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Formulas for confidence intervals for the CIR and IDR can be found in Kleinbaum, Kupper and
Morgenstern and Rothman and Greenland.  Of course, if the study population is highly-selected
(i.e., unrepresentative of any other population of interest), how useful is the value of the estimate?

IMPORTANT CAVEAT:  Everything in this section, of course, has been based on the assumption
of perfect (unbiased, independent) sampling and measurement.  Anything other than an unbiased
simple random sample and any error in measurement will invalidate the above at least to some
extent.

Meta-analysis

Meta-analysis is a quantitative approach to summarizing and synthesizing the findings from different
studies of a particular relationship of interest.  Meta-analysis proceeds from the recognition that the
failure to find "significant results" can be due as much to the limited statistical power of individual
studies as to the absence of a relationship.  Combining the information from multiple studies can
yield a more precise and definitive assessment of the existence and strength of a relationship than is
available from any one study or, it is argued, from a nonquantitative distillation of the literature.

There are four steps in carrying out a meta-analysis:  1) formulating the problem, 2) identifying the
studies (published and unpublished), 3) coding and evaluating the studies, and 4) statistical analysis.
Steps 2) and 3) are critical for the validity of the meta-analysis, since the judgments from the meta-
analysis will depend upon the adequacy with which the evidence about the relationship is
represented by the studies that are finally analyzed (the possibility of publication bias against
"negative" studies implies that some effort should be made to locate unpublished studies).  The
strategy for statistical analysis can be similar to that for stratified analysis, regarding each study as a
separate "stratum".  More refined approaches recognize that the studies themselves can be regarded
as a sample from some universe of possible studies, so that the weighting scheme needs to take into
account inter-study variability as well as intra-study variability (as in the random-effects model of
analysis of variance).

Interpretation of results

Key questions
1. How good are the data?

2. Could chance or bias explain the results?

3. How do the results compare with those from other studies?

4. What theories or mechanisms might account for findings?

5. What new hypotheses are suggested?

6. What are the next research steps?

7. What are the clinical and policy implications?
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Appendix

Estimating sample size to compare two proportions or means

(Adapted from a summary provided by of Dana Quade, UNC Department of Biostatistics, June
1984)

Let N be the number of subjects (observational units) required in each of two groups to be
compared.  Then

N  =  I  x  D  x  C

Where:

I = Intolerance for error, which depends on:

a. Alpha = Desired significance level that we want to use for our hypothesis test (e.g., 5%,
two-sided)

b. Beta = Type II error (e.g.,.10 – same as 1 - power)

Formula:   I = (Zalpha + Zbeta)2

Zalpha and Zbeta are, respectively, the critical values corresponding to alpha and beta from
the normal distribution (see Table A on next page)

D = Difference to detect, which depends on the narrowness of the difference between the true
proportions or means, in relation to the standard deviation of that difference.  D can be
regarded as the inverse of the "signal-to-noise ratio" – the softer the signal or the louder the
noise, the more subjects needed

noise p1 (1 – p1) + p2 (1 – p2) 2(σ2)
D = ––––––– OR ––––––––––––––––––––– OR ––––––––

signal (p1 – p2)2 (μ1 – μ2)2

(for differences in
proportions, where (p1 and

p2 are the two proportions –
see table on next page)

(for differences in
means, where μ2 and
μ2 are the two

means, and σ2 is the
variance of the

difference)
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C - Clustered observations, which depends on whether observations are selected independently
or in clusters.

! If all observations are sampled independently, C = 1.

! If observations are sampled in clusters (e.g., by households, schools, worksites, census tracts,
etc.), then sample size must be increased to offset the fact that observations within a cluster
are more similar to each other than to observations in other clusters.  If rho is the
intracluster correlation among observations within clusters, then:

C  =  1  +  (m-1) rho

where m is the average cluster size (i.e., n = km, where k is the number of clusters).  C is
often referred to as the "design effect".  If the clusters are large or if the people in them tend
to be very similar, then individual subjects contribute little information and you therefore
need to study a very large number of them.  If you choose "independent thinkers", you will
learn more from each one.

Table A:   Intolerance for error

 Two-Tailed Tests One-Tailed Tests
Significance Level Significance LevelDesired

power 0.01 0.05 0.10 0.01 0.05 0.10
0.80 11.7  7.9  6.2 10.0  6.2  4.5
 .90 14.9 10.5  8.6 13.0  8.6  6.6
0.95 17.8 13.0 10.8 15.8 10.8  8.6

                             

Table B:  Difference to be detected

p2

.10 .20 .30 .40 .50 .60
.05 55 9.2 4.1 2.4 1.5 1.0
.10 – 25 7.5 3.7 2.1 1.3

p1 .15 87 115 15 5.9 3.1 1.8
.20 25 – 37 10 4.6 2.5
.25 12.3 139 159 19 7.0 3.5

Complications

1) Unequal sample sizes

Let n be the average sample size = (n1+n2)/2

Let lambda1 = n1/2n, lambda2 = n2/2n  (lambda1 + lambda2 = 1)
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p1 (1 – p1) p2 (1 – p2) σ21 σ2 2
––––––––– + ––––––––– ––––––––– + –––––––––
2 lambda1 2 lambda2 2 lambda1 2 lambda2

D = –––––––––––––––––––––––––– OR ––––––––––––––––––––––––
(p1 – p2)2 (μ1 – μ2)2

2) Covariables

If statistical tests are to be conducted separately within each stratum then n as determined above is
required for each stratum.

If results for different strata are to be tested only for an overall average association, it is probably
best not to try to allow for them in the sample size formulas explicitly, but make a modest overall
increase in n.

Note:  "more precise" formulas can be found in the literature, but the parameters needed for factors
D and C are never really known.

Sample size for interval estimation

The tolerable width for a confidence interval can be used as the target for estimating the required
sample size for a study population.  Suppose, for example, that an investigator wishes to estimate the
proportion (p) of condom use in a clinic population.  If the investigator can obtain a simple random
sample of that population, then her estimate of the proportion of condom users would be p = u/n,
where u is the number of users in the sample and n is the size of her sample.  As noted above, if
np > 5 and n(1-p) > 5, then a 95% confidence interval for p is :

p + 1.96 (1/√[p(1 – p) n])

For example, if p is 0.50, then the confidence interval is:

(0.5)
0.5 + 1.96 (1/√[ (0.5)(0.5)/n]) = 0.5 + 1.96 ––––

√ n

[The square root of (0.5)(0.5) is, of course, 0.5]

Since 1.96  ×  0.5 is approximately 1, for practical purposes this expression is equivalent to:

0.5 + 1/√ n ,  so that the confidence limits are    (0.5 – 1/√ n ,  0.5 + 1/√ n )
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For example, suppose that n, the sample size, is 100.  Then the 95% confidence interval around the
point estimate of 0.5 is:

(0.5 – 1/√ 100 ,  0.5 + 1/√ 100 )
= (0.5 – 1/10 ,  0.5 + 1/10)
= (0.5 – 0.1, 0.5 + 0.1)
= (0.4, 0.6)

Imprecision is often quantified in terms of the half-width of the interval, i.e., the distance between
the point estimate and the interval's upper (or lower) limit, which we will refer to here as the "margin
of error".  The half-width of the above interval is 0.1 (i.e., the square root of n) in absolute terms or
20% (0.1/0.5) in relative terms.  A 0.1 absolute or 20% relative margin of error is adequate for a
"ballpark" estimate of a proportion, but not much more.

Since the above expressions involve the square root of the sample size, progressive narrowing of the
interval width involves substantially greater increases in sample size.  For example, to obtain a 0.05
absolute or 10% relative margin of error, sample size must be quadrupled, to 400:

(0.5 – 1/√ 400 ,   0.5 + 1/√ 400 )
= (0.5 – 1/20 ,   0.5 + 1/20)
= (0.5 – 0.05,   0.5 + 0.05)
= (0.45,   0.55)

Similarly, a sample size of 900 yields confidence limits one-third as wide as from a sample of 100, a
sample of 2,500 yields limits one-fourth as wide as for n=100, etc.

These numbers apply to a point estimate of 0.5, which produces the widest error margin in absolute
terms.  A smaller or greater point estimate will have a narrower (in absolute terms) interval, because
the square root of p(1 – p) cannot exceed 0.5 (try it! – or use calculus).  The relative margin of error,
on the other hand, is inversely related to the size of the point estimate.  Examine the following table:
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Margin of error (rounded)
Point

estimate
   Sample

size
Absolute * Relative **

(%)
0.1 100 0.06*** 60***
0.2 100 0.08 40
0.3 100 0.09 30
0.4 100 0.096 24
0.5 100 0.10 20
0.6 100 0.096 16
0.7 100 0.09 12
0.8 100 0.08 9.8
0.9 100 0.06 6.5

0.1 400 0.03 30
0.2 400 0.04 20
0.3 400 0.045 15
0.4 400 0.048 12
0.5 400 0.05 10
0.6 400 0.048 8.0
0.7 400 0.045 6.4
0.8 400 0.04 4.9
0.9 400 0.03 3.2

 * Approximate half-width of 95% confidence interval in absolute terms

** Approximate half-width of 95% confidence interval in absolute terms, relative to the size of
the point estimate

*** Calculation:   1.96 (1/√[(0.01)(1 – 0.01) / 100])   =  1.96 (0.03) = 0.0588  ≈ 0.06 absolute
error margin

This table illustrates that:

 1. quadrupling sample size halves the margin of error.

 2. absolute error margin decreases as the point estimate moves away from 0.5

 3. relative error margin is inversely – and very strongly – related to the size of the point
estimate

For very small point estimates, as illustrated in the following table, very large samples are required to
obtain a small relative margin of error.  Even a sample size of 2,500 still produces a relative error
margin of 17% for a proportion of 0.05.



_____________________________________________________________________________________________
www.sph.unc.edu/courses/EPID 168, © Victor J. Schoenbach 14. Data analysis and interpretation  – 491
rev. 11/8/1998, 10/26/1999, 12/26/1999

Margin of error (rounded)
Point

estimate
   Sample

size
Absolute * Relative *

(%)
0.5 100 0.10 20
0.5 400 0.05 10
0.5 900 0.033 6.6
0.5 1,600 0.025 5.0
0.5 2,500 0.020 4.0

0.05 100 0.043 85
0.05 400    0.021 **    43 **
0.05 900 0.014 28
0.05 1,600 0.011 21
0.05 2,500 0.009 17

* See previous table

** Calculation:  1.96 × (1/√[(0.05)(0.95)/400])   =  1.96 × 0.0109

=  0.0214  ≈ 0.021 absolute error margin

Relative  =  0.0214 / 0.05  =  0.427 = 42.7% (approximately 43%)

Recall that this formula requires that nP > 5, which is just met for P=0.05 and n=100.

How large a sample is large enough?  If the objective is to set an upper or lower bound on a
proportion, then a small absolute margin of error may suffice.  For example, if one is testing for
hepatitis C antibody and wants to be reassured that the seroprevalence is below 5%, then a sample
size of 900 will produce an interval with an absolute error margin no wider than 0.033 (for a point
estimate of 0.5 – see above table) and more likely 0.011 (for a point estimate of 0.05) or smaller.
Since we expect the seroprevalence to be very small, then the 0.011 is much more relevant than the
0.033.  If when we carry out the study we obtain a point estimate of exactly 0.05, then the 95%
confidence interval will be (0.039,0.061) which will tell us that the true value is at least not likely to
be greater than 6%.  If the point estimate is below 0.04, then the upper confidence limit will be
below 5% and we are reassured that the seroprevalence is no greater than that value.

Note that the above is all based on the assumption of perfect (unbiased)  simple random sampling
and measurement.  Anything other than an unbiased simple random sample and any error in
measurement will invalidate the above at least to some extent.
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Meditations on hypothesis testing and statistical significance

The statistical theory of hypothesis testing and assessment of statistical "significance" proceeds from
an analysis of decision-making with respect to two competing hypothesis:  a "null" hypothesis and
an alternative hypothesis.  Two types of errors are possible:

Type I: Erroneously reject the "null hypothesis" (H0), in favor of the alternate hypothesis (HA), i.e.,
erroneously reject chance as a sufficient explanation for the observed results.

Type II: Erroneously fail to reject H0, i.e., erroneously accept chance as an explanation.  [A parallel
dichotomy will be seen later in the course when we discuss sensitivity and specificity.]

Traditionally, the Type I error probability has received more attention and is referred to as the
"significance level" of the test.  The Type I error presumably owes its prominence to the scientific
community's desire to avoid false alarms, i.e., to avoid reacting to results that may readily have been
chance fluctuations.  Also the Type I error probability is easier to estimate, since the Type II error
probability depends on stating the size of true difference that one seeks to detect.

During recent decades, the calculation and presentation of "p-values" (which give information about
the Type I error probability) have become de rigeur in the empirical scientific literature.  Indeed, a
significant (!) number of people refuse to pay any attention to results that have p-values greater than
.05 (5% probability of a Type I error).

Such a stance is a considerable labor-giving device, but is perhaps a bit brutal.  After all, a result with
a p-value of .10 would result from a chance process in only one in ten trials.  Should such a finding
be dismissed?  Moreover, since the p-value reflects the number of subjects as well as the size of the
observed difference, a small study will have very small p-values only for large (and perhaps
unrealistic?) observed differences.  If the size of the observed difference is unreasonably large, then
we may be suspicious of the finding despite a small p-value.  If the observed difference is plausible,
but because the study is small the p-value is "not significant", we may nevertheless want to pay some
attention.

Another reason for a reflective, rather than a reflexive, approach to p-values (and statistical inference
generally) is that the probability estimates themselves are accurate only with respect to the models
that underlie them.  Not only may the mathematical models not adequately capture the real situation,
but the context in which they are used clouds the issue.  One critical assumption is that of random
sampling or randomization (as in a randomized controlled trial).  Although this assumption is the
basis for virtually all of the statistical theory of hypothesis testing and confidence intervals, it is rarely
met in observational studies and the limitations that it imposes on the interpretation of statistical
tests are often underappreciated (Greenland S.  Randomization, statistics, and causal inference
Epidemiology 1990;1:421-249).
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Even in randomized trials problems of interpretation exist.  For example, the p-value for a single
result in a single study may be 5 percent.  But that means that 20 independent studies of two
identical phenomena would observe, on the average, one difference that was "significant" at the five
percent level.  A prolific investigator who conducts 200 studies in his/her professional life can
expect to have ten that are "significant" by chance alone.  Moreover, a study will often examine
multiple outcomes, including multiple ways of defining the variables involved.

Such "multiple comparisons" increase the likelihood of chance differences being called "significant".
But the statistical procedures for dealing with this "significance inflation" tend, like measures to
suppress price inflation or grade inflation, to produce recession or even depression [of study
findings].  Should an investigator be required to take an oath that he/she had (1) fully specified an a
priori hypothesis, including the procedures for defining and manipulating all variables, decisions
about all relationships to examine, what factors to control, etc; (2) proceeded directly to the pre-
specified statistical test without looking at any other data; and (3) will not perform any further
statistical tests with the same data?  (See Modern Epidemiology for more on these points.)

What about so called "fishing expeditions" in which an investigator (or her computer) pores over a
dataset to find "significant" relationships.  Is such a procedure better characterized as "seek and ye
shall find" or as "search and destroy"?  Some analysts recommend adjusting the significance level to
take account of such "multiple comparisons", but an energetic investigator can easily perform
enough tests so that the adjusted significance level is impossible to satisfy.  Other writers (e.g.,
Rothman, Poole) assert that no adjustment is required – that once the data are in, the number of
tests is irrelevant.  Others (e.g., Greenland) have proposed more sophisticated approaches to
adjustment.  Perhaps the best course at this time is twofold:

(1)  If you are conducting a study, for example, a randomized trial, in which you have a good chance
of satisfying the assumptions for a statistical hypothesis test and are hoping to test a specific
hypothesis, especially one that may lead to some decision, then it is probably better to adhere to the
Neyman-Pearson hypothesis testing format as much as possible.  This approach ensures maximum
impact for your results;

 (2) If you are conducting an inquiry with few of the above characteristics, or have already
completed the a priori hypothesis test, analyze all that you like but be candid in describing how you
proceeded.  Then readers can interpret as they judge most appropriate.

Apparent (calculated) power is rarely achieved because it often assumes no errors in classification of
subjects.  A study with advertised power of 90% could well have much less probability of detecting a
given true difference because of dilution by information bias.  Similarly we can in principle improve
the effective power of a study if we can increase the precision with which important variables are
measured.

Louis Guttman has written that estimation and approximation, never forgetting replication, may be
more fruitful than significance testing in developing science.  [Louis Guttman.  What is not what in
statistics. The Statistician 25(2):81-107.]
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Independent replication is the cornerstone of scientific knowledge.

Bayesian approach to p-value interpretation

The application of the concepts of sensitivity, specificity, and predictive value to interpreting
statistical hypothesis tests suggests an analogy between statistical tests and diagnostic tests (see
Browner and Newman, 1987; Diamond and Forrester, 1983; and Feinstein, Clinical Biostatistics).  Just
as the interpretation of a diagnostic test depends upon disease prevalence (the "a priori likelihood
that the patient has the disease"), the interpretation of statistical tests can be regarded as dependent
upon "truth prevalence", i.e., on the reasonableness of the hypothesis.

As noted earlier, we would like statistical inference to provide an estimate of the probability that a
hypothesis of interest (H) is true given the observed results.  The p-value provides instead the
probability of observing an extreme result under a null hypothesis (typically the inverse of the
hypothesis of interest).  The Bayesian approach to interpreting p-values tries to provide an answer
that comes closer to the original objective.  In the Bayesian approach, we begin with a prior
probability for the truth of the hypothesis and then adjust that probability based on the results of a
study, to obtain a posterior probability.  The effect that the study results have on our assessment of
the credibility of the hypothesis depends on our original assessment of its credibility.

Let T mean that a statistical test is "significant".  According to Bayes Theorem, if Pr(H) is the "a
priori" probability of H, i.e., the probability that H is true based only on previous information, then
the a posteriori probability of H (the probability that H is true based on previous information and the
current test result) is:

Pr(H) Pr(T|H)
Pr(H|T) = ––––––––––––––––––––––––––––

Pr(H) Pr(T|H) + Pr(h) Pr(T|h)

[where Pr(T|h) means the probability of a positive test given that the hypothesis is not true] which
can be written:

Pr(H) Pr(T|H)
Pr(H|T) = –––––––––––––––––––––––––––––––

Pr(H) Pr(T|H) + [1 – Pr(H)]  Pr(T|h)

Since Pr(T|H) is the statistical power (the probability of a positive test given that the hypothesis is
true) and Pr(T|h) is the p-value (the probability of a positive test given that the hypothesis is not
true), the posterior probability can be written:

Pr(H)  (power)
Pr(H|T) = –––––––––––––––––––––––––––––––

Pr(H) (power) + [1 – Pr(H)]  (p-value)
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Pr(H|T) is therefore a function of the "a priori" probability of the hypothesis, the statistical power,
and the p-value.  Therefore the p-value has more impact on Pr(H|T) when Pr(H) is small (i.e., when
a hypothesis is not supported by prior research or laboratory data) (see Diamond and Forrester).

To get an idea of how these formulas work with typical values for the various elements, take a look
at the following table:

Evaluation of posterior probability based on
prior probability, statistical power, and p-value

Prior
probability

(Before
the study)

Statistical
power
of the
study

P-value
(Findings

of the
study)

Posterior
probability
(After the

study)
Pr(H) Pr(T|H) Pr(T|h) Pr(H|T)

Credible 0.60 0.8 0.100 0.92
hypotheses 0.60 0.8 0.050 0.96 High power

0.60 0.8 0.001 1.00

0.60 0.5 0.100 0.88
0.60 0.5 0.050 0.94 Low power
0.60 0.5 0.001 1.00

Long shot 0.05 0.8 0.100 0.30
hypotheses 0.05 0.8 0.050 0.46 High power

0.05 0.8 0.001 0.98

0.05 0.5 0.100 0.21
0.05 0.5 0.050 0.34 Low power
0.05 0.5 0.001 0.96

In this table, for example, a very strong p-value (e.g., 0.001) gives high credibility (posterior
probability) even for a long shot hypothesis examined in a study of low statistical power.  A p-value
that is "just significant", however, does not make a hypothesis highly credible unless it was judged
more likely than not before the study.  Even a "nonsignificant" p-value (e.g., 0.10) provides some
increase in credibility of the hypothesis, so in the Bayesian framework a p-value of 0.10 would not
be regarded as a "negative" result casting doubt on the existence of an association.  Meta-analysis, in
which results are combined across studies to obtain a quantitative assessment of an association from
the full body of evidence, also takes into account evidence for the association from studies that
observed an association but had a p-value greater than 0.05.  Formal use of Bayesian methods in
everyday work, however, is somewhat constrained by the absence of an obvious method for
obtaining a prior probability.
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More meditations on interpreting statistical significance tests

Some of the concepts in the interpretation of statistical tests of significance can perhaps be
illustrated through an example based on one glorious origin of probability theory – games of chance.
Suppose that our friend tells you that he has an intuition about roulette wheels.  By watching the
operator spin the wheel, your friend can, he claims, predict where the ball will land within a very
small margin.  If, for simplicity, the wheel has numbers 1-100 on it, your friend says he can predict
the numbers where the ball will land.  He wants you to put up some money to send him to Monte
Carlo to make our fortunes.

Naturally you're excited by the prospect of instant riches but also a bit skeptical.  To verify your
friend's claim, you undertake a statistical test.  You give your friend $5 to prove his prowess at the
local gambling casino, and you wait to see how he does.

The null hypothesis for your statistical test is that your friend has no special ability, so that his
chances of predicting the resting place of the ball on any one try are simply 1 out of 100 (.01).  The
1-sided alternate hypothesis is that your friend does have this ability and can predict the correct
number more often than 1 out of 100 times.  [The 2-sided alternate hypothesis is that your friend
will predict the resting place of the ball either more than would be expected by chance or less than
would be expected.]

Your friend returns with $400.  Knowing that the probability of his being correct on a given try by
chance alone was only 1%, your are impressed.  His performance was "significant at the .01 level"!
Do you underwrite his trip to Monte Carlo?  How do you interpret his correct prediction?

Is it correct to say that there is only a 1% chance that his accurate prediction was due to "luck"?
Not quite.  According to the frequentist interpretation, the prediction was made and the roulette
wheel has already been spun.  The accuracy was due either to "chance" ("luck") or your friend's
ability, but only one of these was actually responsible that time.  So the probability that his correct
prediction was due to chance is either zero (i.e., your friend can predict) or one (your friend cannot
predict).  The only trouble is, you don't know which!

You can say (before the wheel was spun and assuming it was a balanced wheel) that if your friend
had no special ability there was only a one percent probability of his making a correct prediction and
that therefore his winning is evidence against the null hypothesis (of no ability) and in favor of the
alternate hypothesis (ability to predict).  If you have to decide that day, you might figure that it
would be worth underwriting his trip to Monte Carlo, but you would be aware that his correct
prediction could have been due to chance because there was a one percent probability that in the
absence of any clairvoyance his prediction would have been correct (not quite the same as a one
percent probability that his correct prediction was due to chance).  So you give your friend $2,000.
He thanks you profusely, and in parting, tells you that it actually took him 30 tries to make a correct
prediction – he borrowed the money for the other 29 tries.
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That information gives you pause.  Certainly you would not have been so impressed if he had told
you he could make a correct prediction in 30 tries.  If the probability of a correct prediction (i.e., a
correct guess) in the absence of any special ability is 0.01, then the probability of one or more
correct guesses in 30 tries is 0.26 (1.0 minus the quantity 0.99 raised to the 30th power).  Twenty-six
percent is still less than 50 percent, i.e., the probability of winning a coin flip, but not so
impressively.  The evidence against the null hypothesis is now not nearly so strong.  This change in
your interpretation illustrates the issue that arises in connection with multiple significance tests and
small studies bias.

It is possible, using statistical theory, to adjust significance levels and p-values to take into account
the fact that multiple independent significance tests have been done.  But there are various practical
problems in applying such procedures, one of which is the lack of independence among multiple
tests in a particular set of data.  For example, if your friend explained that he so rarely makes an
incorrect prediction that when he did he became so upset that it took him a whole hour (and 29
more predictions) to regain his predictive ability, then even if you remained skeptical you would be
hard-put to calculate an adjusted p-value for your test if you thought he was telling the truth.
Similarly, in a given dataset, does the fact that an investigator tested the same difference in various
ways (e.g., obesity as indexed by weight/height2 [Quetelet's index], weight/height3 [ponderal index],
percent above ideal weight, skinfold thickness, and body density) weaken the findings for each test?
If she also looked at blood pressure differences, would that weaken the credibility of statistical
significance of differences in obesity?

"You pays your money, and you takes your choice."
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Data analysis and interpretation - Assignment

Part I

The following questions are based on Rosenberg et al., "Oral contraceptive use in relation to nonfatal
myocardial infarction".  Am J Epidemiol 1980; 111:59-66.

 1. Control for menopausal status appears to have been accomplished through:  (Choose one)

A. Restriction

B. Matching plus stratified analysis

C. Stratified analysis without matching

D. Mathematical modeling (logistic regression)

 2. Using the data in Table 1, label and complete a 2x2 table for the crude (i.e., not stratified by age of
hospitalization) odds ratio for MI and current (versus "never") OC use.

 3. Compute the odds ratio for the above table (show all work).

 4. Is age a confounder of the relationship between MI risk and current OC use, based on the data in
Table 1?  Justify your answer (1-3 sentences), referring to specific measures or estimates in the data.

 5. Is age an effect modifier of the relationship between MI risk and current OC use, based on the data
in Table 1?  Justify your answer (1-3 sentences).

 6. Based on the data in Table 4:

a. Is MI associated with cigarette smoking?  Give a sentence to support your answer (yes, no,
cannot determine from the data in Table 4).

b. Is the association between MI and the combination of smoking and hypertension greater than
or less than the association between MI and hypertension alone?  Give a sentence to support
your answer (greater than, less than, cannot determine from the data in Table 4).

 7. Using the data in table 4, create and label a 2x2 table relating current OC use and hospitalization for
MI among nurses who have no history of hypertension, regardless of their smoking status.

 8. What is the relative risk estimate for women who have all three characteristics (OC, CIG, HYP)
compared to women who have none?

 9. Assuming that the relative risk estimates in table 4 are precise (i.e., ignoring the variability from small
cell sizes), what would be the relative risk estimate for women who have all three characteristics
(OC, CIG, HYP) compared to women with none under a multiplicative model?  Show your work.
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Part II

 1. In table 2 from the Rosenberg et al. study (p. 62), which variables are not found to be risk factors
for MI?

 2. Show the relationship between the logistic regression coefficient for Current OC use and the relative
risk estimate for that factor.

 3. Has age been controlled in this logistic model?

 4. Comparing the information in Table 2 with that in Table 1, do you see evidence of confounding in
Table 1 with respect to the relationship between MI risk and OC use?  Briefly discuss, citing the
most relevant measures or statistics from the two tables.

 5. What is peculiar about this logistic regression model, in terms of the form of the variables in it?

 6. What provision has been made in this model for possible statistical interaction, i.e., deviation from a
multiplicative model?

 7. Based on the logistic model shown, what would be the odds ratio for the combination of both
cigarette smoking and Current OC use (versus neither)?  Compare this result to the corresponding
figure(s) in the stratified analysis in Table 4 and suggest possible explanations for the difference, if
any.
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Data analysis and interpretation - Assignment solutions

Part I

 1. (a) Restriction

The methods for this paper were included in the Sources of Bias assignment, so we need to look
at that paper to find the answer.  The 3rd paragraph of the Methods section (page 118) says:
"One hundred and fifty-six respondents reported having been hospitalized for MI before their
menopause ….  For each of these case, we selected 20 control subjects from respondents … and
who were premenopausal at the time of hospitalization of the case."  Thus, it appears that both
cases and controls were premenopausal at least to the time that the MI occurred or the
comparable date for the matched controls.  The controls were matched on several factors,
including being premenopausal.  But because ONLY premenopausal women were studied, the
method is Restriction (to one level of the variable) rather than matching (enforcing the same
distribution of the matching variable) and stratified analysis (which involves dividing the dataset
into strata, not collecting data from only one stratum).

 2. OC use

Current Never

MI (16 + 7) = 23 (42 + 53) = 95

No MI (190 + 114) = 304 (991 + 1045) = 2036

 3. (23)(2036)
OR = –––––––––––– = 1.62

(95)(304)

 4. Age (at hospitalization) is not a confounder:

Crude OR = 1.6

Stratum-specific OR's are 2.0 and 1.2, so that the crude lies well within their range.

 5. The concept of effect modification can be approached from different perspectives.  One
perspective is to regard effect modification as a departure from a multiplicative model, since the
multiplicative model is most often employed in investigations of etiology and, from a practical
standpoint, departure from multiplicativity means that a weighted average of stratum-specific
ratio measures of effect (e.g., OR's) may be misleading.  This example is complicated by the fact
that controls were matched to cases on age, so that the effect of age cannot be evaluated from
the data presented in the paper.  However, homogeneity across strata of age can be examined.
We already know, of course, that MI rates increase sharply with older age.
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If the OR for Current OC use were the same in the two age strata, then we could conclude that
the observed odds ratios fit a multiplicative model, so that there would be no effect modification
based on the above perspective.  However, the OROC for the older women is smaller than the
OROC for the younger women.  That suggests that the combined effect of current OC use and
greater age is less than would be expected based on a multiplicative model, which could be
interpreted as evidence of effect modification.  The evidence is weak, however, since although
confidence intervals are not presented, the OR estimates are based on rather small numbers of
exposed cases and are therefore imprecise.  Unless a statistical test for heterogenity of the OR
across strata indicated that the observed difference in the OR's (1.2 versus 2.0) is beyond that
expected from chance alone, one would say that there is, at most, slight evidence for effect
modification.

The other perspective on effect modification relates to impact, i.e., that if the combined effect is
greater than expected from an additive model, then interventions may be worth targeting to
those dually exposed.  This perspective cannot be fully investigated in the data we have here,
because of the matching.  But since the combined effect is less than expected based on a
multiplicative model, the combined effect is presumably not much greater than expected based
on an additive model.

 6. (a) Yes:  OR for CIG only is 5.0 (2.7-9.0).

(b) Greater than:  OR for CIG + HYP = 8.9, compared to OR for HYP only = 7.6.  But the
confidence intervals are broad and have substantial overlap, so "cannot determine" is also a
reasonable conclusion.

 7. Hospitalization for MI and OC use in nurses with no history of hypertension.

OC use

Current Never

MI (5 + 7) = 12 (12 + 39) = 51

No MI (150 + 107) = 257 (1022 + 669) = 1691

(12)(1691)
OR = –––––––––––– = 1.55

(51)(257)

 8. From last line of the table:  170 (31 - 1100)



_____________________________________________________________________________________________
www.epidemiolog.net © Victor J. Schoenbach Analysis and interpretation - Assignment solutions - 505
rev. 11/24/1994, 10/27/1999, 12/6/1999

 9. ORCIG,HYP,OC    [multiplicative model]

             ___ __              ___ __             ___ ___
= ORCIG|HYP,OC × ORHYP|CIG,OC × OROC|CIG,HYP

= 5.0 × 7.6 × 2.8

= 106

 (This is less than the observed OR.)

Part II

 1. Past OC use (Relative risk estimate 0.9) and Overweight (Relative risk estimate 1.2) are both not
importantly related to MI risk.  Though an OR of 1.2 indicates some elevation of risk, the
confidence interval extends so far below 1.0 that the elevation is consistent with an interpretation
in terms of chance.

 2. The relationship between the coefficient for Current OC use and the relative risk estimate is:

Relative risk estimate  =  OR  =  exp(0.59)  =  e0.59  =  1.8

 3. Age has not been controlled in this logistic model.  The cases and controls were, however,
matched by year of birth.  It is not clear that this matching eliminates possible confounding by
age.  Nevertheless, from Table 1, there does not appear to be confounding by age, and while it is
theoretically possible to have confounding in the multivariable analysis even though none was
observed in the stratified analysis of Table 1, that likelihood is probably small.

 4. The crude OR from Table 1 is 1.6; the summary OR (controlling for age) is also 1.6.  there may
be a small amount of confounding caused by the other risk factors, therefore, since the OR from
the multiple logistic model is 1.8 for Current OC use.   But the difference between 1.6 and 1.8 is
not important.

 5. This logistic model consists entirely of indicator (dichotomous) variables. In part, this fact was
necessitated by the study questionnaire, which asked for history of various conditions, rather than
their actual values (e.g., blood pressure).  Overweight could presumably have been entered as a
continuous variable.  Using a single indicator variable to express the value of a continuous
variable loses information.  There are some offsetting advantages, however.
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 6. There are no interaction (product) terms in this model, so no provision has been made for
deviation from the underlying model that the odds ratio for a combination of factors equals the
product of their respective odds ratios (or equivalently, that the logarithm of the odds of MI
equals the sum of the logarithms of the odds ratios for the factors, plus a constant), and that this
relationship is not altered by the value of other variables in the model.

 7. The odds ratio for the combination of cigarette smoking and Current OC use (compared to
neither factor) is, since there are no product terms to consider, simply the product of the odds
ratios (relative risks) for each of these two factors:

ORcig,OC  =  ORcig  ×  OROC  =  2.8  ×  1.8  =  5.04  ≈  5.0

This OR is close to the value in Table 4 for "OC and CIG only" (5.6) for normotensive
individuals.  For hypertensives, the estimate for the joint effect of OCs and cigarettes is obtained
by dividing 170 (the OR for "OC, CIG, and HYP") by 7.6 (the OR for "HYP only"); among
hypertensives, therefore, the OR for OCs combined with cigarette smoking is 170 / 7.6 = 22.4, a
value well above the 5.0 estimate from the model.  Since there are no product terms involving
hypertension, the logistic model assumes that the OR for each factor or combination of factors
is unaffected by hypertension.  In other words, the OR from this logistic model represents a type
of average of the OR in normotensives and that in hypertensives.

The difference between the value from the logistic model (5.0) and the values from the stratified
analysis (5.6 and 22.4) can be attributed to the "smoothing effect" of the logistic regression,
which forces all odds ratios to fit the form of the assumed model (of multiplicative odds ratios
with no heterogeneity).  From the figures in Table 4, it is clear that most of the cases and
controls were not hypertensive, so the logistic model odds ratio estimates will primarily reflect
the odds ratios in normotensives.  Hence the logistic value is closer to the 5.6 than to the 22.4.

Another possible reason for the difference between the stratified and logistic regression odds
ratios is that the latter control for a variety of other risk factors that are not included in the
stratified analysis.  If these other factors confound the OC and cigarette smoking relationship
with MI risk, then the stratified analysis results in Table 4 may be confounded.
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15. Practical aspects of  epidemiologic research

Epidemiology in the "real world":  the practice of epidemiology and its institutional
environment -- funding, logistics, collaborations, peers, publication, publicity, politics

and policy, study conduct, data management.

Natural history of a study

 1. Develop an idea for a study, see an RFA, be invited to work on a proposal, . . .
 2. Explore the literature, talk with others, brainstorm

 3. Develop the rationale and specific aims/questions
 4. Design the study - architecture, setting, study population, eligibility criteria, measures,

analysis
 5. Arrange collaborations, secure access to needed resources

 6. Prepare proposal and submit for review (human subjects and scientific) / approval / funding
 7. Obtain resources - funds, release time, space, personnel, equipment, subcontracts,

consultation, advice, and assistance
 8. Create a management structure, timetable, workplan, communication infrastructure, quick

reference resources, documentation procedures, filing systems
 9. Identify measurement instruments, analytic procedures, etc.

 10. Develop data collection protocol, forms, confidentiality, training
 11. Obtain human subjects (IRB) approval for data collection instruments and procedures

 12. Pretest questionnaires and data collection forms, and revise
 13. Create tracking system(s) for subjects and forms

 14. Develop data filing systems - manual and electronic
 15. Design a system for data linkage (ID and numbers)

 16. Arrange contemporaneous monitoring of process and output, with feedback to data
collectors, including quality control measures

 17. Pilot test questionnaires, data collection forms, and procedures
 18. Modify instruments and procedures

 19. Obtain IRB approval for revised data collection instruments and procedures
 20. Schedule and train data collection personnel

 21. Collect data, monitor the activity with frequent written reports
 22. Review completed forms for completeness, consistency, and accuracy

 23. Make modifications and provide feedback to get back on track
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 24. Submit manuscript from previous study
 25. Develop formal edit specifications and coding rules, pilot test them, and implement

 26. Computerize data
 27. Compile Data Management Manual

 28. Explore the data
 29. Create data files for each data stream, create analysis files

 30. Prepare an accounting for all data, check the N's very carefully!
 31. Carry out preliminary analyses to inform planning and to look for big surprises

 32. Write next grant proposal
 33. Clean and summarize data

 34. Create analysis variables and scales
 35. Write a descriptive report

 36. Address the research questions
 37. Control for potential confounders, effect modifiers, other extraneous factors

 38. Bring documentation up-to-date
 39. Write up results of analyses

 40. Write conclusion and introduction
 41. Submit request for no cost extension

 42. Fill in missing analyses
 43. Complete manuscript and/or report

 44. Arrange for storage for data, analyses, and documentation and/or make data and
documentation available for use by others

 45. Write and submit final report to funding agency

Funding an epidemiologic study

Most epidemiologic studies of any size (.e.g., costing $20,000 or more) conducted by independent
agencies (e.g. universities, research institutes) are funded through research grants or contracts.  The
large majority of these are awarded by federal agencies, particularly institutes within the National
Institutes of Health (NIH).

Major NIH agencies that fund epidemiologic research include the National Cancer Institute (NCI),
the National Heart, Lung, and Blood Institute (NHLBI), the National Institute of Allergy and
Infectious Disease (NIAID), the National Institute of Environmental Health Sciences (NIEHS,
located in Research Triangle Park), the National Institute of Child and Human Development
(NICHD), the National Institute on Alcohol Abuse and Alcoholism (NIAAA), the National
Institute on Drug Abuse (NIDA), and the National Institute of Mental Health (NIMH)).  Other
agencies of particular interest to epidemiologists seeking funding are the Centers for Disease Control
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(CDC, which includes the National Institute of Occupational Safety and Health [NIOSH] and the
Agency for Toxic Substances and Disease Registry [ATSDR]), the Environmental Protection
Agency (EPA), and the Agency for Health Care Policy and Research (AHCPR).

Types of federal funding mechanisms

Grant applications to NIH are submitted through several funding mechanisms.  The first
mechanism is unsolicited investigator-initiated proposals (often called "R01's", since the application
and grant, if awarded, will be assigned a number that begins R01-).  Here the investigators develop a
proposal on their own initiative and submit it on the hope (preferably with some informed judgment
and informal advice) that an institute will have some interest in the proposed research.

Program announcement

Agencies often issue program announcements (PA's) describing particular interest areas and/or
types of application the agency would like to receive.  These announcements may or may not
designate an amount of funding available.  They usually do not involve a special review process, but
they may request a Letter of Intent prior to the submission of the application.

The recipient of a grant award made in response to a program announcement has a considerable
degree of lattitude in carrying out the research, subject to overall responsibility for the general
scientific conduct of the study and the accurate accounting for all monies expended within the
budgeted categories.  Funds can generally be shifted between budget categories and other
adjustments made, and research objectives can be modified (in consultation with the granting agency
project officer) if necessary.

Request for applications

A second funding mechanism is proposals submitted in response to a Request for Applications
(RFA).  RFA's describe a specific research area in which the agency wants to generate research.  The
difference between RFA's and program announcements is that an RFA usually identifies specific
funds for the successful applications.  In addition, applications in response to the RFA may be
reviewed by a special review group, chosen to be knowledgeable or sympathetic to the kinds of
research solicited.

The RFA may include special requirements for applying or for eligibility for funding.  For example, a
Letter of Intent may be requested or required; a certain number or types of components may be
required to be present in the proposed study.  The RFA may specify a special deadline other than
the usual review dates.

Within these guidelines, however, the investigator has complete freedom in the type of study and
study population he/she proposes, the specific hypotheses to be tested, the manner of carrying out
the investigation, and so forth.  Should a grant be awarded, the investigator has the same lattitude as
for other investigator-initiated research proposals.  There is somewhat less freedom than in the first
mechanism in that the agency has defined explicit goals and guidelines for the research proposals.
But some of the guessing-game of what research would the agency like to fund has been eliminated
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Cooperative agreement

A cooperative agreement is a grant where it is anticipated that there will be considerable interaction
between the grantee and the funding agency, and often with other grantees who are part of the same
cooperative agreement.  This mechanism can provide considerable flexibility for both the grantee
and the granting agency.  The level of involvement of the granting agency can vary considerably, but
often includes measures designed to achieve greater uniformity across multiple studies (e.g.,
common questionnaire items, uniform procedures for data collection, joint analyses).

An important feature of a cooperative agreement is that the funding agency may be able to redefine
the goals and objectives, and other major aspects of the activity, in midstream, even terminating the
agreement if it decides that other needs are of higher priority.  Often a steering or executive
committee is created from among principal investigators and NIH representatives to make decisions
concerning the direction of a funding program.

Request for proposals

A request for proposals (RFP) differs substantially from the above mechanisms.  An RFP is a
solicitation for contract research rather than simply for the purpose of encouraging research in a
particular area.

In issuing an RFP, the agency has decided that a particular study or studies are needed and has
already decided the general framework of the study design.  The investigators still have latitude in
proposing how they would do the requested study or project, but much of this latitude will be
directed toward interpreting and designing an approach to meet the specific objectives and criteria
that have already been set out in the RFP.

A specific amount of money or other indication of resources available is usually given.  If the agency
likes your proposal but thinks it can persuade you to do it for less money, the agency may negotiate
with you to reduce your budget.

If you receive an award under this mechanism, you will need to sign a contract specifying in some
detail what you will provide to the sponsoring agency and when (a schedule of "deliverables"), and
certain other conditions from the RFP.  If you do not meet those conditions, or if the reports and
"deliverables" you provide are not regarded as acceptable, your contract may be terminated.

RFP's are for the procurement of research.  The data may belong to the funding agency.

Obviously, investigators generally prefer grants to cooperative agreements and contracts.  There is
much sentiment in favor of increasing the amount of government funding going to research project
grants, which provide the greatest opportunity for investigators to pursue research of their own
choosing.

Contracts need not be undesirable, however, particularly if the investigators are already interested in
or would like to gain experience in an area of activity.  Moreover, much of the major research in the
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cardiovascular area -- notably the large collaborative randomized trials (HDFP, MRFIT, CPPT) and
the ARIC study -- has been conducted through contract mechanisms.

Contract officers are generally understanding of difficulties that may arise in carrying out a project,
and can be strong allies of the researchers.  The contract officer's responsibility is to represent the
interest of the agency in seeing the results of the project completed and of high quality.  If you are
working toward that end, you can generally expect a cordial relationship.

Access to data collected with federal funding

In October 1998, the U.S. Congress passed a law providing for access under the Freedom of
Information Act (FOIA) to data collected with federal funds. The legislation stimulated considerable
unease in the scientific community, and the Office of Management and the Budget (OMB) received
numerous comments in response to the draft regulations for implementing the law.  OMB published
a reviewed draft in August 1999 and in October issued final regulations regulations, so that from this
point forward (it is not clear whether or not the requirement applies retroactively) any investigator
who receives federal funding to collect data (even if the federal funds represent only a portion of the
total cost) can be required to provide that data under FOIA (FOIA contains certain provisions for
the protection of privacy and proprietary material, though whether investigators will be regarded as
having a proprietary interest research data they have been collected is an open question).

Research supplements for underrepresented minorities and for disabled scientists

Another advantage of a grant or cooperative agreement is the opportunity to apply for supplements.
Competitive supplements, where additional funds are requested through a proposal that goes
through peer review, are generally difficult to obtain.  Administrative supplements (generally below a
certain dollar limit) can be awarded by the agency.

Most supplements are made in response to individual, ad hoc requests.  However, there are also two
supplement programs.  In order to increase the number of underrepresented minorities in
biomedical research and also the number of scientists with disabilities, the National Institutes of
Health has for a number of years funded a program of supplements whereby an investigator who
has a grant or cooperative agreement with at least two years of funding remaining can apply for an
administrative supplement (i.e., rapid review within the funding agency) to obtain additional funds to
support a minority or disabled graduate student, postdoctoral fellow, or junior faculty member to
work on the study or a closely related investigation.  There are also programs for high school and
undergraduate students.

Information about grants

One good source for learning about opportunities to apply for grants and contracts is the NIH
Guide for Grants and Contracts, published by the NIH.  The Guide appears approximately weekly
and is available on the World Wide Web at http://www.nih.gov  from where you can view institute
program descriptions and access funding and other information.
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Assurances by the applicant and her/his institution
In the British colonies in what is now the United States, the "power of the purse" was a primary
strategy by which the colonial legislatures could influence the conduct of government.  In more
recent times (I would guess since about the 1960's), for the U.S. federal government has used the
awarding of funds as a mechanism to achieve various governmental objectives.  In some cases this
strategy has enabled the federal government to enforce behaviors in areas of authority outside those
assigned to it by the U.S. constitution (and therefore reserved by the Tenth Amendment to the states
or the people).  But even where the federal authority is clear, tying requirements for desired
behaviors to funding gives a more detailed and powerful means of achieving compliance than that
available through overburdened law enforcement and judicial systems.  Thus, the applicant
institution for a grant from the Public Health Service (of which NIH is a part) must provide
assurances related to: Age Discrimination, Civil Rights, Debarment and Suspension, Delinquent
Federal Debt, Financial Conflict of Interest, Handicapped Individuals, Human Subjects, Lobbying,
Research Misconduct, Sex Discrimination, Vertebrate Animals.  These assurances primarily relate to
the presence of institutional practices and policies (with which individual researchers must, of
course, comply).  One area, though, risk to human subjects, often demands specific attention from
researchers, such as epidemiologists, who study people (scientists who study non-human animals
have a corresponding concern regarding vertebrate animals).

Before an investigator can collect data from or on human subjects, s/he must obtain permission
from a human subjects protection review committee.  In the United States, these are designated by
NIH as Institutional Review Boards (IRB), though they may have other names as well (e.g.,
"Committee for the Protection of Human Subjects in Research").  The IRB mechanism was created
in 1973, following a public outcry and Congressional hearings in response to media publicity about
the now-infamous Tuskegee Syphilis Study (the history is presented in James Jones, Bad Blood: The
Tuskegee Syphilis Experiment – a tragedy of race and medicine, NY: Free Press, 1981; the following synopsis
comes from Stephen B. Thomas and Sandra Crouse Quinn, The Tuskegee Syphilis Study, 1932 to
1972: implications for HIV education and AIDS risk education programs in the Black community,
AJPH, 1991; 81:1498-1504).  In that study, carried out by the U.S. Public Health Service (PHS) in
collaboration with the Tuskegee Institute, Alabama State Board of Health, the Macon County
Medical Society and Board of Health, and the Milbank Memorial Fund, poor, African American
men in rural Alabama who had been found to be infected with syphilis were studied over four
decades to resolve questions about the longterm sequelae of syphilis.

The study had its origins in a series of programs to demonstrate that Black persons in the rural
South could be tested and treated for syphilis, whose prevalence had been found to be as high as
40%.  A combination of financial shortfall (the loss of the treatment funding that was being
provided by the Julius Rosenwald Fund until the stock market crash of 1929) and a 1929 Norwegian
study whose findings conflicted with prevailing theories concerning racial differences in the natural
history of syphilis led the PHS to launch the study as an "unparalleled opportunity for the study of
the effect of untreated syphilis" (p94 in Jones J, quoted on p1500 of Thomas and Quinn).  The study
was by no means a secret enterprise.  While it was continuing, study investigators presented the
study at medical/scientific conferences and published their findings in major medical/scientific
journals.  In order not to lose this "never-again-to-be-repeated opportunity" (p179 in Jones, quoted
at p1501 in Thomas and Quinn), the PHS arranged with county, state, and other federal agencies to
exclude study participants from treatment, even after penicillin became the standard treatment for
syphilis in 1951.  Indeed, as late as February 1969 a blue-ribbon panel convened by the Centers for
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Disease Control (CDC) decided against treating the men in the study in order to harvest all of the
scientific information it could provide.

Before collecting any data from human subjects, an investigator must provide a description of the
study objectives, potential risks to participants, and procedures for data collection, participant
enrollment, and informed consent to an IRB and obtain their approval.  Changes to the study
procedures must receive IRB approval, and the IRB must be informed of any harm that occurs to
participants.  Over the years the requirements related to human subjects protection, including
training about use of human subjects and other ethical issues in research, have continued to expand.
Most recently the Department of Health and Human Services instituted a requirement that all key
personnel on DHHS-funded research must describe education they have received concerning
human subjects protection (see http://grants.nih.gov/grants/guide/notice-files/NOT-OD-00-
039.html).  In their mandate to protect human subjects, IRB's have also begun to consider
investigators' freedom from financial conflicts of interests in the research (see
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-00-040.html), another topic that since
1995 has been linked to funding of health research.  The NIH web site contains links to a great deal
of information on research ethics and human subjects protection.  The information on human
subjects research can be found by starting at the page for Bioethics Resources
(www.nih.gov/sigs/bioethics/).

In response to Congressional action, NIH has also instituted and recently expanded requirements
that minorities, women, and children be included in studies unless that would conflict with the
scientific objectives of the research.  The expanded guidelines may be found at:
grants.nih.gov/grants/guide/notice-files/NOT-OD-00-048.html.

Study management

Definition of study management:  Accomplishing the aims of the research.

Elaboration

 1. Working out the details of the study design and implementation, often incompletely specified in
the proposal - developing the protocol.

 2. Garnering and managing the resources to carry out the study:

Funding

Space

Equipment and infrastructure

Supplies

Staff

Subjects

Time (from one's other responsibilities)
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The new element is the grant award.  But grant funding isn't everything.  The grant may not
bring enough money.  And money can't buy everything - space, telephones, secretarial
assistance, time.

 3. Meeting legal, ethical, institutional, and professional requirements.

 4. Obtaining quality data (see Chapter 8 in Szklo and Nieto, 2000)

 5. Publishing the study results and possibly other forms of dissemination.

 6. Solo versus team

Even a study carried out by a single person research team involves study management in terms
of the above.  Typically, though, epidemiologic studies involve multiple investigators and staff.
Larger and more complex (e.g., multidisciplinary) research teams bring in issues of collaboration,
communication, personnel management, and greater needs for formal project management.

Study management tends not to be taught

Study management is somewhat neglected in teaching, for several important reasons, including:

 1. Faculty teach what they have been taught.  Since study management isn't taught, it is harder to
teach.

 2. Study management may be better learned "on the job", for example, in a research
apprenticeship.  That is undoubtedly true for various aspects, but it is also likely that much
could be taught systematically.

 3. Designing the study (more "intellectual") and securing the funding (money talks) have higher
status than getting the work done.  Doing the work takes longer, entails more tedium, and
involves more mundane tasks.  In industry, there is more glory for sales than for production.
Consider the fascination of sex versus the reality of raising children.

 4. Teaching study management is akin to teaching other aspects of methods - most often the
teaching does not flow out of nor feed into the faculty member's research.  Therefore the time
demands of teaching are felt more strongly.

Natural history of study conduct

(on analogy to William Haddon's pre-crash, crash, post-crash for motor vehicle injury prevention)

Preaward

The principal investigator's role in study management begins with the proposal development activity.
Production of the proposal is a foretaste of what production of the study will involve, only on a
smaller scale.  Developing and elaborating a vision, maintaining interest of a team, delegating
responsibilities, communicating, supervising staff, negotiating, distributing rewards, organizing work,
projecting costs and completion times, etc.  Key considerations:  are the right people being involved,
is the concept sound, is there sufficient time set aside for quality thinking and review, is the budget
realistic (in both directions)?
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After submission but before the award, the PI may be the only study staff person as well as the PI.
That means (if funding appears likely):

Writing job descriptions

Requesting space

Interviewing and hiring

Negotiating subcontracts

Developing instruments

Working out communications infrastructure

Clarifying uncertainties in the proposal

Publicity and media relations (news release)

Planning preaward expenditures?  (equipment, personnel)

Problem:  How to motivate before the award is official?

Award

Once the award arrives, there is often the painful necessity to reduce the budget:  the study may
have been underbudgeted (because of faulty projections or in an attempt to fit under a ceiling or to
avoid or respond to criticism) or the award may be for less than the amount requested.  Should the
scope of the project be narrowed?

Startup tasks come next - many of the things that ideally would have been done before the award
began likely remain to do - for example, staffing, space, equipment, subcontracts.  All of these issues
take time, and the PI will want the best staff, the most suitable space, the best type of equipment
affordable, and the most desirable subcontract.  She/he will probably feel lacking in expertise in
some or all of these areas.  And each has the potential to take much more time than appears to be
available.  In the meantime, various people (reporters, university administrators, community people,
politicians, students) may want information about the study, whereas all that is available are the grant
proposal and the PI!

With core staff and infrastructure in place, the PI is ready to confront the reality of the work that has
been proposed and to find out how well have the production aspects of the research been
anticipated?  At this time, more conventional project management needs come into play:

 1. Managing time

 2. Managing people
 3. Managing money

The basics of these three dimensions can be stated as follows:

A.  Create a workplan
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1. What needs to be done?

2. How long will it take?

3. When will it happen?

4. Who is responsible?

5. How much does it cost?

B. Revise the plan (so keep it easy to change)

(Adapted from Alan Gump, The basics of project management, Symantec Newsletter, Summer 1991,
30-31:)

Of course, managing means more than just making and revising a plan.  Staff need to be found,
oriented, trained, motivated, guided, supervised, and sometimes disciplined.  Involving staff with a
democratic management style can help staff to become invested in the study goals and its
accomplishments.  But there are costs to democracy (time, persuasion energy) and not everyone may
want to participate in that way.

Two problems:

 1. Since research almost by definition involves unfamiliar terrain, one typically doesn't know all
that one needs to know to make the plan and carry it out.

 2. Information (e.g., about what is going on in data collection, about spending) is often less
available than would be helpful.

Some other issues that arise are:

! Data management - like study management, this is a major but largely unrewarded activity,
especially documentation.  Generating adequate, timely documentation is a constant
challenge, and a balance must also be struck between documenting and doing.

! Monitoring - in principle, all activities should be monitored, so that adjustments can be made
in time to meet study goals.

! E.g., a doctoral student found that after 4 months of his study, only 25% of WIC mothers
recruited in the first 2 months had filled out their 2nd visit survey (because they missed the
scheduled appointment and there was no other mechanism in place).  So he changed the
protocol to have the resurvey completed at any time the subject came for a WIC visit).  He
also revised his entry criteria when the number of eligible women was smaller than expected.

! All data should be reviewed as close to the time of its collection as possible, so that
corrective action can be taken.  For example, are all forms present and completed
consistently?  However, who will do this?  PI?  Project coordinator?  Research assistant?
Graduate assistant?  Crucial but unpopular and always a "second" priority.

! Data analyses, especially those that will be published, require extra scrutiny.  Ideally, analyses
for publication should be replicated independently from the original work.  It does not feel
good to have to submit a letter like "We regretfully report that we have discovered an error
in computer programming and that our previous results are incorrect." (New England
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Journal of Medicine, Jan 14, 1999, p148).  It is much, much easier to make programming
errors than to find them.

! Professional meetings (formal presentations and works in progress) are both opportunities
and challenges - opportunities to gain the insight and perspectives of outsiders and a
stimulus to thinking through the study data and their interpretation; challenges because they
typically take precedence over other important tasks and draw upon data that have not been
fully cleaned.

! Getting time to write - the daily needs of the study tend to absorb all the time available for it,
and so often it seems that the data are never ready until the study is over.

! How to manage authorship so that opportunities are appropriately shared, enough writing
gets done, and the architects of the study get a reasonable share of articles.  Increasingly,
written policies are being developed to guide investigators and would-be authors.

Some other predictable and unpredictable challenges:

! Staff turnover - possible detours

! Continuation applications and progress reports

! Human subjects permission renewal

! Site visits

! Managing time and money so one comes out ahead but not too far

! Figuring out - beforehand - what data will need to be collected, entered (e.g., dates), analyzed

! Low response rates (NCM SHS & QFL)

! Low exposure rates (Irva)

! Missing data

! Fraudulent data (NCM, Russ Harris)

! Competition from other investigators

! Controversy (animal rights activism, safety hazards (lab, fieldwork), ethics attacks)

! Changing priorities of the funding agency

! Initiating new proposals - new research, funding for self and staff

! Staying in touch with the science

Industrial quality control technique (per King Holmes) - Identify the 5 ways this project can fail.
Then try to reduce their likelihood.
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Postaward

! Final report

! What to do with all of the data, files, equipment, etc.

! Finishing the papers

! Secondary analyses

Data management

Develop protocols and forms for data collection

! What data to collect

! How will data be transmitted

! Data processing, editing, coding

! Quality control - accuracy, completeness, consistency

Computerize data

! Design screens

! Field separators

! Range checks during data entry

! Double entry with verification

! Quality control - error rate

Compile Data Management Manual

! Study summary

! Brief description of all data streams

! Instrumentation, original sources, and modifications made

! Data collection protocols and (dated) forms

! Account of the data collection process, with dates and numbers

! Correction procedures (audit trail)

! Directory structure / Paths

! File identification - names, labels, computer runs, directory

! Variable identification - names, labels, formats, techniques for long labels, cross-references
to forms and instruments
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Explore the data

! Look at data (raw)

! Perform "quick and dirty" analyses

Create data files for each data stream, create analysis files

!   Check for missing, bad, or duplicate IDs

!   Check order of records

!   Check for missing forms

!   Define special missing values for skip patterns, special situations

!   Make sure that all the numbers add up

Prepare an accounting for all data

! Check the N's - tabulations, tracking, records, and resolve

! Eligibility, consents, dispositions for all

Carry out preliminary analyses to inform planning

Clean and summarize data

! Variable distributions (SAS PROC UNIVARIATE FREQ), range checks, outliers,
consistency

Create analysis variables and scales

! Derived variables, scales, coefficient alpha, indexes

(For further information, see chapter on Data management and data analysis.)

Typical problems that need to be caught

It is very important to review forms quickly in order to catch irregularites promptly -- when there
may be a chance of correcting them.  For example, towards the end of a study of partner notification
for HIV exposure, it was discovered that partners who were located and notified, but refused to be
interviewed, were not being systematically recorded anywhere.  The data collection system had been
designed to capture partner information on a partner interview questionnaire, but because of the
refusal the interview questionnaire was not completed.  But the fact of location / notification and
who initiated it were important to log.

It is essential to:

 1.  log all forms in a computer file to be able to account for all data and quickly search for who
is in the database.
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 2. maintain close supervision of the coding operation, to ensure that coding standards are being
maintained but at least as important, to apply expert judgment in resolving irregularities
detected (the coder's judgment is often not what the investigator would want) and finding
out about the reality of the data.

 3. pursue systematic data cleaning - subject ID's, linkage of forms, key variables, remaining
variables.

Designing a questionnaire

The Inter-university Consortium for Political and Social Research (ICPSR) located within the
Institute for Social Research at the University of Michigan provides Internet access to the world's
largest archive of computerized social sciences data (http://www.icpsr.umich.edu).  In most cases,
an abstract and codebook are freely available over the Internet.  Persons at institutions that belong
to ICPSR can also obtain access to the data themselves.

Writing a paper (courtesy of Barbara Hulka, M.D., M.P.H.)

INTRODUCTION From literature review

METHODS  Cull from more thorough version written for internal use

RESULTS Make tables as go along, then cull, highlight and display

INTRODUCTION Rewrite after doing Results Section

DISCUSSION

 1. Repeat - simply - the key results.
 2. Review possible biases and other limitations, and indicate how handled or how not.  Don't

be superficial.  Consider counterweighting factors?
 3. Refer to recent major studies addressing the same issue and try to identify reasons for

differences
 4. Depth and breadth:

implications for theory (from other disciplines)

implications for practice (for other disciplines)

the "breadth aspect of EPID" ― the ability to get enough grasp of another field's
literature to use it.

TITLE - simple, informative, and accurate

ABSTRACT -- that's all many people will read:

 1. Why - what's the issue, problem, research hypothesis (1 sentence)
 2. What did you do (methods) - study design, N, length of follow-up (2-3 sentences)

 3. What did you find (e.g. from first paragraph of discussion)
 4. What do you conclude? -- so what?
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Recently, standardization has come to abstract writing, in the form of "structured abstracts".  Their
use is now required by a number of journals.

The text by Szklo and Nieto (2000) includes a helpful chapter on "Communicating the results of
epidemiologic studies", which includes a detailed outline of what to report taken from Kahn and
Sempos (1989).  Szklo and Nieto also include suggestions for writing style (e.g., avoiding scientific
arrogance, and jargon), drawing appropriate inferences (including differentiating between association
and causality and between statistical significance and strength of association), and preparation of
tables and figures.
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16. Data management and data analysis*

Data management:  Strategies and issues in collecting, processing, documenting, and
summarizing data for an epidemiologic study.

1. Data Management

1.1 Introduction to Data Management

Data management falls under the rubric of project management.  Most researchers are unprepared
for project management, since it tends to be underemphasized in training programs.  An
epidemiologic project is not unlike running a business project with one crucial difference, the project
has a fixed life span.  This difference will affect many aspects of its management.  Some areas of
management that are affected are hiring, firing, evaluation, organization, productivity, morale,
communication, ethics, budget, and project termination.  Although the production of a study
proposal raises many management challenges, if the proposal is approved and funds allocated, the
accomplishments of the project are dependent more upon its management than any other factor.

A particular problem for investigators and staff, if they lack specific training or experience, is to fail
to appreciate and prepare for the implications and exigencies of mass production.

1.2 The Data Management System

The data management system is the set of procedures and people through which information is
processed.  It involves the collection, manipulation, storage, and retrieval of information.  Perhaps
its most visible tool is the computer; however, this is merely one of many.  Other "tools" are the
instruments and data collection forms, the data management protocol, quality control mechanisms,
documentation, storage facilities for both paper and electronic media, and mechanisms of retrieval.
The purpose of the data management system is to ensure: a) high quality data, i.e., to ensure that the
variability in the data derives from the phenomena under study and not from the data collection
process, and b) accurate, appropriate, and defensible analysis and interpretation of the data.

__________

* The original version of this chapter was written by H. Michael Arrighi, Ph.D.
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1.3 Specific Objectives of Data Management

The specific objectives of data management are:

1.3.1 Acquire data and prepare them for analysis

The data management system includes the overview of the flow of data from research
subjects to data analysts.  Before it can be analyzed, data must be collected, reviewed, coded,
computerized, verified, checked, and converted to forms suited for the analyses to be conducted.
The process must be adequately documented to provide the foundation for analyses and
interpretation.

1.3.2 Maintain quality control and data security

Threats to data quality arise at every point where data are obtained and/or modified.  The
value of the research will be greatly affected by quality control, but achieving and maintaining quality
requires activities that are often mundane and difficult to motivate.  Quality control includes:

! Preventing and detecting errors in data through written procedures, training, verification
procedures, and avoidance of undue complexity

! Avoiding or eliminating inconsistencies, errors, and missing data through review of data
collection forms (ideally while access to the data source is still possible to enable
uncertainties to be resolved) and datasets

! Assessing the quality of the data through notes kept by interviewers, coders, and data
editors, through debriefing of subjects, and through reviews or repetition of data
collection for subsamples

! Avoiding major misinterpretations and oversights through "getting a feel" for the data.

Security concerns include: (1) legal, (2) safety of the information, (3) protection from
external sources, (4) protection from internal sources.  While abuse is more salient, accidental
problems are more common.  Typical preventive measures are removal or isolation of information
that identifies research subjects (to protect confidentiality), redundancy, and backups (to protect
against human and machine malfunction).  The loss of important data due to failure to have a secure
backup copy could be construed as negligence.  Unfortunately, there can be an inverse relationship
between security and accessibility/usefulness of the data.

1.3.3 Support inquiries, review, reconstruction, and archiving

Inquiries and requests for instruments and/or data may arise at any time during the project
and after its completion.  The funding agency will require a final report.  Other investigators or
interested parties (e.g., corporations whose products are implicated as health threats) may request a
copy of the data set to pursue their own analyses.  Rarely, an investigation may be conducted
because of the salience of the findings, the involvement of parties with a large stake in their
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implications, or suspicions or charges concerning the study.  For example, Herbert Needleman, a
pioneering investigator into the effects of childhood lead exposure on cognitive function, had his
data and results audited by a scientific committee (which included a UNC faculty member).  Proctor
and Gamble, Inc., brought suit against the CDC to require the provision of data from their case
control studies of toxic shock and tampons.

Concern about scientific misconduct and fraud continues to increase, and investigators have
the responsibility to maintain documentation to allay any such charges should they arise.
Increasingly, journals require that data (and supporting documentation) be retained for several years
following publication.  On a more mundane level, innumerable questions will arise during the course
of the data analysis, and the project's data management system needs to be able to provide accurate
and timely answers.

An important principle in data management, at all levels and stages, is the full accounting for
data.  Thus when a data collection activity takes place, there should be a detailed record of the
number of subjects (if known) in the universe from which subject recruitment takes place and a
complete tabulation within a set of mutually exclusive categories (dispositions).  Typical dispositions
are -- ineligibles according to the reason for their ineligibility (e.g., out of age range, medical
conditions), nonparticipants according to the reasons for their nonparticipation (e.g., no telephone
number, disconnected telephone, out of town, refused), participants whose data are excluded (e.g.,
too many missing data items, interviewer skeptical of participant's truthfulness), etc.

An audit trail is an essential mechanism to identify changes to the data at every step.  The
audit trail should document what changes were made, who made them, and where, when, and how
the changes were made.  Audit trails are important for responding to or recovering from: (1) legal
challenges, (2) procedural issues, (3) minor problems, and (4) disaster.

Note that the above objectives apply to both manual and computerized systems.

1.3.4 Special issues in blinded studies

The HIV epidemic has led to a major activity in conducting blinded serosurveys to
determine the prevalence of HIV infection in different settings, subgroups, and geographical areas.
In order to avoid bias from nonresponse, a particular concern in HIV studies given the low
prevalence of the virus in most populations and the fear and stigma associated with HIV infection
and risk factors, methods have been developed for conducting blinded (unlinked) studies.  Such
studies use leftover blood collected for other purposes (e.g., medical tests) and are analyzed in such a
way that identification of the individuals involved in the study is impossible.  Under certain
circumstances, such studies do not require informed consent, so that they can be free from
nonresponse bias.

Special care is needed to design a data management system that can prevent the possibility of
linking data to individual subjects.  For example, standard data collection procedures such as the use
of sequential ID numbers, inclusion of exact dates on all forms, and recording of supplemental
information to clarify atypical data items can compromise anonymity.  Indeed, unlinked studies
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engender a basic conflict between the need to prevent linkage and major data management
objectives, such as monitoring and quality control, which require the ability to be able to trace back
and verify information.

1.4 The Components of Data Management

1.4.1 Management

The general concepts of management are as applicable to data management as they are to
project management.  Management issues are critical components of the data management system.
The data are merely the objects being manipulated by the data management system.  Unless there is
adequate attention to the process, the data will not be worthy of much attention.

The investigative team is ultimately responsible for the outcome of the project.  Even in
those large projects where a project manager and a data manager are present, the investigative team
are the project's board of directors.  Management skills are required to evaluate the managers and
ensure that they are doing a reasonable job, beyond the issue of is the project on schedule?   Even
for a relatively small project, researchers may need to work diligently to adapt to the managerial role,
since many of the qualities that make for a good researcher are quite the opposite of those of a good
manager:

Researcher Manager
Optimal Solutions Pragmatic Solutions
Accurate Solutions Workable Solutions
Works with things Works with people
Process Oriented Outcome Oriented

Individually Successful Group Successful

A good researcher requires creativity and may be considered a tinkerer, i.e., a person who is
constantly changing things based on new ideas.  A good manager is also creative but is less of a
tinkerer.  Constant change in a management situation results in confusion and a lack of consistency,
which ultimately result in data of low quality.  A few of the key management issues that directly
affect the data management system are:

1.4.1.1 Two-way communication

Any person on the project can make a valuable contribution, comment, or observation.
These contributions should be respected.  Listening is an important aspect to learn what is truly
happening and discover remedies.  The person actually performing the task will often know more
about the nuances and what is effective than anyone else.  People have different degrees of readiness
to express their ideas and concerns, and opportunities for informal one-on-one discussions (e.g.,
over coffee) are important.
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1.4.1.2 Consistency

Consistency is essential in the implementation of the protocol, in the data collection process,
and with regards to decisions made during the project.  Lack of consistency may result from
different decisions among the principal investigators, a lack of communication in relaying problems
and solutions, and different decisions made on the same issue at different times.  Innumerable minor
questions (and many major ones) will arise during the course of a project.  A useful perspective to
use in resolving these questions is how would outside investigators view the decision.  Decisions
often need to be made quickly and recorded in some form that they can be readily consulted when
the same or a similar question arises at a later date.

An inability to implement the study protocol consistently may result in selection bias or
information bias.  Information bias in confounding variables may compromise the ability to correct
fully for confounding in the analysis.  Also, when the methods and results are presented to others (a
fundamental part of academic research) and the inevitable questions arise, it is very embarassing to
have to describe and explain inconsistent methods.

1.4.1.3 Lines of authority and responsibility

Authority and responsibility need to be clearly defined and the designated persons accessible
to the staff.  Accessibility is often a problem in an academic research project where many of the staff
are part-time employees, and the full-time management staff has other commitments resulting in a
lack of accessibility to the staff.  Among other things it is generally desirable to designate a specific
person to be responsible for authorizing all changes to the computerized data sets.

1.4.1.4 Flexibility

The data management system must be flexible to respond to changes in the protocol, survey
instruments, and staff changes.  The longer a project runs the more susceptible it is to changes.
Even a project using secondary data is subject to changes.  Every project will undergo some
modifications.  Thus the data management system must be flexible to allow for easy modification.

1.4.1.5 Simplicity

Keep the data management system as simple as possible and within the talents of the
(potential) staff.  Simplicity reduces errors by reducing dependency on "key" personnel and by
making the system easier to learn and implement.

Computers are wonderful tools in data management, but it is easy to complicate things by
their use.  The use of non-user friendly software packages or uncommon packages breeds
complexity.  Computerized systems actually increase the cost and technical support of systems.
Their benefits are in the realm of increased efficiency and (hopefully) a reduction of errors.  A small
project may benefit from a predominantly, manual system when properly designed and
implemented.
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1.4.2 Integration

Integrate the data management system throughout the entire study process from the idea
and proposal stage to the final paper, storage of information, and storage of data until planned
destruction.  Obviously, some concern to data management is given at the proposal stage during the
budget and staffing process.  More than this is needed; a general flow of the system should be
thought through.  This will provide a preliminary assessment of its resource demands and feasibility.

1.4.3 Standardization

Standardization extends not just to the instruments but to the procedures for participant
enrollment, procedures for records review, data entry mechanisms, documentation, and other facets.
This is essential to obtain quality information.

1.4.4 Pilot testing

Pilot testing is routinely done with the survey instruments.  Rarely, does one pilot test crucial
parts of the data management system.  Use the pilot test of the survey instruments as an opportunity
to pilot test aspects of the data management system, e.g. coordination of interviewers, call backs,
coordination with other sources (participant identification) etc.  A key aspect is to make this as real
as possible to avoid the "test run" syndrome and a lack of seriousness among the staff.

The data management system may be pilot tested when the preliminary versions of the
survey instruments are under evaluation and during the evaluation of the laboratory methods.  If the
project is sufficiently large, then a pilot test of the entire system may be done on the first few
participants (5, 10, or 20).  The project is then briefly halted for review and modification prior to
complete implementation.  Large projects make use of a "vanguard" cohort that goes through all
aspects of the study sufficiently in advance of the actual study population to enable adjustment of
instruments and procedures.

1.4.5 Quality Control and Quality Assurance

1.4.5.1 Redundancy

Duplication of data collection items is a well-established quality control procedure.  This
applies equally to survey instruments, laboratory procedures, and the data flow system.  Duplication
may occur in series or in parallel.

1.4.5.1.1 Parallel

Runs in parallel are the simultaneously evaluation of two data collection items.  With a
laboratory, this is the blind submission of two identical items for evaluation.  With a survey
instrument, this is the repetition of a question, perhaps in slightly altered format.
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1.4.5.1.2 Series

Runs in series are the repetition of items at two different time points.  With a laboratory, this
is the blind submission of two identical items at different times.  With a survey instrument, this is
the repetition of all or part of the survey instrument at a different time.  This may involve a call back
of a selected subsample with a brief verification questionnaire asking some similar items.  With data
entry procedures, the verification of data entry is accomplished by the duplicate entry of the entire
batch of items.  These two entries are compared and non-matches are identified and re-entered.
Double keying (also called key verification) though standard is not automatic, so must generally be
specifically requested and budgeted.

1.4.5.2 Error introduction

A useful technique is to introduce errors into the data management system in order to
evaluate the error trapping mechanism and consistency of error handling.  This may be done by
introducing erroneous data or identifying a particular problem and following it through the data
management system.

1.4.6 Reduce the number of entry points

Each participant should enter the study the same way or each subject should have the same
opportunity for entry.  Different protocols should not be used to enroll different subjects of the
same category (e.g. cases or controls, or the exposed or unexposed).  This can be challenging when
there are multiple sites.

Take a planned approach to every source of data, including logs, tracking forms,
appointment systems.  Hindsight can reveal usefulness of data sources not originally intended for
analysis.  Considerations in planning include design of the procedure for collecting, recording,
coding, computerizing, verifying, ensuring security, and documenting.  Try to limit situations where
changes are made directly into a data base, with no audit trail.  Without an audit trail it may be
impossible to reconstruct data if an erroneous change is made or even to verify if a change has been
made.

1.4.7 Monitor

Monitor the data management to ensure its proper implementation.  For example, when a
data collection activity is underway there should be frequent and regular review of the number of
subjects participating, reasons for nonparticipation, problems encountered, etc.  Data collection
forms (or a sample, if the volume is large) should be scrutized promptly to identify problems (for
example, an excess of missing items, misunderstood items), for which corrective action may be
possible.  A manual or computerized system is important to keep track of data forms.

Crucial elements to identify are:

1. Adherence to the study protocol (to ensure the objectives of the protocol are maintained);
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2. Consistency of the protocol's implementation;

3. Deficiencies (and strengths) of the data management system;

4. Response to changes, problems, crises - how well is the data management system detecting
and responding to changes, problems, and crises?  This monitoring may be accomplished
through the use of erroneous data or by tracking the dates and items that were identified as
problems, the date of their identification and the date of the correction.

1.4.8 Document

Documentation is a special challenge because of its lack of glamour and the fact that at any
particular point in the study (before the end) competing urgent priorities make documentation a very
hard activity to keep abreast of.  Yet it is absolutely essential and cannot always be satisfactorily
reconstructed after the fact.  Budget time and personnel for documenting events, decisions, changes,
problems, solutions.  Review documentation as it is being developed to show the importance you
assign to it and to make sure it is in the form you need it.

Document investigator meetings and committee meetings with each item on the agenda (1
or 2 sentences should suffice), followed by the decision or action (open, closed, resolved and
summary thereof).  Recounting all the discussion is nice but tends to be too lengthy - strive for
succinctness and key points.  Having minutes published within a day or two of the meeting forces
them to be succinct and gets them done before memory fades.  Keeping a contemporaneous journal
or word processing document with (dated) notes about things that should be included in progress
reports is another technique.

Project documentation should include:

! A succinct narrative of the objectives and methods of the study.

! A detailed chronology of events and activities through the life of the project, showing
starting and ending dates and numbers of subjects for each data collection activity.

! For each data collection activity, a record of the detailed procedures used and an
accounting of the number of subjects in scope, the number selected for data collection,
and the disposition for all subjects (by category, e.g., could not contact, refusal).  This
material should have cross references to original sources (e.g., computer runs) to enable
verification when necessary.

! Compendium of all data collection instruments, including documentation of the sources
for questionnaire items obtained from pre-existing instruments.  Results of pretesting
and validation analyses or cross-references to them should be included.

! Lists and descriptions of all interventions applied and materials used (e.g., intervention
materials, training materials)

! Documentation on all computerized data and final analyses (information on datasets,
variables, computer runs - see below).
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Obviously it will be easier to assemble these materials if careful documentation is prepared along the
way.  As a minimum every document should bear a date and a notation of authorship.  Documents
retained in a word processing file should if possible contain a notation of where the document file
resides, so that it can be located for later revision or adaptation in creating related documents.

1.4.9 Poke around

The amount of activity and detail in a large project can easily exceed what the (usually
limited) staff (and time-urgent investigators) are able to handle comfortably.  Despite the highest
motivation and experience, communication will be incomplete and important items will be
overlooked.  Investigators should review data forms regularly to familiarize themselves with the data
in its raw form and verify that data collection and coding are being carried out as stipulated.  It may
also be worthwhile even to poke around occasionally in file drawers, stacks of forms, and among
computer files.

1.4.10 Repeat data analyses

The fact that debugging is a major component of commercial software development
suggests that investigators need to make provisions to detect and correct programming errors or at
least to minimize their impact.  One strategy is to have a different programmer replicate analyses
prior to publication.  Typically only a small portion of analyses that have been carried out end up in
a publication, so this strategy is more economical than many others, though of course if serious
errors misled the direction of the analysis much work will have been lost.  Replication begins as
close as possible to raw data offers the greatest protection, but more often other methods are used
to ensure the correctness of the creation of the first analysis dataset.  An object lesson about the
importance of verifying the accuracy of data analyses is offered by the following excerpt from a
letter to the New England Journal of Medicine (Jan 14, 1999, p148):

"In the February 5 issue, we reported the results of a study  …  We regretfully report that we
have discovered an error in computer programming and that our previous results are incorrect.
…  After the error was corrected, a new analysis showed no significant increase …"

It is a good bet that error reports such as these are the tip of the iceberg.

2. Data conversion

Picture stacks of questionnaires, stacks of medical record abstract forms, lists of laboratory
results, photocopies of examination results, and the like.  Before they can be analyzed, these original
data need to be coded for computerization (even if the volume is small enough and the intended
analyses are simple enough for manual tabulation, coding is still required).  This process can be a
major and arduous undertaking, and may involve the following steps for each data "stream":

1. Preparation of a coding manual stating the codes to be used for each data item and the
decisions to be made in every possible situation that occurs (see sample coding manual);
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2. Coding of a sample of data forms to pilot test the coding manual (see sample coded
questionnaire);

3. Revision of the coding manual, re-coding of the sample, and coding of the remainder of the
forms (see sample guidelines);

4. Maintenance of a coding log (see sample) recounting the identification number and
circumstances for any data item about which a question arose or a nonroutine decision was
made, to enable backtracking and recoding if subsequently indicated;

5. Recoding by supervisory personnel of a percentage (e.g., 10%) of data forms as a quality
check.

Depending on the source of the data, coding can be largely routine (e.g., verifying that a response
category has been circled and perhaps writing the appropriate code to be keyed) or highly
demanding (e.g., evaluating a transcript of a medical record to determine the diagnosis and
presenting complaint).

Coding is a good opportunity to review each data form for any irregularity that can be easily
detected, including verbal information written on the questionnaire.  Correction of irregularities
(multiple responses to an item, inconsistent values, missing response, etc.) generally requires access
to the data form, so it is easier to take care of the problem at the coding stage rather than when the
forms have been filed and the computerized dataset is in use.

2.1 Data cleaning / editing – objectives

After coding, forms are data entered with some type of verification to detect and correct
keying errors (double keying, manual proofing, etc.). The computerized data are then "cleaned" and
"edited". Data cleaning and editing may also be referred to as "damage control."  It is at this stage
where the initial screening of the collected information is made to assess its validity and useful.
Ideally, data cleaning is an ongoing process; initiated when the first results arrive.  Detecting errors
early may assist in minimizing them in the future and assist in their correction.

2.1.1 Incomplete data

Incomplete data are missing values for a single data item, incomplete or incorrectly
completed instruments.  An incorrectly completed survey instrument may be one that had the "skip"
patterns improperly followed.  The identification of these issues and their correction, when possible,
are both of importance.

2.1.2 Extreme values

Extreme values for a variable are generally referred to as "outliers".  Outliers may also occur
for a site (in a multi-site study) or an interviewer who is more "extreme", with regards to timeliness,
interview time, or responses.  Outliers may meet one or both of two possible criteria.
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2.1.2.1 Statistical

There are formal statistical tests for outliers.  This process is designed to identify those
values that may unduly influence a statistical analysis.  A visual inspection of the data is actually quite
informative in gaining impressions about potential outliers.

2.1.2.2 Substantive

For an outlier to be truly an outlier it must not make substantive sense, for example a
hemoglobin of 0.5 (though a hemoglobin of 0.5 may not be a statistical outlier in a small group of
patients with severe anemia, whose expected range might be between 3.5 and 8) or a height of 9 feet
10 inches with a given weight of 95 pounds in an apparently healthy adult.

2.1.3 Expected Results

Examining the data with an idea of what is expected is helpful in determining how "good"
these data are.

2.2 Placement of the data editing process

Some reduction of the time and distance between data collection and entry into the analysis
system is helpful in error correction.  The editing of data should occur during all aspects of the data
collection and analysis.  Some editing may occur during or shortly after data collection; this often
involves manual means.  Additional editing procedures will occur later during the formal coding and
entry.  Post-entry editing procedures will encompass the final aspect of the editing process.

2.2.1 Time of data collection

Examples of this are verification of respondents' identity, use of subject identification
numbers with a check digit, clear marking of specimens with duplicate labels (including the caps),
prompt reviewing of completed instruments, and provision of pre-labeled instruments.

2.2.2 Time of data entry (keying)

Many data entry programs enable checks for valid ranges and/or values as data are being
keyed and can even include "hard" logic (consistency) checks.  Modern large scale telephone surveys
use computers to track and enter the data during the survey process.  This ensures that the survey
instrument is properly followed, responses are within tolerance range, and may even provide an
opportunity for checks in consistency of response.

2.2.3 Post-entry

Most of the formal steps associated with data editing occur after the data have been keyed
and verified.  These involve the examination of individual records and their aggregates.
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2.3 The steps in the Editing process

2.3.1 Manual Editing

As discussed above, manual checks are performed during coding of data forms.  This stage
checks for proper completion (skip patterns, etc.) of the questionnaire.  Error correction may entail
a return to the source of the original information.  Or with an abstraction of medical (or other)
records a photocopy of the source record may be obtained for comparison purposes.

2.3.2 Frequency distributions

SAS PROC FREQ (typically with the MISSPRINT or MISSING option selected) and
PROC UNIVARIATE with the FREQ and PLOT options are useful in examining frequency
distributions.  Frequency distributions are helpful in identifying the extent and types of missing data,
unusual patterns, and potential outliers.  For example, birth weight in grams is generally recorded to
the nearest ten grams, so the final digit should be zero.  Blood pressure is generally recorded in
mmHg, so the final digit should be uniformly distributed between 0 and 9.  "The case of the missing
eights" (Stellman SD, Am J Epidemiol 129:857-860, 1989) presents a case study of how an alert
analyst noticed that a distribution of counts contained no counts with 8 as the least significant digit.
Only after a great deal of checking and investigation was the problem traced to a programming error
(a mixup of zero and the letter "oh").

2.3.3 Logic checks

These checks are evaluations of internal comparisons within a single observation.

"Hard" comparisons are made when there are obvious inconsistencies, for example
pregnancy in males, or following the proper skip pattern of the survey instrument.

An example of a "hard" comparison is where sex is abstracted from two different sources.
Those records with disagreement may be identified and handled according to the study protocol.
This protocol may set those in disagreement to missing, or there may be preferred data source (e.g.
respondent questionnaire versus medical record), or the original respondent may be contacted for
verification.  Disagreement across forms may reveal that the forms belong to different respondents.

"Soft" comparisons are possible but the exact values (cutpoints) will be study dependent.
Marital status may be questioned if age at marriage is below a specified value, which may be gender-
specific.  The exact age is chosen dependent upon the population under investigation.  Another
check might include birth weight by gestational age.

2.3.4 Univariate displays

These statistics are useful in determining measures of central tendency (the familiar mean,
median, and mode), measures of dispersion (standard deviation, variance, range, percentiles,
skewness, and kurtosis).  In addition, graphical representations (e.g. histograms, box plots, and
normal probability plots) are helpful for describing data.
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2.3.5 Bivariate displays

If the same data have been collected at multiple points, then agreement across the
measurement points should be assessed.  In addition, expected relationships can be examined: birth
weight and gestational age, systolic blood pressure and diastolic blood pressure, height and weight.
Unusual combinations should prompt examination for coding or entry errors.

Differences may be examined in the case of continuous variables and an acceptance protocol
developed.

2.4 Treatment of missing values

Coding of missing and/or inconsistent responses merits careful thought.  An item may have
no response for a variety of reasons, and it is often useful to distinguish among those reasons.  For
example, an item may not be relevant for some types of respondents (e.g., a question about a
prostate exam asked of a female participant, a question about the year in which injection drugs were
last used asked of a participant who has not injected drugs), a "screening" question may have
skipped the respondent around the item, the respondent may not recall the answer, the respondent
may decline to answer, or the respondent may simply omit an answer (in a self-administered
questionnaire) without giving a reason.  An item such as "Have you had a Pap test in the past year?"
included in a self-administered questionnaire may not have been answered for any one of these
reasons.

If there are many missing responses and only a single missing value code is used, then a
frequency distribution will often leave the analyst wondering about the usefulness of the item, since
if there are too few analyzable responses the item conveys limited information.  It is preferable to
use a different missing value code for each situation.  Then a frequency distribution can show the
number of responses of each type.

2.4.1 Techniques for coding missing values

A widely-used convention for coding missing values uses out-of-range numeric codes, such
as "999", "998", or "888", to represent missing values, with the number of digits equal to the field
length.  For example, in the public use datafile for the National Survey of Family Growth, responses
of  “don’t know” are coded 9, 99, 999, or 9999; refusals are coded 8, 98, 998, or 9998; and “not
ascertained” values are 7, 97, 997, or 9997, depending on the column length of the original data
items.  There are several limitations to this coding procedure.  First, statistical packages may not
recognize these as missing values, so that it is easy (and embarrassing) to have the actual values
actually included in analyses.  Second, it may be necessary to use different codes for the same
missing reason due to different field lengths.  Third, the numbers provide no useful mnemonic
device.

One very useful facility in the Statistical Analysis System (SAS) is the provision for
special missing value codes.  A missing value for a numeric variable can be coded with one of
27 different missing value codes, consisting of a dot or a dot followed by a single letter.
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Although it is rare to use more than two or three for a given variable, an analysis could
differentiate among "not applicable", "does not know", and "refused" by coding these as .n, .k,
and .r, respectively.  A more elaborate coding for a variable such as menstrual discomfort might
differentiate among not applicable due to gender (.m), not applicable due to having had a
hysterectomy (".h"), not applicable due to natural cessation of menses (.c).

These values can be tabulated separately in frequency distributions, so that the extent and
nature of "missingness" for a variable can be quickly assessed, and the analyst can keep track of
denominators more easily. SAS generally does not include missing values coded in this way in
calculations, which saves some programming effort and protects against programming lapses.
The TABLES statement in PROC FREQ provides an option (MISSING) to treat missing values
the same as all other values (useful to examine percentages of missing values) and an option
(MISSPRINT) to display missing values in tables but not include them in the denominator for
percentages (permitting the correct computation of percentage distributions for analysis while
permitting easy verification of the number of data points and reasons for their absence.

2.5 Outliers

Examination for extreme values (range checks) is also a crucial preliminary step in the
screening of data.  First, outliers should be checked to the original data forms to verify accuracy of
transcription.  If the outlier cannot be dismissed as an error, then care must be taken to avoid
distorting the analysis.

2.5.1 What to do with them?

Outliers may be replaced with a missing value, but then the observation is lost with regards
to the analysis (and in a mathematical modeling procedure, the entire observation is unused).
Moreover, if the outlier is a legitimate value, then simply deleting it is a questionnable procedure.

The analysis can be repeated with and without the outlier data to assess the impact of the
outlier on the analysis.  Or, the analysis can be repeated using (nonparametric) statistical procedures
that are not affected by outliers and the results compared to parametric procedures - or
nonparametric procedures can be used completely.  Such procedures typically involve medians,
rather than means, or focus on the ranks of the values of a variable rather than on the values
themselves.  Categorical procedures in which a variable is first categorized into groups will often be
unaffected by extreme values.

2.6 Concern with Data Cleaning / Editing

There is a problem with the handling of these missing values, outliers, and other edit checks:
more attention is given to the extreme problems and less attention to those errors that are not as
visible.  For example, a transcription error resulting in a birthweight of 2,000 grams being recorded
as 3,000 grams may go completely undetected once data entry is completed.  But this
misclassification bias may have a substantial effect if it occurs in a large enough proportion of
observations.  The entire data management system should be designed to minimize and reduce these
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errors.  Related to this concern is the comparison with "expected" values.  While this is a useful tool
in inspecting and understanding the data, there is a concern in trying to force the data into an
expected distribution.  Thus the focus is on those errors of the extreme.  An error in the opposite
direction, from more extreme to less, is missed by this definition of data examination.  This latter
concern applies equally through the remainder of the data examination and analysis.

2.7 Documentation

Documentation covers all aspects of the data as well as all problems identified, their
solutions, and all changes made to the data.  Some techniques are:

! Keep a master copy of the questionnaire and record changes and decisions for each item.
Cross index this questionnaire with the variable names in the computer files.

! Keep at least the original data and all programs leading to creation of the final dataset, so
that any intermediate dataset may be recreated if need be.  (This is the rationale for not
making direct changes to the data base.)

! Document computer programs with a unique identifier (i.e., program name), title of
project, brief description of the program, input and output, any dependencies (programs
that MUST be run prior to this or essential data bases), date of request and person, date
of development and analyst, including modifications).

! Document computer programs within the program (in comment statements and title
statements), files and programs, and externally (i.e. notebooks).

! Maintain a notebook of program runs in chronological order, showing the (unique)
program name, date run, programmer, history (e.g., rerun of an earlier version), data set
used, and one-line description.  Sometimes programs that create datasets are listed in a
separate section from programs that analyze datasets.

! Try to use self-documenting methods.  Adopt a system of naming conventions for
datasets, computer runs, and variable names.  Choose meaningful variable names if
possible, and allow for suffixes (e.g., using only 7 characters in a SAS variable name
leaves the 8th character for designating recodes of the original variable).  Assign
internally-stored labels to data sets and variables (SAS LABEL or ATTRIB statement).
If more than 40 characters are needed, add a comment in the program that creates the
variable or dataset.  Consider using value labels (formats) to document the values for
each variable.

3. Data analysis

With the availability of microcomputer statistical packages, it is easy to compute many
statistics that previously required the assistance of someone with biostatistical training (and with
fewer distractions from the task of data analysis), with an increase in the danger of uniformed,
inappropriate, or incorrect use of statistical tests (W. Paul McKinney, Mark J. Young, Arthur Hartz,
Martha Bi-Fong Lee, "The inexact use of Fisher's Exact Test in six major medical journals"  JAMA
1989; 261:3430-3433).
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The first stages of data analysis should emphasize obtaining a "feel" for the data, i.e., some
familiarity with their essential features.  The process of examining the data to understand them is
integrated throughout the cleaning and analysis.  Always question data and examine them with a
critical view.  The same concepts used in data cleaning and editing are applicable in trying to
understand the data.  Specifically, these are the expected values, missing values, and outliers.  Now
they are applied in a "multivariate sense."

Many of the methods of approaching a dataset are similar to those described above under
data cleaning, such as examination of:

1. Univariate distributions (frequency distributions [PROC FREQ], summary statistics [PROC
UNIVARIATE], graphs [PROC UNIVARIATE, PROC PLOT or other].

2. Crosstabulations (frequency distributions across important groupings, such as sex, race,
exposure, disease, using PROC FREQ)

3. Scatterplots showing pairs of continuous variables

4. Correlation matrices

These analyses should include the assessment of agreement where it is expected to occur.  It is often
helpful to prepare summary tables of basic information from the above examination, that can be
used for reference purposes during later stages of analysis and writing.

3.1 Data reduction:

Data reduction is an essential activity that, like data management, takes place at virtually
every place where data are involved.  In the data analysis phase, data reduction involves deciding
whether and how continuous variables can be grouped into a limited number of categories and
whether and how to combine individual variables into scales and indexes.  There is also the need to
derive conceptually more meaningful variables from individual data items.

3.2 Graphical representation

There are many graphical packages available that provide the ability to plot, view, and to an
extent analyze data.  Graphical representations of data are extremely useful throughout the
examination of the data.  Statisticians are often familiar with these techniques for examining the
data, describing data, and evaluating statistical tests (e.g. plots of residuals).  The visual impact of a
graph is informative and will increase the understanding of the data and limit the surprises that may
occur.  There are few general principles, as each data set is different and will have an individual
approach.  Many of the modern statistical graphics packages available on personal computers have a
variety of functions such as fitting curves, for example, linear, quadratic, other polynomial curves,
and spline curves.
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3.3 Expected values

Perhaps, the single most important concept to remember is to have an idea of what is
expected.  This concept has been applied during the editing and cleaning process.  Understanding
what is expected is a function of both the study design and the values of the parameters in the target
population.  For example, if randomized allocation has been used, then the randomized groups
should be similar.  If controls are selected from the general population via random digit dialing
methods, then their demographics should reflect the population as a whole.  When examining a
table, first check the variables, labels, and N's for the total table and the subcategories that are not
included to make sure that you understand the subset of observations represented.  Second examine
the marginal distributions to make sure they conform to what you expect.  Then examine the
internal distribution, particularly, with regards to the referent group.  Finally proceed to assess the
association or other information in the table.

3.4 Missing values

The impact of missing data is magnified for analyses involving large number of variables,
since many analytic procedures require omitting any observation that lacks a value for even one of
the variables in the analysis. Thus, if there are four variables, each with missing data for 10% of the
observations, in a worst-case situation 40% of the observations could be omitted from the analysis.
To assess the extent and nature of missing data for a variable, a complete "missing value" analysis
should ideally be done.  That means comparing the presence/absence of information for a variable
with other key factors, e.g. age, race, gender, exposure status, and/or disease status.  The goal is to
identify correlates of missing information.  Relationships are indicative, though not conclusive, of
selection bias.  This analysis may give insights into how to impute values for those missing (e.g.,
missing cholesterol could be estimated as a function of sex, age, race, and body mass).  Strong
relationships between one covariate and missing values for another indicate that imputed values
should be stratified by levels of the first covariate.

Although they receive relatively little attention in introductory treatments of data analysis,
missing values are the bane of the analyst.  Examination of the data for missing values (e.g., via SAS
PROC FREQ or PROC UNIVARIATE) is an essential first step prior to any formal analyses.
Special missing value codes (see above) facilitate this examination.  Missing values are a serious
nuisance or impediment in data analysis and interpretation.  One of the best motivations to
designing data collection systems that minimize missing values is experience in trying to deal with
them during analysis!

3.4.1 Effects of missing data

Two kinds of missing data can be distinguished: data-missing and case-missing.  In the
former case, information is available from a study participant, but some responses are missing.  In
case-missing, the prospective participant has declined to enroll or has dropped out.  This discussion
will address the situation of data-missing.

Missing data have a variety of effects.  As a minimum, missing data decrease the effective
sample size, so that estimates are less precise (have wider confidence intervals) and statistical tests
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have less power to exclude the statistical null hypothesis for observed associations.  This problem is
compounded in multivariable analyses (e.g., stratified analysis or logistic regression), since most such
procedures drop every observation which has a missing value for any of the variables in the analysis.
Thus, a logistic model with eight variables can easily lose 30% of the observations even if none of
the individual variables has more than 10% missing values.

In both univariate and multivariable analyses, missing data leads to what might be referred to
as the problem of the "changing denominator".  Each one-way or two-way table may have different
numbers of participants, which is both disconcerting to readers and tedious to keep explaining.  One
workaround is to analyze only complete-data cases (i.e., observations with no missing values), but
the price in number of observations lost may be unacceptable.

Missing data situations are characterized in terms of the degree and patterns of
"missingness".  If there is no systematic pattern to missing data for a particular item, i.e., all
participants are equally likely to omit a response, then the missing values are missing completely at
random (MCAR).  When data are MCAR, then estimates from the nonmissing data will not be
biased by the missing data, since the nonmissing data is essentially a simple random sample of the
total (potential) data.

It is probably more often the case that different groups of participants have different rates of
missing data.  In this case, the data are missing at random (MAR) (assuming that missing data occur
randomly within each group).  If groups who differ in their rates of missing data also differ in their
distributions of the characteristic being measured, then overall estimates of that characteristic will be
biased.

For example, if persons with multiple sexual partners are more likely to decline to answer a
question on that topic, then the estimate of the mean number of partners or the proportion of
respondents with more than X partners will be biased downwards.  Estimates of associations with
other variables may also be distorted.  Furthermore, attempts to control for the variable as a
potential confounder may introduce bias (from selectively removing observations from the analysis)
or due to incomplete control for confounding.

3.4.2 What to do about missing data?

As in so many other areas of public health, prevention is best.  First, data collection forms
and procedures should be designed and pretested to minimize missing data.  Second, it may be
possible to elicit a response from a hestitant or unsure respondent (but such elicitation must avoid
the hazards of eliciting an inaccurate response or contravening in any way the participant's right to
decline to answer), to recontact participants if questionnaire review turns up missing responses, or to
obtain the data from some other source (e.g., missing information in a hospital medical record may
be available from the patient's physician).  Third, it may be possible to combine data from different
sources to create a combined variable with fewer missing values (e.g., sex from a questionnaire and
sex from an administrative record, though the issue of differential accuracy of the sources may be an
issue).
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Despite the best efforts, however, missing data are a fact of life, and it is the rare
observational study that avoids them completely.  Nevertheless, the smaller the percentage of
missing data, the smaller a problem they will create and the less it will matter how they are dealt with
during analysis.

3.4.3 Do not try to control for missing values of a confounder

The suggestion arose some years ago to treat missing values as a valid level of a variable
being controlled as a potential confounder.  For example, if an association was being stratified by
smoking, there might be three strata:  smoker, nonsmoker, smoking status not known.  Recent work
suggests that this practice may actually increase confounding and is not recommended.

3.4.4 Imputation for missing data

In recent years a great deal of work has gone into developing analytic methods for handling
missing data to minimize their detrimental effects.  These methods seek to impute values for the
missing item responses in ways that attempt to increase statistical efficiency (by avoiding the loss of
observations which have one or a few missing values) and to reduce bias that results when missing
data are MAR, rather than MCAR (i.e., missing data rates vary by subgroup).

One simple method of imputation, now out of favor, is simply to replace missing values with
the mean or median of the available responses.  This practice enables observations with missing
values to be used in multivariable analyses, while preserving the overall mean or median of the
variable (as computed from the nonmissing responses).  For categorical variables, however, the
mean may fall between categories (e.g., the mean for a 0-1 variable may be .3), and for all variables
substituting a single value for a large number of missing responses will change the shape of the
distribution of responses (increasing its height at that value and reducing its variance), with effects
on statistical tests.  Moreover, if missing values are not MCAR, then the mean of the observed
values may be biased and therefore so will the mean of the variable after imputation.

3.4.5 Randomized assignment of missing cases

A more sophisticated approach is to draw imputed values from a distribution, rather than to
use a single value.  Thus, observations without missing values (complete data cases) can be used to
generate a frequency distribution for the variable.  This frequency distribution can then be used as
the basis for randomly generating a value for each observation lacking a response.  For example, if
education was measured in three categories -- "less than high school" (25% of complete data cases),
"completed high school" (40%), or "more than high school" (35%) -- then for each observation with
education missing, a random number between 0 and 1 could be drawn from a uniform distribution
and the missing value replaced with "less than high school" if the random number was less than or
equal to 0.25, "completed high school" if the number was greater than 0.25 but less than or equal to
0.65, or "more than high school" if greater than 0.65.

This method avoids introducing an additional response category and preserves the shape of
the distribution.  But if the missing data are not MCAR, the distribution will still be biased (e.g.,
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greater nonresponse by heavy drinkers will still lower the estimate of alcohol consumption; greater
nonresponse by men may also lower the estimate of alcohol consumption).

3.4.6 Conditional imputation

Modern imputation methods achieve more accurate imputations by taking advantage of
relationships among variables.  If, for example, female respondents are more likely to have a
confidant than are male respondents, then imputing a value for "presence of a confidant" can be
based on the respondent's sex.  WIth this approach, confidant status among men will be imputed
based on the proportion of men with a confidant; confidant status among women will be imputed
based on the proportion of women with a confidant.  In this way, the dataset that includes the
imputed values will give a less biased estimate of the population values than will the complete-data
cases alone.

A simple extension from imputation conditional on a single variable is imputation
conditional on a set of strata formed from a number of variables simultaneously.  If the number of
strata is too large, a regression procedure can be used to "predict" the value of the variable to be
imputed as a function of variables for which data are available.  The coefficients in the regression
model are estimated from complete-data cases.

Imputed values are then randomly assigned (using a procedure such as that outlined above)
using the stratum-specific distributions or predicted values from the regression model.  This strategy
provides superior imputations for missing values and preserves associations between the variable
being imputed and the other variables in the model or stratification.  The stronger the associations
among the variables, the more nearly accurate the imputation.  There does remain, though, the
problem of what to do when the value of more than one variable is missing.  If in actuality two
variables are associated with each other, then imputing values to one independently of the value of
the other will weaken the observed association.

3.4.7 Joint imputation

Yet another step forward is joint imputation for all of the missing values in each observation.
Picture an array which categorizes all complete-data observations according to their values of the
variables being considered together and a second array categorizing all remaining observations
according to their configuration of missing values.  Suppose there are three dichotomous (0-1)
variables, A, B, C and that A is known for all respondents but B and/or C can be missing.  The
arrays might look like this:
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Complete data cases

% distribution conditioning on

Stratum # A B C Count Percent
of total A A & B A, C=0 A, C=1

1 0 0 0 400 33 53 67 80
2 0 0 1 200 17 27 33 75

100

3 0 1 0 100 8 13 67 20
4 0 1 1 50 4 7 33 25

100 100 100 100

5 1 0 0 240 20 53 62 83
6 1 0 1 150 13 33 38 88

100

7 1 1 0 40 3 9 67 17
8 1 1 1 20 2 4 33 12

100 100 100 100
Total 1,200 100

Missing value configurations

Configuration A B C Count
a. 0 0 . 12
b. 0 1 . 18
c. 1 0 . 10
d. 1 1 . 30
e. 0 . 0 40
f. 0 . 1 10
g. 1 . 0 15
h. 1 . 1 25
i. 0 . . 20
j. 1 . . 10

In this example, the eight strata in the cross-classification of the complete data cases are
numbered 1 through 8, and the percentages for each stratum are computed in four different ways:
unconditionally (i.e., the count as a percentage of all of the complete-data cases), conditionally based
on the value of A only, conditionally based on the value of A and B, and conditionally on the value
of A and C [the latter requires two columns for clarity].  Meanwhile, the 10 possible missing data
configurations are arrayed in the second table and labeled a. through j.
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Imputation is then carried out as follows.  Missing value configuration a. has A=0 and B=0,
so the 12 cases in this configuration belong in stratum 1 or stratum 2.  To preserve the distribution
of the complete data cases in those two strata (67% in stratum 1, 33% in stratum 2 – see column
headed "A & B"), the 12 cases are randomly assigned to stratum 1 and stratum 2 with assignment
probabilities in that proportion, so that stratum 1 is expected to receive 8 and stratum 2 to receive 4.
The 18 cases in configuration b. have A=0 and B=1, so they belong in either stratum 3 or stratum 4.
These 18 cases will be randomly allocated between these two strata with probabilities proportional
to the distribution of the complete data cases across those two strata (which happens to be the same
as the strata with A=0 and B=0).  Configurations c. and d. will be handled in the same manner.
Configuration e. has A=0 and C=0, so the 40 cases in this configuration belong in either stratum 1
or 3.  These 40 cases will be randomly assigned to strata 1 or 3 in proportion to the distribution in
the column headed "A, C=0".  Thus the random assignment procedure will on average assign 32
cases (80%) to stratum 1, and 8 cases (20%) to stratum 3.  The remaining configurations will be
handled in the same manner.  Configurations i. has A=0 but no restriction on B or C, so the 20
cases in this configuration will be randomly allocated across strata 1, 2, 3, or 4 according to the
distribution in the column headed "A" conditional on A=0.

Joint, conditional, imputation makes maximum use of the available data on the three
variables, adjusts the distribution of each variable to give a better estimate of that expected for the
population as a whole and preserves many of the two-way associations involving variables being
imputed.  The procedure can be carried out using a modeling procedure instead of a cross-
classification, which enables the inclusion of more variables.

Model-fitting using the EM ("Expectation Maximization") algorithm is the current state of
the art.  The BMDP AM procedure uses this algorithm, but it is designed for continuous variables
with a multivariate normal distribution and imputes each variable independently, so that two-way
associations are weakened.  A new program by Joe Shafer at Pennsylvania State University uses the
EM algorithm with categorical variables and jointly imputes data; however, it requires very powerful
computer resources.

3.4.8 Multiple imputation

All of the above procedures result in a single dataset with imputed values in place of missing
values.  However, since the imputed values are derived from the rest of the dataset, analyses based
on them will understate the variability in the data.  As a corrective, the imputation process can be
carried out repeatedly, yielding multiple datasets each with a (randomly) different set of imputed
values.  The availability of multiple imputations enables estimation of the additional variance
introduced by the imputation procedure, which can then be used to correct variance estimates for
the dataset as a whole.

[With thanks to Drs. Michael Berbaum, University of Alabama at Tuscaloosa and Ralph
Foster, Research Triangle Institute (NC USA) for educating me on this topic and reviewing this
section.]



_____________________________________________________________________________________________
www.sph.unc.edu/EPID168/  © Victor J. Schoenbach  16. Data management and data analysis - 545
rev. 9/27/1999, 10/22/1999, 10/28/1999

3.5 Outliers

Outliers are now examined with respect to a multivariate approach, i.e. are there any extreme
values.  For example, you stratify the exposure - disease relationship by a factor with 4 levels.  The
observation is made of the 4 stratum specific odds ratios of 2.3, 3.2, 2.7, and 0.98.  The fourth
stratum indicates a potentially strong interaction.  What if this stratum contains only 6 observations?
Even though the association may be statistically significant, collapsing the strata is reasonable as the
most extreme table may be a result of imprecision.  Alternatively, the values of the most extreme
table may be recategorized.

3.6 Creation of analysis variables

The variables defined to contain the data in the form it was collected (as responses on a
questionnaire, codes on a medical abstraction form, etc.) do not always serve the purposes of the
analysis.  For example, a questionnaire on risk behaviors might use separate items to ask about use
of crack, injected cocaine, injected heroin, and snorted heroin, but a single variable combining these
behaviors ("yes" if used cocaine or heroin, "no" if used neither) might be more useful for the
analyst.  In that case a derived variable would be created (treatment of missing values becomes an
issue here, as well).  Similarly, a question about marital status and a question about living with a
"romantic partner" might be combined into a variable indicating "living with spouse or partner".

3.7 Deciding which values to include in analyses

It is not always clear which values to include in analyses. For example, generally missing
values are excluded from the denominator for computation of percentages, except when the
purpose is an assessment of the extent of missing data.  Sometimes, however, it is more meaningful
to treat at least some categories of missing values in the same way as non-missing values.  For
example, a series of items about specific changes in behavior might be preceded with a screening
question, such as "Have you make changes during the past year to reduce your risk of acquiring
HIV?"

If the respondent answers "yes", s/he is asked about specific changes; otherwise the specific
items are skipped.  In this situation, a missing value due to the skip really means "no".  This situation
can be handled by creating a new variable for each of the specific items or by recoding the existing
variables to "no" when the screening item was answered with "no" or other techniques.  In contrast,
a "true missing" would be present if the individual item was not answered even though the screening
question was answered "yes".  This "true missing" and would probably be excluded from the
analysis. Similarly, if this type of behavior change was not relevant for the respondent, then the item
is "not applicable" and the observation would probably be excluded as well ("probably", because the
appropriate treatment depends upon the purpose of the analysis and intended interpretation).

3.8 Assessment of assumptions

During this stage, the assumptions underlying the statistical techniques are assessed.  For
example, a chi-square test has certain minimum expected cell sizes.  A t-test assumes a Gaussian
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(normal) distribution in the population.  Other assumptions are those made about reality.  For
example, what if a person responds to the question on race by circling 3 responses, Black, Hispanic,
and White.  There is a study protocol to classify such an individual; however, this protocol may
differ from other similar studies or the U.S. Census, or state birth certificates, etc.  This may have an
impact on the expected distribution and /or interpretation.

3.9 Examination of study questions

Data analyses may be approached in an exploratory fashion or in pursuit of answers to
specific questions.  Ideally the latter should have been specified in the research proposal or well
before the analysis process has begun.  Often new questions (or all questions) are formulated during
the analysis process.  In either case, it is highly desirable to articulate specific questions as a guide to
how to proceed in the data analysis.

Besides their relevance to the questions at hand, analyses generally need to reflect the study
design.  For example, cross-sectional designs do not provide direct estimates of incidence, matched
designs may warrant matched analyses.
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Appendix

****************************************************************************;
*  The following SAS code can be adapted for use to create a check character
*  for ID numbers which can then be used to detect transcription errors when
*  the ID numbers are read again.  For example, numeric ID numbers can be
*  generated by any system and then suffixed or prefixed with a check character.
*  The ID's can be printed on questionnaire labels, specimen labels, coding
*  forms, or other data collection or tracking instruments.  When the ID numbers
*  are keyed along with the associated data, the data entry program can use
*  an adaptation of the code that follows to verify the accuracy of
*  transcription of the ID number itself.
*
*  The check character generated by the following code will detect transcription
*  errors involving a misrecording of any single digit of the ID number,
*  reversal of any two digits, or even multiple errors with relatively rare
*  exceptions.  Since errors in ID numbers can be among the most troublesome
*  to detect and correct, use of a check character is recommended.
*
*  The code on which this SAS routine was based was developed by
*  Robert Thorton at the Research Triangle Institute (RTI), based in turn
*  on an article by Joseph A. Gallian ("Assigning Driver's License Numbers",
*  Mathematics Magazine, February 1991, 64(1):13-22).  Thornton's code forms
*  the method for creating and checking ID numbers for the RSVPP study.
*  This SAS version was developed by Vic Schoenbach, 10/18/94, 10/24/94;
*
*  Here are some sample ID's and their corresponding check digits,
*  taken from a list of ID numbers provided by RTI to Project RAPP:
*
*         5-1120 -> S  (i.e., the complete ID number is 5-1120-S)
*         5-1111 -> T
*         5-1101 -> W
*         5-1011 -> A
*         5-1001 -> D
*         5-1002 -> B
*         5-2001 -> V
*         5-3001 -> Q
*
****************************************************************************;
*;

* This program reads a list of ID numbers and assigns check characters.
  The program also reads the check characters assigned by RTI so that these
  can be displayed alongside the calculated check characters to facilitate
  verification of the correctness of the calculated check characters,
  for testing purposes;

data;   * Create a SAS dataset with the original and calculated numbers;

  * Do not write the following variables into the dataset:      ;
    drop alphabet char1 lng sum i mod23 complem ;

* Define three variables:  the ID number, the check digit, & a 1 byte work area;
attrib strng length=$22 label='ID number needing check digit';
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attrib ckd length=$1 label='Check digit to be calculated';
length char1 $1;  * For picking out one character at a time from the ID;
length sum 8;  * For calculation purposes;
alphabet= 'ABCDEFGHIJKLMNOPQRSTUVW';

infile cards;  * Input data file will be on "cards" (i.e., right after
                                                         the program);
input strng $  rti_ckd $ ;  * Read in data (consisting of ID's and the
                  RTI check digit, so that it can be printed in the output);

sum=0;  * Temporary variable to compute running sum;
lng=length(strng);  * Get length of ID to be processed;
if lng > 21 then do;  * Check that the ID is not too long;
        file print;
        put // '*** Error: ' strng= ' is too long = (' lng ')' //;
        file log;  return;  end;

do i = 1 to lng;    * Iterate through each digit of ID number ;
  char1 = substr(strng,lng-i+1,1);   * Extract a character from the ID;
                            * (Hyphens will be ignored);
  if char1 ^= '-' then
     if char1 < '0' or char1 > '9' then do;  * Must be a valid digit - if not
                                               then print error message;
       file print;
       put // '*** Error: Non-numeric character in ID: ' strng= char1=  //;
       file log; return;   * Go back for next ID number;
       end;   * End of then do;
     else do;  * (To get here, character must be a digit from 0-9);
       sum = sum + ((i+1) * char1);  * Take the sum of the digits of the ID
                                 number, weighting each digit by its position;
       end;   * End of else do;
end;    * End of do i = 1 to lng;

* Weighted sum has been obtained - now reduce it;
mod23 = mod(sum,23);  * Calculate the remainder after dividing by 23;
complem = 23 - mod23;  * Take the complement from 23;
ckd=substr(alphabet,complem,1);  * The check character is the
                                   corresponding letter of the alphabet;
return;

cards;   * Here come the test ID's -- note that one is invalid;
   5-1120  S
   5-1111  T
   5-11R1  W     (invalid ID number)
   5-1101  W
   5-1011  A
   5-1001  D
   5-1002  B
   5-2001  V
   5-3001  Q
run;               *(end of list of ID numbers);

* Display the results to verify correctness;
  proc print;  var _all_;  run;
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17. Epidemiology and public health

Clinical versus the public health approaches

In their report of a major study conducted by the U.S. National Academy of Science's Institute of
Medicine, the Committee for the Study of the Future of Public Health defined the mission of public
health mission as:

"the fulfillment of society's interest in assuring the conditions in which people can be
healthy" (p 40)

The substance of public health was defined as:

"organized community efforts aimed at the prevention of disease and the promotion
of health.  It links many disciplines and rests upon the scientific core of
epidemiology." (p 41)

Public health focuses on the health of the community, but is a community an entity other than the
people in a particular location or institutional unit?  To begin exploring this question, let us first
contrast two complementary approaches to maintaining and improving health –  the clinical
approach and the public health approach.

Clinical approach

The clinical approach deals with individuals, families.  The provider's mission is to do what is best
for the patient.  Although it has been criticized for devoting insufficient attention to prevention,
clinical medicine is not inherently tied to curative, rather than preventive approaches.  In fact, in
recent decades the time and resources devoted to preventing disease have greatly increased,
especially in the realm of secondary prevention (e.g., management of hypertension and
hypercholesterolemia).  Pediatrics has long emphasized primary prevention.

What is more intrinsic to the clinical approach is the focus on the individual, or sometimes the
family, in terms of diagnosis and intervention.  Diagnostic inquiry is directed at the patient, e.g., her
or his history, experiences, physiology, and so on.  The scope of inquiry is primarily the prevention
and treatment of medically recognized diseases, trauma, and psychiatric disorders.

Preparation of clinicians emphasizes core knowledge in biomedical sciences oriented towards
understanding physiological and pathological processes, the effects of pharmacologic and surgical
interventions, and techniques for investigation and intervention with the individual.  In addition to
allopathic medicine, numerous other approaches are offered in a clinical-type setting, including
acupuncture, chiropractic, massage therapy, and many others.  But the clinical encounter with an
individual remains the framework.
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Public health approach

The public health approach, in its ideal concept, deals with communities.  The public health mission
is to serve the community, even when particular individuals may well be disadvantaged in some way.
There is some ambiguity in this statement, though, since any given population may be regarded as
consisting of various "communities", whose interests are often perceived to differ.  But typically
public health focuses on a population or on subgroups within it.

The public health approach emphasizes prevention, though prevention in this context generally
means preventing the occurrence of disease in individuals.  At the level of the community, the
distinction between prevention and cure may not be as clear.

The scope of public health is much broader than that of the clinical approach, because there is no
framework of a clinical encounter to confine the time for diagnosis or intervention, and the variety
of people and their situations in a community multiply the range of factors that can affect health.
Therefore, in addition to specific and general causes of medically-recognized diseases, trauma, and
psychiatric disorders, public health is concerned with the organization of society and the protection
of the environment, and properly focuses on the future.

Public health providers have a small core of common training, due to the many fields of knowledge
that become relevant when one deals with factors outside the individual.  Channels for intervention
are similarly broad, as they can deal with individuals, families, government organizations, the media,
and the physical environment.

Contrasting the clinical and public health approaches

Two WHO reports on in vitro fertilization (IVF), published two years apart, illustrate the contrast in
the clinical and public health approaches.  The first (1990), issued by the WHO Regional Office for
Europe in Copenhagen used a public health approach aimed at finding the best mix of curative and
preventive health services, given existing resources, to maximize health status.  The second (1992),
issued by the WHO headquarters in Geneva, used a clinical approach to health policy development
and focused on individual patients and their available treatment options.  Here are some examples of
these contrasting perspectives, taken from a commentary by Stephenson and Wagner (1993):

Prevention

! Copenhagen - options and recommendations for integration of preventive health services
into an overall plan for the management of infertility in the community

! Geneva - no discussion of the prevention of infertility

Health services planning

! Copenhagen - a technology or procedure should have proven effectiveness, safety, and
benefit as evaluated by clinical trials and other epidemiology methods, before acceptance as
standard treatment.
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! Geneva - " . . . IFV and allied procedures changed from being purely experimental in
character to become accepted treatments for certain types of infertility and the numbers of
centres offering them increased rapidly."

Rationing of health care

! Copenhagen - provision of services should be determined by the prevalence of the
condition, the priority for infertility services within all human services, the medical and social
options available to infertile people, and consumer views and choices.  The public must have
a voice in setting these priorities.

! Geneva - "Respect for the principle of quality of services requires the availability of
medically assisted conception to the population requiring such service."

Standards of practice

! Copenhagen - recommendations for limits on age (40 years of age or younger), number of
IVF treatment cycles per woman, and three eggs/embryos per IVF treatment cycle.

! Geneva - no recommendations

Research priorities

! Copenhagen - priority to epidemiological, social, and health services research

! Geneva - focuses on laboratory and clinical problems

The individual and population approaches have also been contrasted in regard to the epidemiology
and prevention of sexually transmitted diseases and HIV (Aral et al., 1996).

Overlap

To be sure, there is considerable overlap between the two approaches, which at its best provides
many opportunities for cooperation and complementary services and at its worst invites charges of
duplication and turf wars.  From the clinical side, the importance of prevention is being increasingly
emphasized in primary care; from the public health side, interventions directed at the individual (e.g.,
inoculation, early detection and treatment, risk factor management) are typically carried out in one-
on-one clinical settings.  Pediatrics particularly has a strong orientation to prevention, and their are
also disciplines of community medicine, community pediatrics, and social medicine.

There are also many activities and organizations that blend both clinical and public health
approaches, as, for example, public health clinics, outreach services, patient education, clinical
dietetics, clinical epidemiology, and questions of the availability, effectiveness, quality, and
affordability of health services.

Obviously, both clinical and public health approaches are essential.  Without health care at the
individual level, much suffering occurs.  Without public health, the brushfires of disease can easily
overwhelm treatment resources.  There is, however, a growing concern that the clinical approach has
been gaining ascendency in confronting health needs out of proportion to the needs of public
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health, particularly at the world level.  Among the factors that favor the clinical approach over public
health are:

! Symptoms and discomfort tend to motivate action much more than do theoretical
concerns about low-level risks in the future.

! Individual victims of disease can be (or be made) highly visible and can elicit sympathy
and a desire to help; by conrast, benefits from effective public health tend to be invisible
and abstract.

! Effective treatment of a feared or disabling condition is highly visible and can be
dramatic; by contrast, beneficiaries of effective public health measures typically do not
think of themselves as being at risk nor as having benefited.

! Groups of individuals who have been affected by a disease can be highly influential in
the political process; by contrast, public health benefits large groups, so specific
individuals are not moved to action.

! Health care insurance systems provide an enormous revenue stream to support clinical
services; by contrast, public health must compete with numerous other worthy
constituencies for government appropriations.

! Clinical professions have many more people than do public health professions, which
means more visibility, more potential letter-writers, and more membership dues for
professional organizations.

! Much clinical care is delivered by the private sector, which has much greater ability to
market its services and perspectives.

Thus, it is hardly surprising that resources devoted to health care services are orders of magnitude
greater than those devoted to public health.  Nevertheless, nations differ in their relative expenditure
on public and private health services, and there are opportunities to influence the balance.through
public education (a.k.a. marketing) campaigns.

Academic versus public health perspectives

As noted in an earlier chapter, the modern history of public health has been shaped by advances in
scientific knowledge and technology, and growth in the public's acceptance that disease control is
possible and a public responsibility. These advances have come from and contributed to a major
expansion of epidemiologic research and training, including the development of epidemiology as an
academic discipline. But the rise of academic epidemiology and its access to federal resources for
research have had effects on the field that are not universally welcomed.  To be sure, epidemiology
continues to be the discipline that conducts surveillance for diseases in the population, identifies and
prioritizes threats to health, designs control and preventive measures, and evaluates their
effectiveness.  In this role, epidemiologic research has strong links to the needs of public health
authorities and direct applicability to important public health needs.

Since World War II, however, as the importance of scientific and biomedical research for modern
societies has become apparent, epidemiology has developed a strong role as a "basic" science and a
position of growing respect among academic researchers.  This role has fundamental importance for
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public health, since the best opportunities to prevent disease and improve health often come from
advances in basic understanding of the causes of disease, the development of new methods to study
them, and the assessment of preventive and control measures.  Nevertheless, there is an abiding
concern about the weakening of the link between public health practitioners and academic
epidemiologists, imbalances between allocation of research funding and importance of public health
problems, and the forces that draw epidemiologists' efforts toward what is perceived as scientifically
and academically valuable and but further away from public health needs.

This concern has been expressed by major figures in epidemiology and public health.  Nearly 20
years ago, Milton Terris (The epidemiologic tradition.  Public Health Reports 1979;94(3):203-209)
objected to the growing divide between academic epidemiology and public health practice, and
Lilienfeld and Lilienfeld (1982:147-148) and Mervyn Susser have warned about the overemphasis on
technique.  The Committee for the Study of the Future of Public Health also made a number of
strong criticisms of schools of public health.  Cecil Sheps has warned about the "substitution of
method for meaning".

How can teaching and research be in conflict with the mission of public health?  There are many
aspects to this question, but one is the familiar question of where to set priorities when not
everything can be done.  Although biomedical research has led to remarkable discoveries and
capabilities, in many instances it is possible to accomplish a great deal of prevention without the full
knowledge of the pathogenic agent.  In the words of the late Ernst Wynder, ". . . as we reflect on the
history of medicine, we may conclude that the complex disease entitles of the twentieth century, like
the diseases of the past, will respond first to preventive strategies on the basis of new knowledge as
well as of information already at hand." (EL Wynder, Am J Epidemiol 1994:549).  Wynder provides
these examples:

Comparison of the date of discovery of a measure to
prevent a disease with the date of identification of its

true causative or preventive agent

Disease

Discoverer of
preventive
measure

Year of
discovery
preventive
measure

Year of
discovery
of agent Discoverer of agent

Scurvy J. Lind 1753 1928 A. Szent-Gyorgi
Pellagra J. Goldberger 1755 1924 G. Casal et al.

Scrotal cancer P. Pott 1775 1933 J.W. Cook et al.
Smallpox E. Jenner 1798 1958 F. Fenner

Puerperal fever I. Semmelweis 1847 1879 L. Pasteur
Cholera J. Snow 1849 1893 R. Koch

Bladder cancera L. Rehn 1895 1938 W.C. Hueper et al.

Yellow fever W. Reed et al. 1901 1928 A. Stokes et al.

Oral cancerb R. Abbe 1915 1974 D. Hoffmann et al.
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Causative or preventive agents

Scurvy (Ascorbic acid)
Pellagra (Niacin)
Scrotal cancer Benzo(a)pyrene
Smallpox Orthopxovirus
Puerperal fever Streptococcus
Cholera Vibrio cholerae

Bladder cancera 2-Naththylamine
Yellow fever Flavivirus

Oral cancerb N-nitrosonomicotine

a associated with aniline dye;  b associated with tobacco chewing

Source:  Wynder EL.  Invited commentary: studies of mechanism and prevention.  Am J
Epidemiol 1994:547-549, Table 1.

The current health profile of the people of the world as a whole and of the United States (especially
among minority groups) highlights many health problems where the application of existing scientific
and medical knowledge could bring major improvements.  It has been argued that nearly half of
deaths in the United States could be prevented by the application of existing medical knowledge.

Deaths from Preventable Causes in the United States in 1990

Cause
Estimated No.

of Deaths
Percentage of
Total Deaths

Tobacco 400,000 19
Dietary factors and activity patterns 300,000 14
Alcohol 100,000 5
Microbial agents 90,000 4
Toxic agents 60,000 3
Firearms 35,000 2
High-risk sexual behavior 30,000 1
Motor vehicle injuries 25,000 1
Illicit use of drugs 20,000 <1
Total 1,060,000 49

Source:  Carl E. Bartecchi, Thomas D. MacKenzie, Robert W. Schrier.  The human
costs of tobacco use (first of two parts).  New Engl J Med 330;1994:907-912, Table 1,
page 908.  Reprinted from McGinnis JM and Foege WH.  Actual causes of death in
the United States.  JAMA 1993;270:2207-12.  Values are composite approximations
drawn from studies that use different approaches to derive estimates, ranging from
actual counts (e.g., firearms) to calculations of population-attributable risk (e.g.,
tobacco).  The numbers have been rounded.
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Individual-level versus societal level perspectives

The reasons – behavioral, social, political, and economic factors – for the lack of application of
existing knowledge are rarely the subject of epidemiologic inquiry.  Moreover, these factors are also
the major determinants of health in populations, so that their position outside of the scope of
epidemiology greatly restricts epidemiology's potential for improving health.

Geoffrey Rose (1985) has argued that concentration on the person as a unit and on a lessening of
personal risk has led to the neglect of populations and of the preventive goal of reducing incidence.
Similarly, Nancy Krieger (1994) has criticized definitions of epidemiologic theory that emphasize
concepts pertaining to study design and causal inference, and ignore issues of what drives societal
patterns of health and disease.

Poole (1994) contrasts two perspectives on the nature and role of epidemiology.  In the first
viewpoint (which he identifies with Milton Terris and Mervyn Susser), health of a group, cohort,
community, or a people is more than the summation of the health of its individual members.  Public
health's special province is this "more".  From this viewpoint, epidemiology "is not so much the
study of disease and health IN human populations as the study of disease and health OF human
populations" (Poole).  Epidemiology is seen as a social science (a population science) that focuses on
the forest, rather than on the trees.

In what Poole refers to as the newer view (advanced by Ken Rothman and Sander Greenland),
epidemiology is seen "as a type of medical research, as a way of using populations to obtain biologic
knowledge about disease and health in individual persons".  Here, epidemiology is seen as natural
science, the health of the population is the summation of health of individuals, and public health is
medicine for the masses with an emphasis on prevention.  This view presents epidemiology as a
dispassionate science, rather than an activist one.

Multilevel statistical models (also called hierarchical regression models and various other names)
represent a partial answer to this conflict, since they allows for the inclusion of both individual-level
and group-level variables in the same regression model.  However, while multilevel modeling
addresses the statistical issues of correct estimation when variables are measured at different levels,
the conceptual model and theoretical aspects, which lies at the heart of the debate, remain.

While the first viewpoint described by Poole tends to be associated with public health activism, it is
certainly possible to focus on societal level factors without endorsing or promoting any particular
course of action.  The societal perspective may be more congenial to activists in that it appears to
invite advocacy more directly than does the individual-level perspective.  But many individual level
factors (e.g., immunization, nutrition, tobacco use, fitness) are powerfully influenced by the social
environment, which argues for an activist stance in regard to individual-level relationships as well.
In some respects, therefore, the debate between the two viewpoints contrasted by Poole is another
version of the debate, discussed in the first chapter, about whether epidemiology is more properly a
science or a public health profession that includes advocacy as part of the job description.
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Human behavior is also biology

The debate about individual-level versus societal-level viewpoints is likely to evaporate for several
reasons.  Perhaps the most important of these is that as society and scientific knowledge evolve the
interacting influences of individuals and the environment become increasingly apparent and
important.  Advances in genetic science and technology, including the mapping of the human
genome, are greatly expanding the possibilities to understand disease processes at the individual
level.  But as this understanding unfolds it will, of course, disclose environmental (in the broadest
meaning of the term) influences.  Indeed, identification of susceptibility genes will increase the
power of epidemiologic studies to identify environmental factors, since inclusion of nonsusceptible
persons weaken associations. At the same time, advances in understanding of societal factors will
make clear the need to understand the individuals whose individual and collective behavior creates
and maintains those factors (Schoenbach 1995).

Since the human species is, after all, a part of the animal kingdom, full understanding of human
behavior requires a biological perspective as well as the perspectives of the psychological,
sociological, economic, and political sciences.  That biological perspective must encompass
influences related to genetic factors, environmental exposures (e.g., lead), prenatal exposures,
nutritional factors, pharmacologic factors, and neuroanatomical/neuroendocrinological effects of
past experiences (e.g., nurturing, violence).  It must also take account of behavioral and cognitive
tendencies that our species has acquired in our journey through evolutionary time.

As our population numbers and density increase, and the growth of technology and organizations
magnifies our potential impact, human behavior becomes an increasingly important factor on society
and on the environment.  One area where this impact is evident is war and conflict.  In addition to
millions upon millions of deaths from political, ethnic, and religious violence in the past century (an
illustrative list: Armenia, Bosnia, Cambodia, Chechnya, China, Congo, Egypt, Korea, Kosovo,
Lebanon, India, Iran, Iraq, Ireland, Israel, Japan, Russia, Rwanda, Spain, Syria, Timor, Vietnam –
plus World Wars I and II and innumerable colonial wars) represent a direct impact, armed conflict
devastates public health infrastructures, physically and psychologically maims many of the survivors,
destroys agriculture and industry, creates massive numbers of displaced persons, and harms the
environment.  Nuclear war, the most dramatic anti-social behavior, could render irrelevant virtually
all epidemiologic achievements.  The ability of individual or small groups of terrorists to harm large
numbers of people is attracting heightened attention as a result of such incidents as the Oklahoma
and World Trade Center bombings and the sarin gas attack in Tokyo (and the belief that the
organization responsible for the latter was also trying to obtain specimens of ebola virus).

Even more profound than these blatant harms to human life and health, however, may be the
growing imbalance between population and environmental resources.  Such imbalances are a familiar
phenomenon in nature – and a temporary one, since population size adjusts to fit within available
resources.

World population growth and urbanization

By 2030, world population is expected to grow to over eight billion from the current six billion
(Lutz, 1994).  Meanwhile the industrialized countries' share of population is expected to shrink to
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14%, so that the burden of the environments in developing countries will intensify greatly.  The
impacts of population size on life, the environment, and public health are manifold and sometimes
complex.  The age structure of the population, its geographical distribution, and many other factors
all influence the impact of population size.  The governments of the world have yet to accept fully
that there is an upper limit to the earth's carrying capacity.  In 1982 the United Nations Food and
Agriculture Organization (FAO) estimated that under optimal conditions the world could support
over 30 billion people, though a more realistic figure for food sufficiency is 10 to 15 billion, a range
that the world is projected to reach by the year 2050 (Lutz, 1994).

Population growth rates are a function of birth and death rates.  Crude death rates are very similar
between the developing countries as a whole and the developed countries, because the former have
a much younger age structure (average age in 1990 was 38 years in Western Europe, 22 years in sub-
Saharan Africa) (Lutz, 1994).  Birth rates in the developing world are much higher, with only China,
Hong Kong, and Taiwan having birth rates below 20 per 1,000 persons.  Both younger age structure
and higher total fertility rates (lifetime number of births/woman) are responsible for the higher birth
rates.  Although there are many uncertainties that underlie projections of birth rates, mortality, and
population growth, "The question is not 'if' world population will grow, but rather 'how big' will it
become." (Lutz 1994:34).

Birth rates in urban areas are generally smaller than those in rural areas, but urban areas also grow
through rural-urban migration.  Growing urbanization is bringing dramatic changes which are being
largely ignored in thinking about the future (Melinda Meade, UNC Department of Geography, in a
1998 seminar).  In 20 years, India will double in size, adding 900 million people to its cities.  Lagos,
Nigeria will grow to 25 million.  According to Meade, we are approaching a qualitative change.

Historically, Meade explains, many communicable diseases flourished when the development of
cities created adequate population density for microbes like measles.  But urbanization in the U.S.
was “stepped migration”, the classical pattern – people move from farm to town, then to a nearby
city, then to a distant, larger city, acquiring an urban lifestyle in the process.  In contrast,
urbanization in the developing world is “chain migration” – people go directly from villages to cities,
sometimes even bringing their farm animals with them.  U.S. cities grew at 1%, doubling in 70 years.
Many Asian and African cities are growing at 7%, doubling in 10 years!

Meade explains further that urbanization, especially rapid urbanization, provides a larger host
population for communicable diseases, more interaction (especially in a service economy), and
shortages of pure water and sewage treatment.  Urbanization brings changes in the host population
(genes, gender, age), habitat (natural → built, social), and behavior (beliefs, social organization,
technology).  Urbanization leads to draining marshes, introducing artificial irrigation, and
deforestation, all of which promote different species of vectors. For example, new disease vectors
are developing that "like" organically polluted water.  Bubonic plague had come to Europe before
the Black Death but did not spread wildly because of the absence of rats in Europe.  Enormous
population growth in Europe in the Middle Ages overwhelmed the habitat – agriculture, sewage,
grain storage, fluctuating yields – led to a large rat population and poor/malnourished human
population, creating the conditions for the spread of plague.  In fact, outbreaks of threatening
communicable diseases, including plague itself, are a present reality (and if it can be characterized as
such, a fascinating saga – see Laurie Garrett's The coming plague).  Besides communicable diseases,
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crowded, under-resourced urbanized areas spawn massive shantytowns and high rates of
unemployment, desperation and crime.  Unbreathable air and depletion of water supplies are major
issues.  For a vivid and disquieting portrait of some of these situations, see Robert D. Kaplan, The
coming anarchy (Atlantic monthly, February 1994; 273:44-76; available at
http://www.theatlantic.com/politics/foreign/anarchy.htm).

Global epidemiology?

Accurate knowledge is an essential for effective action.  As illustrated by Ernst Wynder's examples,
even partial knowledge can lead to successful prevention.  However, partial knowledge can also lead
to exchanging one set of problems for another, perhaps worse than those that motivated the original
actions.  Sir Austin Bradford Hill (1968: 300) wrote that the incomplete and tentative nature of
scientific knowledge "… does not confer upon us a freedom to ignore the knowledge we already
have, or to postpone the action that it appears to demand at a given time."  But the judgment of
what action is demanded by existing knowledge is often complex and controversial.

The debate between contrasting views of epidemiology outlined earlier reflects to some extent the
conflict between the desire to be confident in one's methods and data on the one hand and the need
to tackle the major problems that confront public health.  But that conflict is one for individuals to
resolve in choosing where to work and what to work on, rather than a decision for the field.  If
epidemiology confines itself to studying biomedical questions that it has the tools for studying, to
whom does it leave the other problems that confront public health?  If the study of health in human
populations is epidemiology, then whether the people who tackle these problems call themselves
medical geographers, biological anthropologists, or epidemiologists, they will be practicing
epidemiology.  Challenges to human health are not constrained by the availability of methodologies
to study them.

In principle, and increasingly in practice, the purview of epidemiology extends to the fauna and flora
of the planet and their global environment.  The importance of developing a global perspective
becomes clearer every decade, as advances in science, production, transportation, and
communication, with the accompanying changes in human activity, have created the conditions for
global epidemics, global contamination, conflict between peoples separated by great distances, and
even modification of the planet (McMichael 1993).  In his book Planetary Overload, Anthony
McMichael (1993) identifes international inequality as the key issue that must be addressed in order
to protect the global environment on which human health depends:

 1. The “one underlying problem is the entrenched inequality between rich and poor countries,
which predominantly reflects recent imperial history, power relationships and the global
dominance of Western industrial technology and economic values.” (p. 7)

 2. The “two central manifestations of this inequality are:

 1. rapid, poverty-related, population growth and land degradation in poor countries, and
 2. excessive consumption of energy and materials, with high production of wastes, in rich

countries.” (p. 7)
 3. The “three possible (perhaps coexistent) adverse outcomes of those manifestations are:



_____________________________________________________________________________________________
www.sph.unc.edu/courses/EPID168, © Victor J. Schoenbach 2000  17. Epidemiology and public health - 561
rev. 11/8/1998, 8/15/1999, 10/23/1999, 1/17/2000

 1. exhausting various non-renewable materials,
 2. toxic contamination of localised environments, and

 3. impairment of the stability and productivity of the biosphere’s natural systems.” (p. 7)

Although the study of the world's people and our environment, living and nonliving, can neither be
claimed by nor contained within any discipline or field, epidemiology's multidisciplinary perspective
draws, as a matter of course, from all fields of knowledge.  In that respect, epidemiology is as logical
a field as any to include the study of global health, in its broadest interpretation, within its scope.
John Last made this very point in accepting the Abraham Lilienfeld Award from the American
College of Epidemiology: "There is a need for innovative, transdisciplinary approaches.
Epidemiology is already transdisciplinary.  Epidemiology is well placed to take leadership."
(American College of Epidemiology Annual Meeting, Boston, September 22, 1997).
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18. Overview and Conclusion

A look backward on what has been covered and forward towards where the field is
going.

What is an "epidemiologic perspective"?

! Population orientation – increasingly, a global orientation

! Problem-oriented / multidisciplinary

! Breadth/challenge – in principle can address any health-related problem – or any problem?

! Prevention emphasis

! Sees society as the organism – interconnectedness among all facets

Epidemiology "successes" and "not-yet-successes"

! Cholera - John Snow

! Pellagra - Joseph Goldberger

! Rubella and birth defects - Gregg

! Fluoride and dental caries

! Cigarette smoking and lung cancer

! Blood pressure, cholesterol, smoking, fitness and CHD/CVD

! Legionnaire's disease

! Breast cancer

! Prostate cancer

! Pancreatic cancer

! Adolescent pregnancy

! Sexually transmitted diseases

! HIV/AIDS

! Drug use

! Violence

! Environmental protection
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! Health for all

What contributes to success?

! Specific disease definition

! Biological reasoning and measures, laboratory research

! Individual-level measures of disease

! Heterogeneity of exposure within groups

! The epidemiologic perspective handed down over generations.  But the practice of
epidemiology as we know it is largely a product of the last 50 years.

Epidemiologic methods have developed rapidly

! Elaboration of epidemiologic theory - case-control studies, epidemiologic measures,
randomized trials

! Computing revolution - data management, database linkage, mapping and geographical
databases, computer-based data collection

! Statistical analysis methods - many new techniques, e.g., logistic regression, proportional
hazards, longitudinal analysis, simulations

! More accurate and precise measures - revolutions in biochemical and molecular biology

! Communications, organizational, and management innovations - for large studies

! But there is also a recurrent concern about the effects on the field of some of these
advances, e.g.:

"Perhaps the most dangerous aspect of the state of our discipline today is that there
is an unhealthy emphasis on HOW one conducts an epidemiologic study and not
WHY and WHAT one does in such a study.  Simply put, we are training technocrats.
As Lionel Beak so aptly stated (14): 'In teaching, there is often excessive emphasis on
how rather than what or why.  Efforts are made to train men [sic!] who are
technically competent.  The end has been more vocationalism. … And many
administrators, and faculty, who have played a significant role in bringing this about
readily assume that this is how it must or should be.'  This trend has been further
emphasized by technologic developments in computation which allow one to deal
automatically with masses of data in a mechanical and thoughtless manner.  More
attention and emphasis must be given to reasoning about the various types of data
that are collected and analyzed."

147-148 in Abraham M. and David E. Lilienfeld.  Epidemiology and the public
health movement: a historical perspective.  Journal of Public Health Policy 1982; 3:140-
149.
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Epidemiology is expanding

! In recent decades, epidemiology has enjoyed enormous growth, expanding opportunities and
horizons, and growing recognition from other disciplines:

! Growing awareness of public health-related issues and acceptance (after World War II) of
role of government

! Chronic diseases - substantial National Institute of Health funding for epidemiologic
research

! Growth of environmental and occupational health regulations - epidemiology is a major
source of the evidence

! Litigation - epidemiology in the courtroom (Benedectin, breast implants, tobacco liability,
…)

! Epidemiology is increasingly seen as source of research skills and techniques for clinical
research

! Corporate as well as public sponsors

! Surge of managed care is creating new demands

! New schools of public health, new epidemiology departments, new research units

! International expansion

Is epidemiologic research becoming more difficult?

! Rarer conditions, larger studies

! Very low level exposures

! Subtle relationships/weak effects

! Constructs difficult to define and measure (psychiatric, behavioral, psychosocial, community)
as outcomes and exposures

! Understudied populations - researchers unfamiliar, populations disaffected and distrustful,
ethical and political concerns

! Greater sensitivity to human subjects issues - truly informed, truly consenting, privacy
protection

! Intervention studies [" . . . I think that we need to face up to the difficulties of doing
intervention trials.  We talk of experimental epidemiology, but we do very little of it.  It is
extremely difficult. … I think that we just need to face up to the need for doing more
experimental epidemiology."  (Sir Richard Doll, interview with Epidemiology Monitor)]
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Challenges in the environment for epidemiology

! Rising expectations of what epidemiology can do and how quickly – the public (and
sponsors) wants not just leads, but answers.

! Media interest and publicity – too much and too soon?  (abetted by marketing imperatives
and fund-raising).

! Link between academic epidemiology and public health practice has weakened – academic
epidemiology has its own perspectives and objectives – Milton Terris argues that the rise of
academic epidemiology has led to an overemphasis on statistics, analysis, and hypothesis
tests at the expense of biological thinking and hypothesis creation.

! Universities increasingly dependent upon research project funding. → Not "funding for
what?", but "what for funding?":   The ivory tower → The ivy-covered corporate tower?

! Competing priorities for public funds

! All sponsors are looking for marketable results, impact

What sets priorities for research funding

! Public health policy process (Objectives for the Nation)

! New, expanding, and feared diseases (HIV, TB, Alzheimer's disease)

! Increased recognition for existing problems (injury, teen pregnancy)

! Political process (cancer, HIV, minority health, women's health, aging)

"Academic-Industrial Complex" (cf. Eisenhower's warning about the Military-
Industrial Complex)

! Peer review, peer influence

! Research institutions

! Drug industry sponsorships of research, conferences, publications

! Insurance industry

! Corporate health care

! American Medical Association – political contributions and lobbying

Limits on funding

! Era of limits

! Costs are rising - inflation, technology, expectations, quality, Big Science

! More investigators, more institutions
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! More reliance on "soft money" – research funding as an engine of growth

Growing ability to meet challenges

! Researchers - more and better trained

! Increasing diversity (gradual!) in the profession

! Theoretical and methodologic development (EPID leisure class)

! Record keeping and bureaucratization - megagovernment, megacorporations,
megahealthcare - computerized information

! Computers and software - more powerful, more available, more friendly, more customized,
more intelligent

! Measurement (automatic readout, continuous monitoring)

! Pattern recognition (e.g., ECG reading, CT scan)

! Record linkage

! Routine surveillance/follow-up

! Larger datasets

! New analytic procedures

! Molecular biology revolution

! New assays

! New understanding ["So I think that epidemiologists have to become much more
biochemically and biologically minded than some are nowadays."  (Sir Richard Doll,
interview with the Epidemiology Monitor]

Epidemiologists' wish list

! Biological markers of past exposure (e.g., diet) (need a "C14 for epidemiology")

! Ways to measure social and behavioral variables

! Ways to understand social factors and disease in the context of social as well as physical
environment

Some fundamental questions

What is epidemiology?

! Do epidemiologists compromise their scientific credibility if they become advocates?

! Must epidemiology deal with "disease" or can it address any event, condition, or
characteristic?
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! What kind of population is required to be "population-based" – geographic?, worksite?,
health care provider?, patients with a medical condition?, . . .?

What are the goals of epidemiology / public health?

! Prolong life?  How long?  Life expectancy 80 years?, 90 years?, 100 years? 150 years?

! Should we extend life as long as we can consistent with good quality of life?  How much
life does a generation have a "right" to?  What is our generation's "fair share"?

! Does the effect on the environment matter?  Can the earth become too crowded?

! What do we think about a guest who never leaves?

What determines health?

! What we don't know (e.g., Alzheimer's disease, arthritis, breast cancer, pancreatic cancer,
prostate cancer) or don't know enough (cardiovascular disease, stroke, . . .)

! What we do know but don't know how to change (e.g., smoking, drugs, violence, risky
sexual behavior, . . .)

! What we know how to change but do not (e.g., pure drinking water, good sanitation,
immunization, breast feeding, preventive health care, environmental protection,
unplanned pregnancy, sexually transmitted diseases, food, housing, transportation,
physical security, . . .)

! Collective consciousness?

Is public health a noble calling?
Many people pursue self-aggrandizement. Public health professionals pursue a better life for
all.  But we also want to be paid to do that. Thus we experience diverse and sometimes
conflicting attractions, responsibilities, and demands:

Science Management
Curiosity Quality control
Imagination Personnel
Creativity Regulations
Collegiality Money
Dissemination Public relations
Idealism Practicality
Pursue knowledge Get a job
  and understanding Get grants
Improve public health Get publications
Help the disadvantaged Get more grants
Share freely Get known
Assist others Get ahead
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This is not a new challenge*.

Epidemiology seeks knowledge to improve health for all.  Knowledge may not be enough to
improve health.  Powerful forces – geologic, meteorologic, microbiologic, economic,
cultural, political -- work to counter changes that would advance public health (e.g., lead,
tobacco, global warming, handguns, reproductive health, political extremism, pollution, war
and violence).  But knowledge is certainly key in alerting us that change would be beneficial
and can help to build a consensus to bring about change.  Can knowledge reveal how to
reconcile conflicting imperatives among economics, politics, religion, culture, ecology, and
health?  That may be the ultimate challenge for epidemiology.

__________

* My teacher, Bert Kaplan, is fond of quoting the renowned rabbi, Hillel:  "He used to say, If I am
not for myself, who will be for me? And if I am only for myself, what am I?  And if not now,
when?" Sayings of the Fathers (or Pirke Aboth), translated by Joseph H. Hertz. NY, Behrman House,
1945, I-14.  [The commentary adds that "for myself" is "far more than merely a rule of worldly
wisdom.  'If I do not rouse my soul to higher things, who will rouse it?' (Maimonides)."]
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